JP3560358B2 - Manufacturing method of lightweight cellular concrete - Google Patents

Manufacturing method of lightweight cellular concrete Download PDF

Info

Publication number
JP3560358B2
JP3560358B2 JP06343094A JP6343094A JP3560358B2 JP 3560358 B2 JP3560358 B2 JP 3560358B2 JP 06343094 A JP06343094 A JP 06343094A JP 6343094 A JP6343094 A JP 6343094A JP 3560358 B2 JP3560358 B2 JP 3560358B2
Authority
JP
Japan
Prior art keywords
alc
carbonation
tobermorite
raw material
spacing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06343094A
Other languages
Japanese (ja)
Other versions
JPH07267753A (en
Inventor
正 山田
康之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP06343094A priority Critical patent/JP3560358B2/en
Publication of JPH07267753A publication Critical patent/JPH07267753A/en
Application granted granted Critical
Publication of JP3560358B2 publication Critical patent/JP3560358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/22Carbonation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【産業上の利用分野】
本発明は耐炭酸化抵抗や乾燥収縮など耐久性にすぐれるオートクレーブ養生した軽量気泡コンクリート(以下ALCと略す)の製造方法に関するものである。
【0002】
【従来の技術】
ALCは、石灰及びセメント等の石灰質原料粉末と珪砂、珪石等の珪酸質原料粉末とに水とアルミニウム粉末などの添加剤を加えて、発泡成型し、これを半硬化状態で切断し、次いでこの多孔質の成型体をオートクレーブ中で高温高圧水蒸気養生を行って製造されている。このようにして製造されるALCでは、石灰質原料と珪酸質原料と水とがオートクレーブ中で水熱反応して珪酸カルシウム水和物が生成し、その主成分はトバモライト結晶である。トバモライトの構造式は一般に5CaO・6SiO2 ・5H2 Oで表され、若干のアルミニウム成分、アルカリ成分を固溶することが可能である。
【0003】
ALCは建築材料として使用されるため、その要求性能を長年にわたり維持するための耐久性が重要である。
ALCでは一般のコンクリートに比べ空隙が多く含まれ、かさ比重が小さいため吸水しやすく、吸水した場合緩慢ではあるが大気中の炭酸ガスを吸収して炭酸化を引き起こす。この炭酸化が継続して起こるとパネルが収縮し、その進行により、亀裂や強度低下を引き起こす恐れがある。
【0004】
そこでこの炭酸化を防止するために、従来有機リン酸エステルあるいはストロンチウム化合物などを含有する珪酸カルシウム水和物からなるALCが考案されていた(特開昭57−179009号公報、特開昭57−179011号公報)。また、炭酸化を防止させる他の方法として、ALCを構成するトバモライトの結晶性を向上させるALCを製造する方法が知られていた。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの珪酸カルシウム水和物からなるALCでは高価で特殊な添加物を必要とすること、あるいは添加物によってはモルタル粘性を上げるなど発泡成型に悪影響を与えるものもあった。また高結晶性のトバモライト結晶を得ようとすると長時間の高温高圧水蒸気養生などが必要であり、生産性が低下し、工業的には満足できるものではなかった。そこで、本発明の目的は、特殊な添加剤を用いることなく、かつ生産性を低下させずに耐久性および寸法安定性の向上したALCを提供可能とすることである。
【0006】
【課題を解決するための手段】
本発明者は上記の点に鑑み、珪酸カルシウム水和物を主成分とするALCにおいて、珪酸カルシウム水和物を構成するトバモライト結晶の結晶構造が炭酸化抵抗性に大きく影響することを見い出し、トバモライト結晶の(002)面の面間隔を増大させたトバモライト結晶構造のALCが炭酸化抵抗性を大きく向上させることを見い出しこれに基づき、さらに鋭意研究した結果、完成した。
【0007】
即ち、本発明は、珪酸質原料として3.5〜10.0wt%の明礬石を含有する珪石及び石灰質原料として石灰とセメントを用い、アルカリ成分としてカセイソーダを原料固形分に対して、0.2〜1.0wt%添加し、これらの原料に水と発泡剤を加え、このスラリーを型枠に注入し、発泡させ、多孔質の成型体とし、これをオートクレーブ養生することを特徴とする軽量気泡コンクリートの製造方法で、本発明によれば、特殊な添加剤を用いることなく、かつ生産性を低下させずに珪酸カルシウム水和物を主成分とするオートクレーブ養生した軽量気泡コンクリートにおいて、珪酸カルシウム水和物中のトバモライト結晶の(002)面の面間隔が11.4オングストローム〜11.5オングストロームであるALCが得られるものである。このトバモライト結晶の(002)面の面間隔を11.4オングストローム〜11.5オングストロームに増大せしめることにより耐炭酸化性の向上および寸法安定性の向上にきわめて効果がある。
【0008】
なお、ALCを構成する珪酸カルシウム水和物中のトバモライト結晶の(002)面の面間隔は11.4オングストローム未満ではALCの耐久性向上に対して効果が小さく、また11.5オングストロームを越えても特にそれ以上の効果は得られない。(002)面の面間隔は11.42〜11.48オングストロームの範囲が好ましい。
【0009】
上記トバモライト結晶の(002)面の面間隔は粉末X線回折法により測定できる。例えばモノクロメーター付粉末X線回折装置を用い、通常の結晶格子定数の測定方法により測定することができる。この時Siを標準試料として用い、回折角の幾何学的補正を行う。
【0010】
さらに、本発明の上記ALCの製造方法を説明する。珪酸質原料として3.5〜10.0wt%の明礬石を含有する珪石を用いて、これに石灰質原料として石灰およびセメントを用い、アルカリ成分としてカセイソーダを原料固形分に対して0.2〜1.0wt%添加する。さらに従来のALCと同様の混和材料などを添加しても良い。この時明礬石を含む珪石はか焼することなく使用する。これらの原料と水を混合してスラリーとし、これに発泡剤を添加して、常法に従い型枠に注入し、発泡させた多孔質の成型体とし、これをオートクレーブ養生して製造される。
【0011】
以下の実施例に示すように、過酷な二酸化炭素濃度の高い促進炭酸化試験において50%炭酸化度に達する日数は従来品の2倍以上に伸びており耐炭酸化性能が大幅に向上している。また建築材料では部材の寸法安定性は重要な製品の品質であり、寸法安定性を示す乾燥収縮率も小さく抑えられている。以下実施例によりさらに具体的に説明するが、本発明はこれらの実施例に制限されるものでない。
【0012】
【実施例】
通常使用される生石灰及びポルトランドセメントなどの石灰質原料に明礬石を所定量含有する珪石及び水酸化ナトリウムの所定量を添加しさらに水と発泡剤を加え、以下常法に従って成型し、オートクレーブ養生を行い、ALCを製造した。
このようにして製造されたALCのトバモライト結晶の(002)面の面間隔は粉末X線回折法で、モノクロメーター付XRD(理学電機製 RAD−2C)を用いステップスキャニング法で測定した。測定条件はターゲットCu、管電圧40kV、管電流35mA、ステップサンプリング0.02deg、フィックスドタイム1秒である。このときSiを標準試料として回折角の補正を行った。炭酸化試験は、二酸化炭素濃度を10%、温度は20±1℃、相対湿度70±3%の条件で実施した。炭酸化度はALC中の全てのカルシウム分が炭酸カルシウムとなった場合を炭酸化度100%として、HCl処理時のCO2 量により測定し、炭酸化度が50%に達する日数を測定した。乾燥収縮率はJIS A5416に準じて試験した。ALC中のトバモライトの結晶性は粉末X線回折装置で測定した。その結果を実施例と比較例を対比して表1に示す。
