JP3559381B2 - Cooling / heating unit - Google Patents

Cooling / heating unit Download PDF

Info

Publication number
JP3559381B2
JP3559381B2 JP06532996A JP6532996A JP3559381B2 JP 3559381 B2 JP3559381 B2 JP 3559381B2 JP 06532996 A JP06532996 A JP 06532996A JP 6532996 A JP6532996 A JP 6532996A JP 3559381 B2 JP3559381 B2 JP 3559381B2
Authority
JP
Japan
Prior art keywords
heat
heating
cooling
medium
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06532996A
Other languages
Japanese (ja)
Other versions
JPH09236288A (en
Inventor
正徳 榎本
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP06532996A priority Critical patent/JP3559381B2/en
Publication of JPH09236288A publication Critical patent/JPH09236288A/en
Application granted granted Critical
Publication of JP3559381B2 publication Critical patent/JP3559381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は水等の熱媒体を用いて冷・暖房を行う冷・暖房器に関するものである。
【0002】
【従来の技術】
図6には出願人が試作した未公知である、冷・暖房器のシステム主要構成の一例が示されており、この冷・暖房器は、室内機5と、室外機7と、室外機5と室外機7を接続している管路34,35とを有して構成されている。室内機5は冷・温風を冷・暖房領域(室内)へ供給するもので、放熱ファン6と放熱熱交換器23を有して構成されており、放熱ファン6の回転による通風が放熱熱交換器23を通過するときに放熱熱交換器23を流れる熱媒体(例えば水)の熱によって冷却・加熱され、その冷・温風が室内へ吹き出すように形成されており、放熱熱交換器23は熱媒体の冷房放熱部と暖房放熱部の兼用の放熱部を成している。
【0003】
上記放熱熱交換器23の入側には管路34の一端側が接続され、管路34の他端側は室外機7に導かれている。また、放熱熱交換器23の出側には管路35の一端側が接続され、管路35の他端側は室外機7に導かれており、室外機7から管路34を介して熱媒体が放熱熱交換器23へ流れ込み、放熱熱交換器23を流れた熱媒体は管路35を通って室外機7へ戻される管路構成になっている。
【0004】
室外機7は、加熱装置(加熱部)4と、冷却装置9と、ポンプ18と、熱媒体を貯蔵するタンク19と、切り換え弁33,36と、管路37,38,39とを有して構成されており、前記管路35はタンク19に接続されている。タンク19には管路37が接続され、この管路37はポンプ18を介しその下流側で管路38,39に分岐されており、分岐部分には切り換え弁36が設けられ、熱媒体の流れを管路38側(冷房側)と管路39側(暖房側)のどちらかに切り換える構成となっている。管路38は熱媒体を冷却する冷却装置9を、管路39は熱媒体を加熱する加熱装置4をそれぞれ通って管路38と39は前記管路34に合流する。この合流部分には切り換え弁33が設けられ、熱媒体を管路38から管路34へ流れ込ませる冷房側(管路38側)と、管路39から管路34へ流れ込ませる暖房側(管路39側)とのどちらかに切り換える構成となっている。
【0005】
上記タンク19と管路37とポンプ18と切り換え弁36と管路38と切り換え弁33と管路34と放熱熱交換器23と管路35により冷房用媒体循環路2が構成され、また、タンク19と管路37とポンプ18と切り換え弁36と管路39と切り換え弁33と管路34と放熱熱交換器23と管路35により暖房用媒体循環路3が構成されている。上記冷房用媒体循環路2と暖房用媒体循環路3は、上記の如く、切り換え弁33,36より室内機5側が共通の管路により形成され、共通の熱媒体が循環する構成となっており、切り換え弁33,36が管路38側(冷房側)へ切り換えられたときには、ポンプ18の駆動により熱媒体はタンク19から管路37,38,34、放熱熱交換器23、管路35を介してタンク19に戻る冷房用媒体循環路2の経路で循環し、切り換え弁33,36が管路39側(暖房側)へ切り換えられたときには、ポンプ18の駆動により熱媒体はタンク19から管路37,39,34、放熱熱交換器23、管路35を介してタンク19に戻る暖房用媒体循環路3の経路で循環するように形成されている。
【0006】
上記切り換え弁33,36により放熱部(放熱熱交換器23)の切り換え機構が形成されており、上記のように、切り換え弁33,36が冷房側に切り換えられたときには、熱媒体は冷却装置9を通って冷却され、この冷却された熱媒体が放熱熱交換器23を通り室内機5から冷風が吹き出すことになり、放熱熱交換器23は冷房放熱部と成し、切り換え弁33,36が暖房側に切り換えられたときには、熱媒体は加熱装置4を通って加熱され、この加熱された熱媒体が放熱熱交換器23を通って室内機5から温風が吹き出すことになり、放熱熱交換器23は暖房放熱部と成すという如く、切り換え弁33,36の切り換え動作により放熱熱交換器23を冷房放熱部と暖房放熱部のいずれかに切り換える構成となっている。
【0007】