【0013】
【表1】
【0014】
表注
*1)珪石中の明礬石の含有率の定量は、珪石に明礬石の各所定量を添加し、X線回折によるメインピーク(2θ=29.9°)の強度により、検量線を作成し、同様の操作で各試料をX線回折にかけ、これを換算して含有率を測定した。
表1より明らかなように、実施例1〜4では(002)面の面間隔は1.40〜11.46オングストロームと大きく、一方、比較例1〜2の(002)面の面間隔は11.34〜11.36オングストロームである。即ち、実施例の(002)面の面間隔が比較例に対して明らかに大きい。
【0015】
この(002)面の面間隔の大きい実施例のALCでは50%炭酸化度に達する日数は28日〜52日まで長くなり、比較例に比較して2〜4倍耐炭酸化抵抗の向上していることがわかる。また同じ程度のトバモライト結晶のX線回折強度を示す実施例2と比較例2を比較すると、(002)面の面間隔が11.42オングストロームのトバモライトからなる実施例のALCでは、50%炭酸化度に達する日数は37日である。一方比較例の(002)面の面間隔11.36オングストロームのトバモライトからなる比較例のALCでは50%炭酸化度に要する日数は12日である。従って(002)面の面間隔が11.40オングストローム以上のトバモライト結晶からなるALCでは耐炭酸化抵抗が向上することがわかる。実施例中で比較すると実施例1に比べ実施例2〜4が炭酸化速度が遅く(002)面の面間隔が11.42オングストローム以上で耐炭酸化抵抗が著しく向上し、この範囲がより好ましいことがわかる。
【0016】
また実施例1〜4では寸法安定性を示す乾燥収縮試験でも比較例1〜2と比較すると乾燥収縮率は大幅に小さく、寸法安定性に優れたALCであることがわかる。
【0017】
【発明の効果】
以上詳細に説明したように、本発明によれば、特殊な添加剤を用いることなく、かつ生産性を低下させずにALCの炭酸化抵抗や乾燥収縮性などを著しく向上させ、建材として耐久性にすぐれたALCを提供可能とすることができる。
[0001]
[Industrial applications]
The present invention relates to a method for producing an autoclave-cured lightweight cellular concrete (hereinafter abbreviated as ALC) having excellent durability such as resistance to carbonation and drying shrinkage.
[0002]
[Prior art]
ALC is a method of adding an additive such as water and aluminum powder to calcareous raw material powders such as lime and cement and siliceous raw material powders such as silica sand and silica stone, foam molding, cutting this in a semi-cured state, and then cutting this. It is manufactured by subjecting a porous molded body to high-temperature and high-pressure steam curing in an autoclave. In the ALC thus produced, the calcareous raw material, the siliceous raw material, and water undergo a hydrothermal reaction in an autoclave to form calcium silicate hydrate, the main component of which is tobermorite crystals. The structural formula of tobermorite is generally represented by 5CaO · 6SiO 2 · 5H 2 O, and it is possible to form a solid solution of some aluminum components and alkali components.
[0003]
Since ALC is used as a building material, durability for maintaining the required performance for many years is important.
ALC contains more voids than ordinary concrete and has a low bulk specific gravity, so that it easily absorbs water. When water is absorbed, it slowly absorbs carbon dioxide in the atmosphere to cause carbonation. If this carbonation occurs continuously, the panel shrinks, and the progress may cause cracks or a decrease in strength.
[0004]
Therefore, in order to prevent this carbonation, an ALC comprising calcium silicate hydrate containing an organic phosphate or a strontium compound has been conventionally devised (JP-A-57-17909, JP-A-57-17909). No. 179011). As another method for preventing carbonation, there has been known a method for producing ALC which improves the crystallinity of tobermorite constituting ALC.
[0005]
[Problems to be solved by the invention]
However, ALC composed of these calcium silicate hydrates requires an expensive and special additive, or some additives have an adverse effect on foam molding such as increasing the mortar viscosity. Further, in order to obtain high crystallinity of tobermorite crystals, long-time high-temperature and high-pressure steam curing is required, and the productivity is lowered, which is not industrially satisfactory. Therefore, an object of the present invention is to provide an ALC having improved durability and dimensional stability without using a special additive and without reducing productivity.
[0006]
[Means for Solving the Problems]
In view of the above, the present inventor has found that in ALC containing calcium silicate hydrate as a main component, the crystal structure of tobermorite crystals constituting calcium silicate hydrate greatly affects carbonation resistance. It has been found that ALC having a tobermorite crystal structure in which the spacing between the (002) planes of the crystal has been increased greatly improves the resistance to carbonation.
[0007]
That is, the present invention uses silica stone containing 3.5 to 10.0 wt% alumite as a siliceous raw material, lime and cement as a calcareous raw material, and uses caustic soda as an alkali component in an amount of 0.2 to the raw material solids. 1.01.0 wt%, water and a foaming agent are added to these raw materials, and this slurry is poured into a mold and foamed to form a porous molded body, which is then subjected to autoclave curing. According to the present invention, in a method for producing concrete, according to the present invention, calcium silicate water is used in an autoclave-cured lightweight cellular concrete containing calcium silicate hydrate as a main component without using a special additive and without reducing productivity. An ALC in which the (002) plane spacing of the tobermorite crystals in the sum is 11.4 Å to 11.5 Å. . Increasing the interplanar spacing of the (002) plane of the tobermorite crystal from 11.4 angstroms to 11.5 angstroms is extremely effective in improving carbonation resistance and dimensional stability.
[0008]
If the (002) plane spacing of the tobermorite crystals in the calcium silicate hydrate constituting ALC is less than 11.4 angstroms, the effect of improving the durability of ALC is small, and when it exceeds 11.5 angstroms. However, no further effect can be obtained. The spacing between the (002) planes is preferably in the range of 11.42 to 11.48 angstroms.
[0009]
The spacing between the (002) planes of the tobermorite crystal can be measured by powder X-ray diffraction. For example, using a powder X-ray diffractometer equipped with a monochromator, it can be measured by a usual method of measuring a crystal lattice constant. At this time, the diffraction angle is geometrically corrected using Si as a standard sample.
[0010]
Further, a method for producing the above-described ALC of the present invention will be described. Silica containing 3.5 to 10.0 wt% of alumite is used as the siliceous raw material, lime and cement are used as the calcareous raw material, and caustic soda is used as the alkali component. 0.0 wt% is added. Further, the same admixture as the conventional ALC may be added. At this time, the silica stone containing alumite is used without calcining. These raw materials and water are mixed to form a slurry, a foaming agent is added to the slurry, and the mixture is poured into a mold in a conventional manner to form a foamed porous molded body, which is then autoclaved and manufactured.
[0011]
As shown in the following examples, the number of days to reach 50% degree of carbonation in the severe accelerated carbonation test with severe carbon dioxide concentration is more than twice as long as that of the conventional product, and the carbonation resistance performance is greatly improved. I have. In building materials, the dimensional stability of members is an important product quality, and the drying shrinkage, which indicates dimensional stability, is also kept low. Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.
[0012]
【Example】
To a commonly used calcareous material such as quicklime and Portland cement, add a predetermined amount of alumite containing a predetermined amount of alumite and sodium hydroxide, further add water and a foaming agent, and mold according to a conventional method, and perform autoclave curing. , ALC.