前記加熱装置4は、燃焼室8と、該燃焼室8に設けられるバーナ10と、このバーナ10にガスを導くガス供給路11と、ガス供給路11に設けられ該ガス供給路11の開閉を行う元電磁弁12および電磁弁14と、バーナ10へのガス供給量を開弁量により制御する比例弁13と、前記暖房用媒体循環路3の管路39に介設されバーナ10の上方側に設けられる熱交換器16と、バーナ10の下方側に設けられ空気の給排気を行う燃焼ファン17とを有して構成されている。この加熱装置4のバーナ10は、ガス供給路11により導かれるガスと燃焼ファン17の回転駆動により供給される空気によってバーナ燃焼を行い、熱交換器16を流れる熱媒体を加熱する。
【0008】
前記冷却装置9は、冷媒(例えば水)の蒸発により冷房用媒体循環路2の管路38を流れる熱媒体を冷却する冷却部である蒸発器44を含む冷媒循環系48を有しており、冷媒循環系48は、蒸発器44と、吸収器45と、再生器46と、凝縮器47と、それらを接続する管路53,54,55,56,57とを有して構成され、この冷媒循環系48には吸収器45と凝縮器47を通る冷却媒体循環路61が設けられている。
【0009】
上記蒸発器44の内部空間は、例えば6.5 mmHg abs(絶対圧)程度の真空状態に維持され、この内部空間には前記冷房用媒体循環路2の管路38に介設される冷却熱交換器22が設けられ、この冷却熱交換器22の下方側に液体の冷媒50(例えば水)が貯蔵されており、例えば6.5 mmHg absの真空状態では約5℃の低温で冷媒である水が蒸発し、この冷媒の蒸発により冷却熱交換器22を流れる熱媒体が約7℃程度に冷却される。
【0010】
なお、上記熱媒体の冷却温度は予め定められる冷房放熱温度(室内機5から吹き出す冷風の温度)に基づいて定められるもので、一般的に、冷房放熱温度は7〜10℃に設定されており、蒸発器44は熱媒体を7〜10℃に冷却する冷媒の蒸発が生じるようにその内部空間の真空状態が形成されている。
【0011】
上記蒸発器44で発生した冷媒蒸気は管路53を通って吸収器45に流れ込む。吸収器45の内部空間には冷却媒体循環路61が通され、また、吸収器45の底部側には冷媒蒸気を取り込む冷媒吸収液(例えば臭化リチウム液)51が貯蔵されており、前記冷却媒体循環路61を流れる冷却媒体(例えば水)が吸収器45に流れ込んだ冷媒蒸気の熱を吸収し、つまり、冷却媒体が冷媒蒸気を冷却し、この冷媒蒸気を冷媒吸収液51が取り込む。この冷媒蒸気の取り込み反応により熱が発生するが、この熱も前記冷却媒体循環路61の冷却媒体に吸収される。冷媒により薄められた冷媒吸収液は管路54を通って再生器46へ送られる。
【0012】
再生器46には再生器46を加熱するバーナ60が設けられており、希薄冷媒吸収液はバーナ60により燃焼加熱され、冷媒吸収液中の冷媒が蒸発・分離し、冷媒吸収液が再生(濃く)される。この再生された冷媒吸収液は管路57を介し、途中、熱交換部で再生器46への入側管路54を流れる希薄冷媒吸収液に熱を奪われ、前記吸収器45へ戻される。一方、再生器46で発生した冷媒蒸気は管路55を通って凝縮器47へ流れ込む。
【0013】
凝縮器47には冷却媒体循環路61が通されており、凝縮器47に流れ込んだ冷却蒸気は冷却媒体循環路61の冷却媒体によって熱を奪われ、つまり、冷却・液化され、液体の冷媒は管路56を介して前記蒸発器44へ戻される。
【0014】
上記のように、冷媒は蒸発器44で蒸発して冷却熱交換器22(冷房用媒体循環路2の管路38)を流れる熱媒体を冷却し、その蒸気となった冷媒は吸収器45、再生器46、凝縮器47を経て液体の冷媒に再生され蒸発器44に戻るという如く、冷媒は冷媒循環系48を循環する。
【0015】
前記冷却媒体循環路61には通風によって冷却媒体の冷却を行う冷却塔62が介設されており、この冷却塔62は前記吸収器45と凝縮器47で吸収・保有された冷却媒体の熱を放熱させ、前記吸収器45と凝縮器47で冷却媒体が円滑に冷媒蒸気の保有熱を吸収できるように、通常、31℃〜32℃の吸収動作温度に冷却媒体を冷却するように形成されている。
【0016】
なお、図中、26は室外機7に流れ込む熱媒体の温度を検出する室外機入側温度センサ(加熱部入側温度センサ)を示し、27は熱交換器16から流れ出た熱媒体の温度を検出する加熱部出側温度センサを示し、30は放熱ファン6のファン回転数を検出する放熱ファン回転数検出センサを示し、31は放熱ファン6のファン風量を検出する放熱ファン風量検出センサを示し、32は放熱ファン6の回転により放熱ファン6に取り込まれる空気温度を検出する空気温度センサを示すものである。
【0017】
上記システム構成の冷・暖房器(器具)には、通常、リモコン(図示せず)付きの制御装置25が設けられており、この制御装置25は、前記加熱部出側温度センサ27等の様々なセンサ出力やリモコンの情報を取り込んで、ポンプ18の駆動制御や、加熱装置4のバーナ10および燃焼ファン17等の駆動制御や、冷却装置9のバーナ60の加熱制御や、放熱ファン6の回転制御や、切り換え弁33,36の切り換え制御等の器具動作を制御し、冷房運転や暖房運転を行う。
【0018】
例えば、冷房運転時には、切り換え弁33,36を冷房側(管路38側)へ切り換え、冷却装置9のバーナ60を燃焼させる等の冷却装置9の起動を行い、ポンプ18を駆動させることにより、熱媒体がタンク19から管路37,38を通って冷却装置9に流れ込み、冷却装置9の冷却動作により、例えば、約7℃に冷却され、この冷却された熱媒体が管路34を介して放熱熱交換器23ヘ搬送され、放熱ファン6の通風を冷却し(通風の熱を吸収し)、その冷風が冷房領域(室内)へ吹き出して(冷房放熱を行って)室内の冷房を行う。そして、通風の熱を吸収した(冷房放熱した)熱媒体は管路35を介して室外機7に戻されて冷却装置9で冷却され、再び室内機5へ送られる。このように、熱媒体を冷却用媒体循環路2で循環させると共に、熱媒体の冷却・冷房放熱(通風の熱の吸収)を繰り返し行わせることで冷房領域の冷房を行う。
【0019】
また、暖房運転時には、切り換え弁33,36を暖房側(管路39側)へ切り換え、ポンプ18を駆動させ、加熱装置4を起動させることにより、熱媒体がタンク19から管路37,39を介して加熱装置4の熱交換器16に流れ込みバーナ燃焼により加熱され、この加熱された熱媒体が管路34を通って放熱熱交換器23へ搬送され、放熱ファン6の通風を加熱し(熱媒体が保有熱を放熱し)、その温風が暖房領域(室内)へ吹き出して室内の暖房を行う。そして、暖房放熱し冷めた熱媒体は管路35を介して室外機7に戻され加熱装置4で加熱され、再び室内機5へ送られる。このように、熱媒体を暖房用媒体循環路3で循環させると共に、熱媒体の加熱・放熱を繰り返し行わせることで暖房領域の暖房を行う。