The interplanar spacing of the (002) plane of the thus-produced ALC tobermorite crystal was measured by a powder X-ray diffraction method and a step scanning method using an XRD with a monochromator (RAD-2C manufactured by Rigaku Corporation). The measurement conditions are a target Cu, a tube voltage of 40 kV, a tube current of 35 mA, a step sampling of 0.02 deg, and a fixed time of 1 second. At this time, the diffraction angle was corrected using Si as a standard sample. The carbonation test was performed under the conditions of a carbon dioxide concentration of 10%, a temperature of 20 ± 1 ° C., and a relative humidity of 70 ± 3%. The degree of carbonation was measured by the amount of CO 2 at the time of HCl treatment, with the case where all the calcium content in the ALC was changed to calcium carbonate as 100%, and the number of days until the degree of carbonation reached 50% was measured. The drying shrinkage was tested according to JIS A5416. The crystallinity of tobermorite in ALC was measured with a powder X-ray diffractometer. The results are shown in Table 1 in comparison with Examples and Comparative Examples.
[0013]
[Table 1]
[0014]
Table * 1) For the determination of the content of alunite in silica stone, a calibration curve was prepared by adding the specified amount of alunite to silica stone and determining the intensity of the main peak (2θ = 29.9 °) by X-ray diffraction. Then, each sample was subjected to X-ray diffraction by the same operation, and the content was measured by converting this.
As is clear from Table 1, in Examples 1 to 4, the spacing between the (002) planes was as large as 1.40 to 11.46 angstroms, while in Comparative Examples 1 and 2, the spacing between the (002) planes was 11 0.34 to 11.36 angstroms. That is, the surface spacing of the (002) plane in the example is clearly larger than that in the comparative example.
[0015]
In the ALC of the example having a large (002) plane spacing, the number of days to reach the 50% degree of carbonation increases from 28 days to 52 days, and the carbonation resistance is improved by 2 to 4 times as compared with the comparative example. You can see that it is. Also, comparing Example 2 and Comparative Example 2 showing the same degree of X-ray diffraction intensity of tobermorite crystals, it was found that the ALC of the example composed of tobermorite having a (002) plane spacing of 11.42 angstroms showed 50% carbonation. The number of days to reach the degree is 37 days. On the other hand, in the ALC of the comparative example composed of tobermorite having a spacing of 11.36 angstroms of the (002) plane of the comparative example, the number of days required for the degree of 50% carbonation is 12 days. Therefore, it can be seen that the ALC composed of tobermorite crystals having a (002) plane spacing of 11.40 angstroms or more has improved resistance to carbonation. In comparison among the examples, the carbonation rate of Examples 2 to 4 is lower than that of Example 1, and the (002) plane spacing is 11.42 angstroms or more, which significantly improves the resistance to carbonation. This range is more preferable. You can see that.
[0016]
Further, in Examples 1 to 4, the drying shrinkage test showing the dimensional stability also showed that the drying shrinkage ratio was significantly smaller than that of Comparative Examples 1 and 2, indicating that the ALC was excellent in dimensional stability.
[0017]
【The invention's effect】
As described in detail above, according to the present invention, the carbonation resistance and drying shrinkage of ALC are significantly improved without using a special additive and without reducing the productivity, and the durability as a building material is improved. It is possible to provide an excellent ALC.