【0020】
上記加熱装置4の運転に際し、前記制御装置25には、予めバーナ燃焼の最小燃焼時の燃焼能力(最小燃焼能力)と最大燃焼時の燃焼能力(最大燃焼能力)とが与えられており、制御装置25は、前記最小燃焼能力から最大燃焼能力までの範囲内でバーナ燃焼が行われるように、ガス供給通路11からバーナ10への供給ガス量、つまり、比例弁13の開弁量(比例弁電流量)と、燃焼ファン17からバーナ10への供給空気量を制御し、これらの制御により熱交換器16を通る熱媒体が予め定められた加熱温度(例えば80℃)まで加熱されるように制御している。なお、上記熱媒体の加熱温度は予め定められる暖房放熱温度(室内機5から吹き出される温風の温度)に基づいて定められるもので、暖房放熱温度は、通常、50℃〜80℃に設定される。
【0021】
また、冷・暖房運転に際し、制御装置25は、通常、放熱ファン6の回転制御を行って冷・温風の吹き出し量を制御し冷・暖房領域の温度管理を行っている。例えば、図示されていないが冷・暖房領域である室内の温度を検出する室内温度センサがリモコンや室内機5等の適宜の場所に設けられており、この室内温度センサの検出室内温度とリモコンの室内設定温度の情報を制御装置25が取り込んで、冷房運転時に検出室内温度が室内設定温度より上昇しているときには燃焼ファン6の回転量を増加させ冷風の吹き出し量を増加させて室内を冷やしたり、暖房運転時に検出室内温度が室内設定温度よりも下回っているときには放熱ファン6の回転量を大きくして温風の吹き出し量を増加させ熱媒体の暖房放熱熱量を増加させて室内を暖めるという如く、室内の温度管理を自動的に行う。もちろん、放熱ファン6の回転量切り換え制御をスイッチ操作等によって手動で行う簡易型の器具もある。
【0022】
なお、制御装置25は、室外機7に設けられたり、室内機5に設けられたり、室外機7と室内機5に分けて設けられる等、必要に応じ適宜の場所に設けられる。また、放熱ファン6に取り込まれる空気温度が冷・暖房領域である室内温度とほぼ等しいと考えられる場合には、図6に示す空気温度センサ32と別個に室内温度センサを設けずに空気温度センサ32が室内温度センサを兼用する構成としてもよい。
【0023】
【発明が解決しようとする課題】
ところで、本発明者は、熱媒体による熱量の搬送効率を高めるために、つまり、熱媒体が単位質量(体積)当たり保有して搬送する熱量(搬送熱量)を増加させるために、熱媒体を水だけで形成するのではなく、水に潜熱材料を混ぜた潜熱材料混入媒体を検討してきた。上記潜熱材料とは、周知のように、固体⇔液体の相変化に伴う潜熱(凝固熱あるいは融解熱)を利用する材料で、例えば、高級アルコールや包接形水和物等により形成され、単位質量当たりの潜熱が大きいものである。暖房に用いる暖房用潜熱材料としては予め定められている暖房放熱温度(例えば50℃〜80℃)の領域に融点を持つ潜熱材料を選択し、また、冷房に用いる冷房用潜熱材料としては予め定められている冷房放熱温度(例えば7℃〜10℃)の領域に融点を持つ潜熱材料を選択して、それら潜熱材料を水に直接混ぜて熱媒体を形成する。表1には暖房に用いる潜熱材料の例が、表2には冷房に用いる潜熱材料の例がそれぞれ示されている。
【0024】
【表1】

Figure 0003559381
【0025】
【表2】
Figure 0003559381
【0026】
表1に示す潜熱材料が暖房時に放熱熱交換器23で液体から固体への凝固の相変化を生じると、潜熱(融点温度の熱)を暖房放熱し、暖房用潜熱材料の融点温度、つまり、暖房放熱温度の温風が暖房領域へ吹き出し、また、表2に示す潜熱材料が冷房時に放熱熱交換器23で固体から液体への融解の相変化を生じると、潜熱を冷房放熱し、つまり、放熱ファン6の通風の熱を吸収して通風を冷却し、冷房用潜熱材料の融点温度、つまり、冷房放熱温度の冷風が冷房領域へ吹き出すことになる。
【0027】
ところで、従来のように、水だけで熱媒体を形成すると、水は冷房放熱温度や暖房放熱温度の領域では相変化を起こさず、1cal /gと少ないものであるので、放熱熱交換器23で水温は急激に上昇・降下し放熱熱交換器23の入側と出側の水温差が大きく、一定の温度の冷・温風を安定して吹き出せないという問題がある。これに対して、冷房用と暖房用の潜熱材料を混ぜた熱媒体では、暖房時に暖房用潜熱材料が融点、つまり、暖房放熱温度領域で相変化を起こし、また、冷房時には冷房用潜熱材料が融点(冷房放熱温度領域の温度)で相変化を起こす上に、それら潜熱材料の搬送熱量が多い(例えば、水の搬送熱量の3倍〜10倍と多い)ことから、放熱熱交換器23で熱媒体の温度は殆ど変化せず、放熱熱交換器23での熱媒体の温度分布がほぼ均一化され、一定の温度の冷・温風を安定して冷・暖房領域へ供給できると考えられた。
【0028】
しかしながら、暖房時に、放熱熱交換器23で凝固の相変化を起こし固化した暖房用潜熱材料は放熱熱交換器23の管路内壁に付着してしまい、暖房用媒体循環路3を循環できなくなるし、その付着した暖房用潜熱材料が伝熱抵抗体となって放熱熱交換器23の放熱効率を低下させ、暖房効率を悪化させると共に、冷房時にも放熱熱交換器23の付着暖房用潜熱材料が伝熱抵抗体となって放熱熱交換器23の冷房放熱効率を低下させ、冷房効率をも悪化させてしまうという問題や、冷房時に、冷却装置9の冷却熱交換器22で凝固の相変化を起こし固化した冷房用潜熱材料が冷却熱交換器22の管路内壁に付着してしまい、冷房用媒体循環路2を循環できなくなるし、その付着した冷房用潜熱材料が伝熱抵抗体となって冷却熱交換器22の冷却効率を低下させ、つまり、熱媒体を冷却できなくなって冷房効率をさらに悪化させてしまうという問題が生じた。
【0029】
本発明は上記課題を解決するためになされたものであり、その目的は、固体の潜熱材料もスムーズに搬送でき、かつ、潜熱材料が管路内壁に付着するのを防止した潜熱材料混入の熱媒体を構築し、熱量の搬送効率を高めると共に冷・暖房熱効率を向上させた冷・暖房器を提供することにある。
【0030】
【課題を解決するための手段】
上記目的を達成するために本発明は次のような構成をもって前記課題を解決する手段としている。すなわち、第1の発明は、熱媒体が循環する冷房用媒体循環路と暖房用媒体循環路が設けられ、冷房用媒体循環路は、熱媒体の保有熱を奪って熱媒体を冷却する冷却部と、空気を取り込んでその空気の熱を熱媒体に吸収させて冷却した空気を冷房領域へ供給する冷房放熱部とを通り循環形成され、暖房用媒体循環路は、熱媒体を加熱し熱媒体に熱を供給する加熱部と、熱媒体の保有熱を通風により暖房領域へ放熱させる暖房放熱部とを通り循環形成されており、上記冷房用媒体循環路と暖房用媒体循環路は共通の熱媒体が循環する構成となっている冷・暖房器において、前記熱媒体は液体に該液体に溶解しない冷房用カプセル型潜熱体と暖房用カプセル型潜熱体を混在させて形成されており、冷房用カプセル型潜熱体は前記液体に溶解しない殻の内部空間に冷房放熱温度領域で固体から液体への相変化を行う冷房用潜熱材料を収容して形成され、暖房用カプセル型潜熱体は前記液体に溶解しない殻の内部空間に暖房放熱温度領域で液体から固体への相変化を行う暖房用潜熱材料を収容して形成され、暖房用媒体循環路の暖房放熱部には熱媒体の保有熱を通風によって暖房領域へ放熱させるための放熱ファンと、放熱ファンの回転による通風風量を検出するための放熱ファン風量情報センサと、放熱ファンの回転により放熱ファンが取り込む空気温度を検出する空気温度センサとが設けられており、前記放熱ファン風量情報センサと空気温度センサのセンサ出力に基づいて放熱ファンの回転による通風により熱媒体が暖房放熱部において放熱する放熱熱量を求める放熱熱量検出部と、該放熱熱量検出部の検出放熱熱量を補う熱量を加熱部で熱媒体に供給するための加熱部の加熱熱量を求めて加熱部の加熱熱量を制御する加熱熱量制御部とを設ける構成をもって前記課題を解決する手段としている。
【0031】
また、第2の発明は、熱媒体が循環する冷房用媒体循環路と暖房用媒体循環路が設けられ、冷房用媒体循環路は、熱媒体の保有熱を奪って熱媒体を冷却する冷却部と、空気を取り込んでその空気の熱を熱媒体に吸収させて冷却した空気を冷房領域へ供給する冷房放熱部とを通り循環形成され、暖房用媒体循環路は、熱媒体を加熱し熱媒体に熱を供給する加熱部と、熱媒体の保有熱を通風により暖房領域へ放熱させる暖房放熱部とを通り循環形成されており、上記冷房用媒体循環路と暖房用媒体循環路は共通の熱媒体が循環する構成となっている冷・暖房器において、前記熱媒体は液体に該液体に溶解しない冷暖房用カプセル型潜熱体を混在させて形成されており、冷暖房用カプセル型潜熱体は前記液体に溶解しない殻の内部空間に冷房放熱温度領域で固体から液体への相変化を行う冷房用潜熱材料と暖房放熱温度領域で液体から固体への相変化を行う暖房用潜熱材料を収容して形成され、暖房用媒体循環路の暖房放熱部には熱媒体の保有熱を通風によって暖房領域へ放熱させるための放熱ファンと、放熱ファンの回転による通風風量を検出するための放熱ファン風量情報センサと、放熱ファンの回転により放熱ファンが取り込む空気温度を検出する空気温度センサとが設けられており、前記放熱ファン風量情報センサと空気温度センサのセンサ出力に基づいて放熱ファンの回転による通風により熱媒体が暖房放熱部において放熱する放熱熱量を求める放熱熱量検出部と、該放熱熱量検出部の検出放熱熱量を補う熱量を加熱部で熱媒体に供給するための加熱部の加熱熱量を求めて加熱部の加熱熱量を制御する加熱熱量制御部とを設ける構成をもって前記課題を解決する手段としている。
【0032】
さらに、第3の発明は、上記第1又は第2の発明における熱媒体の液体は不凍液により形成される構成をもって前記課題を解決する手段としている。
【0035】
さらに、第の発明は、上記第1又は第2又は第3の発明における冷房用媒体循環路の冷却部には冷媒の蒸発により熱媒体を冷却する蒸発器とこの蒸発器で発生した蒸気の熱を吸収する吸収器とを含む冷媒循環系が連接され、この冷媒循環系には冷媒の蒸発により得た熱を吸収・放熱する冷却媒体循環路が設けられており、この冷却媒体循環路を循環する冷却媒体は液体に該液体に溶解しない冷却用カプセル型潜熱体を混在させて形成され、冷却用カプセル型潜熱体は前記液体に溶解しない殻の内部空間に前記冷媒循環系の吸収器の吸収動作温度領域に融点を持つ冷却用潜熱材料を収容して形成されている構成をもって前記課題を解決する手段としている。
【0036】
さらにまた、第の発明は、上記第1〜第の発明のいずれか1つの発明における冷房放熱部と暖房放熱部は兼用の放熱部を成し、冷房時にはその兼用の放熱部を冷房放熱部へ切り換え、暖房時には兼用の放熱部を暖房放熱部へ切り換える切り換え機構が設けられている構成をもって前記課題を解決する手段としている。
【0037】
上記構成の発明において、暖房用カプセル型潜熱体と冷房用カプセル型潜熱体を液体に混在させた熱媒体、あるいは、冷暖房用カプセル型潜熱体を液体に混在させた熱媒体が、冷房運転時に冷房用媒体循環路を循環すると、例えば、冷却部で冷房用潜熱材料が殻の内部で凝固の相変化を生じ潜熱を放熱して冷却し、冷房放熱部で冷房用潜熱材料が殻の内部で融解の相変化を生じて通風の熱を吸収し通風を冷却し(冷房放熱し)、この冷風が冷房領域へ供給され冷房領域の冷房を行う。
【0038】
また、暖房運転時に、上記熱媒体が暖房用媒体循環路を循環すると、例えば、加熱部で暖房用潜熱材料が殻の内部で融解の相変化を生じて潜熱を吸収・蓄熱し、暖房放熱部で暖房用潜熱材料が殻の内部で凝固の相変化を生じて潜熱を暖房領域へ放熱して暖房領域の暖房を行う。上記のように、潜熱材料を殻の内部に収容することにより、潜熱材料が液体と固体のどちらかの状態であっても同様に搬送することが可能となるし、固化した潜熱材料が管路内壁に付着してしまうのを防止する。
【0039】
【発明の実施の形態】
以下、この発明の実施の形態例を図面に基づいて説明する。なお、以下に説明する各実施の形態例の冷・暖房器は図6に示す冷・暖房器と同一のシステムのものを対象にしており、その重複説明は省略する。
【0040】