Claims (1)

珪酸質原料として3.5〜10.0wt%の明礬石を含有する珪石及び石灰質原料として石灰とセメントを用い、アルカリ成分としてカセイソーダを原料固形分に対して、0.2〜1.0wt%添加し、これらの原料に水と発泡剤を加え、このスラリーを型枠に注入し、発泡させ、多孔質の成型体とし、これをオートクレーブ養生することを特徴とする軽量気泡コンクリートの製造方法。Silica containing 3.5 to 10.0 wt% alumite as a siliceous raw material, lime and cement as calcareous raw materials, and caustic soda as an alkali component added at 0.2 to 1.0 wt% based on the raw material solids. A method for producing lightweight cellular concrete, comprising adding water and a foaming agent to these raw materials, injecting the slurry into a mold, foaming the resultant, and forming a porous molded body, followed by autoclaving.
JP06343094A 1994-03-31 1994-03-31 Manufacturing method of lightweight cellular concrete Expired - Lifetime JP3560358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06343094A JP3560358B2 (en) 1994-03-31 1994-03-31 Manufacturing method of lightweight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06343094A JP3560358B2 (en) 1994-03-31 1994-03-31 Manufacturing method of lightweight cellular concrete

Publications (2)

Publication Number Publication Date
JPH07267753A JPH07267753A (en) 1995-10-17
JP3560358B2 true JP3560358B2 (en) 2004-09-02

Family

ID=13229059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06343094A Expired - Lifetime JP3560358B2 (en) 1994-03-31 1994-03-31 Manufacturing method of lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP3560358B2 (en)

Also Published As

Publication number Publication date
JPH07267753A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
US9067830B2 (en) Hydraulic lime composition
EP2878585A1 (en) Method for the manufacturing of cementitious C-S-H seeds
JP4453997B2 (en) High strength hardened calcium silicate
Pangdaeng et al. Effect of sodium hydroxide concentration and sodium silicate to sodium hydroxide ratio on properties of calcined kaolin-white portland cement geopolymer
JP3560358B2 (en) Manufacturing method of lightweight cellular concrete
CN114988838B (en) Gypsum self-leveling mortar and preparation method thereof
JP3349819B2 (en) Manufacturing method of ALC
RU2062763C1 (en) Raw mixture for building article making, mainly xylolith blocks, and a method of their making
JP2004018353A (en) Low specific gravity calcium silicate hardened body and its producing method
JP7210677B1 (en) Non-hydraulic cement composition and cementitious material
US20230295046A1 (en) Decarbonized cement blends
JP2000086312A (en) Hydration-cured product
JP2001019571A (en) Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same
JP4481556B2 (en) Lightweight cellular concrete with excellent carbonation resistance
EP3904309A1 (en) Process for producing autoclaved aerated concrete using silica raw materials having higher solubility than quartz
CN116199447A (en) Preparation method of composite doped bentonite modifier and waterproof material
JPH08259347A (en) Production of light-weight foamed concrete
JP2006124216A (en) High carbonation-resistant autoclaved lightweight concrete
JP2003277163A (en) Method for producing aerated lightweight concrete having excellent carbonation resistance
JPH07267754A (en) Production of lightweight cellular concrete
JPS5842128B2 (en) Keisan Calcium Suiwabutsunoseizouhou
JPH07291755A (en) Production of lightweight cellular concrete
JP2004026597A (en) Process for producing lightweight cellular concrete excellent in resistance to carbonation
JPS62191481A (en) Manufacture of alc
JPS61201678A (en) Manufacture of steam cured lightweight foamed concrete

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 10

EXPY Cancellation because of completion of term