第1の実施の形態例において特徴的なことは、図1に示すように、冷房用と暖房用の媒体循環路2,3を循環する共通の熱媒体が、液体である水65に冷房用カプセル型潜熱体66と暖房用カプセル型潜熱体67を混在させて形成されていることである。上記冷房用カプセル型潜熱熱体66は、液体(水)65に溶解しない材料(例えば、メラミン樹脂等のフッ素系樹脂)で形成された殻68の内部空間69に前記表2に示すような冷房用潜熱材料70を収容して形成され、また、暖房用カプセル型潜熱体67は液体65に溶解しないフッ素系樹脂等の材料により形成された殻68の内部空間69に前記表1に示すような暖房用潜熱材料71を収容して形成されている。上記カプセル型の潜熱体66,67の粒の大きさは、例えば、3〜5μmと小さく、カプセル型の潜熱体66,67は潜熱材料70,71をマイクロカプセル化したものであり、潜熱材料70,71が液体と固体のどちらの状態であっても液体65と共にスムーズに搬送可能な構成となっている。
【0041】
この実施の形態例では、熱媒体は、前記の如く、水65に冷房用と暖房用のカプセル型潜熱体66,67を混在させて形成されており、水65に対するカプセル型潜熱体66,67の混在割合はカプセル型潜熱体66,67をスムーズに搬送できる割合であれば必要に応じ適宜に設定することができ、また、冷房用と暖房用のカプセル型潜熱体の混在比は冷・暖房効率が共に向上するように適宜に設定することができる。
【0042】
上記構成の熱媒体が、器具の冷房運転により、冷房用媒体循環路2を循環するとき、冷房装置9の蒸発器(冷却部)44で冷媒の蒸発により熱媒体を冷却すると共に、熱媒体中の冷房用潜熱材料70に凝固の相変化を起こさせることによって、冷房用潜熱材料70の潜熱が放熱される。そして、その冷却した熱媒体が放熱熱交換器23へ搬送され、放熱ファン6の通風により冷房用潜熱材料70に融解の相変化を起こさせることによって、通風の熱を潜熱として吸収し、通風を冷房放熱温度に冷却し(熱媒体が冷房放熱し)、この冷房放熱温度の冷風が冷房領域へ吹き出し室内の冷房が行われることになる。
【0043】
また、器具の暖房運転により、熱媒体が暖房用媒体循環路3を循環するとき、加熱装置(加熱部)4で熱媒体を暖房用潜熱材料71の融点以上に加熱し暖房用潜熱材料71に融解の相変化を起こさせることにより、暖房用潜熱材料71は潜熱を吸収・蓄熱し、放熱熱交換器23へ搬送され、放熱熱交換器(放熱部)23で放熱ファン6の回転による通風によって凝固の相変化を生じることで、潜熱が放熱されて放熱ファン6の通風が暖められ、暖房放熱温度の温風が暖房領域へ吹き出し室内の暖房が行われる。
【0044】
上記のように、放熱熱交換器23で冷房用と暖房用の潜熱材料70,71は融解あるいは凝固の相変化を起こし潜熱を吸収・放熱するが、図3に示すように、相変化中には潜熱材料70,71は吸収・放熱(冷・暖房放熱)しているにも拘わらず、温度が殆ど変化しないことから、熱媒体は放熱熱交換器23を通り冷・暖房放熱しても温度が殆ど変化せず、放熱熱交換器23の入側と出側の熱媒体温度差が小さくなり、つまり、放熱熱交換器23での熱媒体温度分布が均一化される。このことより、ほぼ一定温度の冷・温風を安定して冷・暖房領域へ供給することができる。
【0045】
これに対して、水だけで熱媒体を形成した場合には、放熱熱交換器23で水が相変化を起こさず吸熱・放熱熱量(冷・暖房放熱熱量)に比例して水温が上・下変化するので、放熱ファン6の通風によって水温が急激に変化し、放熱熱交換器23の入側と出側の水温差が大きく、冷・温風を安定的に冷・暖房領域へ供給できない。
【0046】
上記の如く、カプセル型潜熱体混在の熱媒体は放熱熱交換器23で潜熱材料70,71が相変化を起こすことにより、熱媒体の冷・暖房放熱熱量が多少増減しても放熱熱交換器23の出側の熱媒体温度がほぼ一定となる。つまり、冷房運転時に冷却装置9に流れ込む熱媒体温度がほぼ一定となり、また、暖房運転時に加熱装置4に流れ込み熱媒体温度がほぼ一定となる。このことから、冷却装置9が一定の冷却能力で熱媒体を冷却するだけでほぼ一定温度に熱媒体を冷却でき、また、加熱装置4が一定の燃焼能力(加熱熱量)で熱媒体を加熱するだけでほぼ一定温度まで熱媒体を加熱できる。
【0047】
このように、熱媒体の冷却・加熱制御を厳密に行わなくても冷却装置9あるいは加熱装置4で熱媒体を所望の温度に冷却・加熱できるので、放熱熱交換器23で潜熱材料70,71に相変化が生じるように、例えば、冷房運転時には冷却装置9の出側の熱媒体温度が冷房用潜熱材料70の融点より予め定めた温度(例えば5℃)だけ低目の温度となるように、暖房運転時には加熱装置4の出側の熱媒体温度が暖房用潜熱材料71の融点より予め定めた温度(例えば5℃)だけ高目の温度となるように、熱媒体の温度を制御することは容易である。
【0048】
また、水だけで熱媒体を形成した場合には、放熱熱交換器23で水が冷・暖房放熱し水温が急激に変化し、冷房時には温まった水が冷却装置9に戻され、また、暖房時には冷め切った水が加熱装置4に戻されることになるので、冷却装置9あるいは加熱装置4の入側と出側の水温差が大きくなるのに対して、本実施の形態例に示した熱媒体は放熱熱交換器23で冷・暖房放熱しても温度が殆ど変化せず、冷房時に冷房用潜熱材料70の融点より僅かに上昇した温度で冷却装置9に戻され、暖房時には暖房用潜熱材料71の融点より僅かに下がった温度で加熱装置4に戻されることになり、冷却装置9あるいは加熱装置4の入側と出側の熱媒体温度差が小さくなる。
【0049】
このように、冷房用と暖房用の潜熱材料70,71を用いた熱媒体における冷却装置9・加熱装置4の入側と出側の温度差は水だけの熱媒体に比べて極めて小さく、冷却装置9の蒸発器44の冷却熱交換器22で冷媒の蒸発による冷却熱量の大部分が冷房用潜熱材料70の凝固の相変化により冷房用潜熱材料70の内部に保有され(つまり、冷房用潜熱材料70が潜熱を放熱して冷却され)、また、加熱装置4のバーナ10の加熱熱量の大部分が暖房用潜熱材料71の融解の相変化により暖房用潜熱材料71の内部に蓄熱されるので、潜熱材料の相変化により冷却熱交換器22あるいは熱交換器16から熱媒体が吸収する冷却・加熱熱量は非常に多い。このために、冷却熱交換器22の温度低下が抑制され、冷却熱交換器22の温度低下による冷却熱交換器22の外部冷却放熱の増加が防止でき、また、熱交換器16の温度上昇が抑えられ、熱交換器16の温度上昇による熱交換器16の外部放熱増加が防止できることから、冷却熱交換器22および熱交換器16の効率は水だけの熱媒体に比べて向上する。すなわち、冷房用と暖房用の潜熱材料70,71を用いることにより、冷却熱交換器22と熱交換器16の外部放熱による熱の無駄が殆どなくなって、冷却熱交換器22と熱交換器16の効率を向上させることができる。
【0050】
この実施の形態例によれば、冷房用と暖房用の潜熱材料70,71をそれぞれ殻68の内部空間69に収容し冷房用と暖房用のカプセル型潜熱体66,67を形成し、それらカプセル型潜熱体66,67を水に混在させて熱媒体を構成したので、熱媒体のカプセル型潜熱体66,67は殻68の内部空間の潜熱材料70,71が液体と固体のどちらの状態であっても、水と共に媒体循環路2,3をスムーズに循環することができ効率良く冷・暖房を行うことができる。また、潜熱材料70,71は、上記の如く、殻68に収容されているので、凝固の相変化により潜熱材料70,71が固化して冷却熱交換器22や放熱熱交換器23の内壁に付着し伝熱抵抗体となるのを回避することができることから、冷却熱交換器22や放熱熱交換器23での熱交換効率を良い状態のまま維持でき、冷・暖房効率をさらに向上させることが可能である。
【0051】
さらに、冷房用と暖房用の潜熱材料70,71を用いているので、冷・暖房に用いるための単位質量(体積)当たりの熱媒体の冷・暖房放熱熱量は、単位質量当たりの水の冷・暖房放熱熱量よりも格段に多くなる。このことより、冷房用と暖房用のカプセル型潜熱体66,67混在の熱媒体が水だけの熱媒体と同程度の冷・暖房放熱熱量を放熱熱交換器23で放熱しようとすると、カプセル型潜熱体混在の熱媒体は水だけの熱媒体よりも少量で済み、つまり、熱媒体の搬送量を低減させることが可能で、ポンプ18の駆動エネルギー(搬送エネルギー)を削減でき、ポンプ18の小型化(軽量化)を図ることができる。
【0052】
さらに、冷房放熱温度領域に融点を持つ冷房用潜熱材料70と暖房放熱温度領域に融点を持つ暖房用潜熱材料71を用いているので、冷房時には放熱熱交換器23で冷房用潜熱材料70に融解の相変化を、暖房時には放熱熱交換器23で暖房用潜熱材料71に凝固の相変化を生じさせるだけで一定温度の冷・温風を安定的に冷・暖房領域へ吹き出すことが可能となる。このことから、冷・暖房運転時に、熱媒体の温度制御を厳密に行わなくても、例えば、冷房時には冷却装置9の出側の熱媒体温度が冷房用潜熱材料70の融点より設定温度(例えば、5℃)程度低い冷却温度となるように冷却装置9で熱媒体を冷却するだけで、冷房用潜熱材料70に放熱熱交換器23で融解の相変化を生じさせることが可能であり、また、暖房時には加熱装置4の出側の熱媒体温度が暖房用潜熱材料71の融点より設定温度(例えば、5℃)程度高い加熱温度となるように加熱装置4で熱媒体を加熱するだけで、暖房用潜熱材料71に放熱熱交換器23で凝固の相変化を生じさせることが可能であるので、熱媒体の温度制御を精度良く行わなくても容易に冷・暖房放熱温度の一定温度の通風を冷・暖房領域へ吹き出すことができる。
【0053】
さらに、上記の如く、冷房用と暖房用の潜熱材料70,71を用いているので、冷却運転時に冷房用潜熱材料70の凝固の相変化により冷却熱交換器22から熱媒体が吸収する冷却熱量が非常に多く、冷却熱交換器22の温度低下が抑制され冷却熱交換器22の外部冷却放熱増加を防止でき、また、暖房運転時に暖房用潜熱材料71の融解の相変化により熱交換器16から熱媒体が吸収する熱量が非常に多く、熱交換器16の温度上昇が抑えられ熱交換器16の外部放熱増加を抑制できることから、冷却熱交換器22および熱交換器16の外部放熱の無駄を殆どなくすことができ、冷却熱交換器22および熱交換器16の効率を水だけの熱媒体と比べて向上させることができる。特に、暖房時には、上記の如く、熱交換器16の温度上昇が抑えられる、つまり、熱交換器16の過熱を防止できるので、熱交換器16の熱劣化が回避され熱交換器16の長寿命化を図ることが可能である。
【0054】
以下に第2の実施の形態例を説明する。この実施の形態例が前記第1の実施の形態例と異なる特徴的なことは、前記表1に示すような暖房用潜熱材料71と前記表2に示すような冷房用潜熱材料70をそれぞれ別個の殻68の内部に収容するのではなく、共通の殻68の内部空間に冷房用潜熱材料70と暖房用潜熱材料71を共に収容して冷暖房用カプセル型潜熱体72を形成し、この冷暖房用カプセル型潜熱体72を液体である水65に混在させて冷房用と暖房用の媒体循環路2,3を流れる共通の熱媒体を構成したことであり、それ以外の構成は前記第1の実施の形態例と同様であり、その重複説明は省略する。
【0055】
上記冷暖房用カプセル型潜熱体72は、暖房放熱温度(例えば50℃〜80℃)の領域の熱に対して耐熱性が良く液体に溶解しない材料(例えば、メラミン樹脂等のフッ素系樹脂)で形成された殻68の内部空間69に前記表2に示すような冷房用潜熱材料70と前記表1に示すような暖房用潜熱材料71を共に収容して形成されている。上記冷暖房用カプセル型潜熱体72の粒の大きさは、例えば、3〜5μmと小さく、冷暖房用カプセル型潜熱体72は冷房用と暖房用の潜熱材料70,71をまとめて1マイクロカプセル化したものであり、潜熱材料70,71が液体と固体のどちらの状態であっても水と共にスムーズに搬送可能な構成となっている。
【0056】
前記の如く、上記構成の冷暖房用カプセル型潜熱体72を水65に混在させて熱媒体が構成されており、水65に対する冷暖房用カプセル型潜熱体72の混在割合は、冷暖房用カプセル型潜熱体72がスムーズに媒体循環路2,3を搬送できる割合であれば、必要に応じ適宜に設定することができる。
【0057】
上記構成の熱媒体が冷房運転時に冷房用媒体循環路2を循環し、冷暖房用カプセル型潜熱体72の冷房用潜熱材料70に、前記第1の実施の形態例同様に、融解・凝固の相変化を生じさせ潜熱の吸収・放熱を行わせることによって、冷房効率良く冷房領域の冷房が行われる。また、冷暖房用カプセル型潜熱体72の暖房用潜熱材料71に、前記第1の実施の形態例同様に、融解・凝固の相変化を生じさせることによって、暖房効率良く暖房領域の暖房が行われることになる。
【0058】
この実施の形態例によれば、冷房用と暖房用の潜熱材料70,71を共通の殻68の内部空間69に収容して冷暖房用カプセル型潜熱体72を形成し、この冷暖房用カプセル型潜熱体72を液体65に混在させて熱媒体を構成したので、前記第1の実施の形態例同様に、潜熱材料70,71が冷却熱交換器22や放熱熱交換器23の管路内壁に付着してしまうのを回避することができるし、潜熱材料70,71が固体の状態であっても、媒体循環路2,3をスムーズに循環することが可能となり、効率良く冷・暖房を行うことができる。
【0059】
また、この実施の形態例でも、前記第1の実施の形態例同様に、熱媒体に冷房用と暖房用の潜熱材料70,71が含まれているので、前記第1の実施の形態例で述べたような潜熱材料70,71を用いることによる優れた効果を奏することができる。
【0060】
ところで、前記第1の実施の形態例に示したように、冷房用潜熱材料70と暖房用潜熱材料71を別々の殻68に収容する構成では、例えば、冷房用潜熱材料70と暖房用潜熱材料71の比重の違いから、熱媒体の液体中で冷房用カプセル型潜熱体66と暖房用カプセル型潜熱体67が均等に混ざらず、冷房用潜熱材料70と暖房用潜熱材料71の分布に偏りが生じる虞があるが、この実施の形態例では、冷房用と暖房用の潜熱材料70,71を共に共通の殻68の内部に収容しているので、上記問題を防止することができる。
【0061】
なお、第1と第2の実施の形態例の冷・暖房器に用いられる冷房用潜熱材料70は表2に示す潜熱材料だけとは限らず、冷房放熱温度(例えば7℃〜10℃)領域に融点を持つ潜熱材料であれば、他の潜熱材料でもよく、また、暖房用潜熱材料71は表1に示す潜熱材料だけとは限らず、暖房放熱温度(例えば50℃〜80℃)の領域に融点を持つ潜熱材料であれば、他の潜熱材料を用いても構わない。
【0062】
以下に第3の実施の形態例を説明する。この実施の形態例において特徴的なことは、前記第1の実施の形態例に示した熱媒体と第2の実施の形態例に示した熱媒体のどちらかの熱媒体を用い、図4に示すように制御装置25に加熱熱量制御部40を設け、暖房運転時に、加熱装置4のバーナ燃焼能力(加熱熱量)を可変制御し、熱媒体の暖房用潜熱材料71に放熱熱交換器23で確実に凝固の相変化を生じさせて潜熱を放熱させる構成にしたことであり、それ以外の構成は前記各実施の形態例と同様であり、その重複説明は省略する。
【0063】
この実施の形態例では、図4に示すように、制御装置25は加熱熱量制御部40とデータ記憶部41を有して構成されている。上記データ記憶部41は記憶装置により構成されており、このデータ記憶部41には暖房用潜熱材料71の融点よりも予め定めた温度(例えば5℃)だけ高目の温度が加熱温度として与えられている。また、データ記憶部41には図7に示すような熱媒体温度と吸収熱量の関係データである吸収熱量検出データや、暖房運転時に熱交換器16の入側の熱媒体が前記加熱温度まで上昇するのに必要な吸収熱量を熱媒体に供給するためのバーナ10の燃焼能力データ等の加熱熱量制御に必要な加熱熱量検出データが実験や演算等により求め与えられている。
【0064】
加熱熱量制御部40は、暖房運転時における熱媒体の循環中、加熱部出側温度センサ27あるいは加熱部入側温度センサ26のセンサ出力を取り込んで熱交換器16の出側の熱媒体温度がデータ記憶部41に記憶されている前記加熱温度となるように、加熱装置4の加熱熱量(バーナ10の燃焼能力)を制御する。例えば、上記センサ出力と、加熱温度と、前記吸収熱量検出データとに基づいて熱媒体が前記加熱温度まで上昇するのに必要な熱量を求め、その検出熱量と前記バーナ10の燃焼能力データに基づいてバーナ10の燃焼能力(加熱部の加熱熱量)を求め、この求めた燃焼能力となるようにバーナ10へのガス供給量を比例弁13の開弁量によって制御すると共に、燃焼ファン17の回転を制御して前記検出燃焼能力にマッチングする空気をバーナ10へ供給し、バーナ10の燃焼制御、つまり、加熱装置4の加熱熱量の制御を行う。
【0065】
この実施の形態例によれば、制御装置25に加熱熱量制御部40を設け、暖房運転時には熱媒体が熱交換器16で暖房用潜熱材料71の融点よりも予め定めた温度だけ高目の温度となるようにバーナ10の燃焼能力を制御するので、暖房運転時に、熱媒体は熱交換器16で暖房用潜熱材料71の融点よりも予め定めた温度だけ高目の温度に加熱され、放熱熱交換器(放熱部)23で確実に暖房用潜熱材料71に凝固の相変化を生じさせることができ、このことより、放熱熱交換器23で暖房用潜熱材料71に凝固の相変化が起きず、暖房放熱温度の温風を吹き出すことができないという問題が回避され、確実に暖房放熱温度の温風を暖房領域へ供給することができる。もちろん、前記第1又は第2の実施の形態例に示した熱媒体を用いているので、前記各実施の形態例同様の優れた効果を奏することもできる。
【0066】
以下に、第4の実施の形態例を説明する。第4の実施の形態例において特徴的なことは、図1に示す冷房用と暖房用のカプセル型潜熱体66,67混在の熱媒体と図2に示す冷暖房用カプセル型潜熱体72の熱媒体のどちらかを用い、図5に示すように、制御装置25に暖房運転時に放熱熱交換器23で熱媒体が放熱する暖房放熱熱量を求める放熱熱量制御部42を設け、この放熱熱量検出部42の検出放熱熱量に基づいて加熱熱量制御部40が加熱装置4の加熱制御を行う構成としたことであり、それ以外の構成は前記各実施の形態例同様であり、その重複説明は省略する。
【0067】
この実施の形態例では、図5に示すように、制御装置25は加熱熱量制御部40とデータ記憶部41と放熱熱量検出部42を有して構成されている。上記放熱熱量検出部42は、暖房運転時に、空気温度センサ32と、放熱ファン風量検出センサ31あるいは放熱ファン回転数検出センサ30により構成される放熱ファン風量情報センサとのセンサ出力を取り込んで、次のように放熱熱交換器23での熱媒体の暖房放熱熱量Pを検出する。
【0068】
上記放熱熱量Pは、放熱ファン6の風量をW、放熱ファン6が取り込む空気温度をt、放熱熱交換器23から吹き出す温風温度をt、暖房放熱温度領域で熱媒体が1℃温度を低下するときに放熱する熱量をCとしたとき、式(1)により求めることができる。
【0069】
P=W・(t−t)・C・・・・・(1)
【0070】
上記放熱ファン6の風量Wは放熱ファン風量検出センサ31のセンサ出力により直接的に、あるいは、放熱ファン回転数検出センサ30のセンサ出力により間接的に検出することができ、温風温度tは、前述したように、暖房用潜熱材料71の融点の近傍温度にほぼ一定していることから、予め実験等により求めて定数として与えることができ、放熱ファン6が取り込む空気温度tは空気温度センサ32により検出でき、放熱熱交換器23で熱媒体が1℃温度を低下するときに放熱する熱量Cは、予め実験や演算等に求めて定数として与えることができることから、予め上記式(1)に示す演算式と該演算式の定数t、Cの値を放熱熱量検出データとしてデータ記憶部41に格納しておき、放熱熱量検出部42は、暖房運転時における熱媒体の循環中、放熱ファン風量検出センサ31あるいは放熱ファン回転数検出センサ30のセンサ出力に基づいて放熱ファン6の風量Wを検出し、また、空気温度センサ32の検出空気温度tを取り込んで、データ記憶部41の放熱熱量検出データに基づいた放熱熱量検出演算を行い、暖房放熱熱量Pを検出する。
【0071】
データ記憶部41には前記放熱熱量検出データ以外に加熱熱量検出データが格納されている。この加熱熱量検出データは暖房運転時に放熱熱交換器23で熱媒体が放熱した熱量を加熱装置4で補う加熱熱量を検出するためのデータであり、熱媒体の暖房放熱熱量とその熱量を補う加熱装置4の加熱熱量(バーナ10の燃焼能力)の関係を予め実験や演算等に求めて演算式や表データやグラフデータ等の加熱熱量検出データとしてデータ記憶部41に格納されている。
【0072】
加熱熱量制御部40は、暖房運転時における熱媒体の循環中、前記放熱熱量検出部42が検出した熱媒体の放熱熱量を取り込み、この検出放熱熱量と前記データ記憶部41の加熱熱量検出データに基づいて、加熱装置4の加熱熱量(バーナ10の燃焼能力)を検出し、バーナ10がその検出燃焼能力のバーナ燃焼を行うようにバーナ10へのガス供給量を比例弁13の開弁量によって制御し、また、そのガス供給量にマッチングする空気をバーナ10へ送り込むために燃焼ファン17の回転制御を行って、バーナ10の燃焼能力を制御する。
【0073】
この実施の形態例によれば、放熱熱量検出部42を設け、加熱熱量制御部40は、暖房運転中、放熱熱量検出部42が検出した熱媒体の放熱熱量を補うために加熱装置4の加熱熱量を制御する構成としたので、暖房運転中に、放熱熱交換器23に流れ込む熱媒体の温度をほぼ一定に、例えば熱媒体の暖房用潜熱材料71の融点より予め定めた温度だけ高目の温度に維持することができ、放熱熱交換器23で暖房用潜熱材料71が確実に凝固の相変化を起こして潜熱を放熱することが可能となり、暖房放熱温度の温風を安定して暖房領域へ供給できる。
【0074】
また、この実施の形態例でも、前記第1又は第2の実施の形態例に示したカプセル型潜熱体混在の熱媒体を用いているので、前記各実施の形態例同様の優れた効果を奏することができる。
【0075】
以下に第5の実施の形態例を説明する。この実施の形態例において特徴的なことは、図6に示す冷却装置9の冷却媒体循環路61を循環する冷却媒体が、液体である水に冷却用カプセル型潜熱体を混在させて形成されていることであり、それ以外の構成は前記各実施の形態例同様であり、その重複説明は省略する。
【0076】
上記冷却用カプセル型潜熱体は、水に溶解しない材料(例えば、メラミン樹脂等のフッ素系樹脂)で形成された殻の内部空間に冷却用潜熱材料を収容した構成となっており、その冷却用潜熱材料としては、冷媒循環系48の吸収器45の吸収動作温度(例えば、31℃〜32℃)の領域に融点を持つ潜熱材料が選択され、この冷却用潜熱材料が上記殻の内部空間に収容されて冷却用カプセル型潜熱体が形成される。表3には冷却用潜熱材料の一例が示されている。
【0077】
【表3】
Figure 0003559381
【0078】
上記冷却用潜熱材料に吸収器45で融解の相変化を生じさせることによって、冷却用潜熱材料は冷媒蒸気の保有熱や、冷媒と冷媒吸収液の反応熱を潜熱として吸収する。このように、冷却用潜熱材料は吸収器45で熱を吸収するが、相変化中には熱を吸収しているにも拘わらず、温度が上昇しないことから、冷却用潜熱材料の融点より僅かに上昇しただけの低温の冷却媒体が吸収器45から流れ出て凝縮器47を通ることになり、冷媒蒸気の冷却・液化を促進させることができる。この冷却媒体が冷却塔62へ搬送され、冷却塔62で冷却用潜熱材料に凝固の相変化を生じさせることによって潜熱を放熱し、冷却媒体が冷却して前記吸収器45に戻される。
【0079】
この実施の形態例によれば、冷却媒体循環路61を循環する冷却媒体の水に吸収器45の吸収動作温度の領域に融点を持つ冷却用潜熱材料を収容した冷却用カプセル型潜熱体を混在させたので、上記冷却用潜熱材料の融解・凝固の相変化を利用することによって、効率良く吸収器45および凝縮器47の冷却動作を行うことができる。また、冷却用潜熱材料は殻の内部に収容されているので、凝固の相変化により固化した潜熱材料が冷却媒体循環路61の管路内壁に付着するのを回避することができ、潜熱材料管路付着に起因する冷却効率悪化を確実に防止できる。
【0080】
なお、この発明は上記各実施の形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、上記各実施の形態例では、暖房運転時に熱媒体を加熱する加熱装置4がバーナ10を用いたバーナ燃焼加熱方式の装置構成であったが、電気ヒータを用いたヒータ加熱方式を採用した加熱装置でもよく、熱媒体の暖房用潜熱材料71の融点以上に熱媒体を加熱できる加熱装置であれば、バーナ燃焼加熱方式以外の加熱方式の加熱装置を用いても構わない。
【0081】
また、上記各実施の形態例では、熱媒体は水にカプセル型潜熱体を混在させて形成されていたが、熱媒体を形成する液体は水だけとは限らず、他の液体でもよく、例えば、エチルグリコールやピロピルグリコール等により形成される不凍液にカプセル型潜熱体を混在させて熱媒体を形成してもよい。上記不凍液を用いることにより、冬期に熱媒体が凍結し暖房用媒体循環路3を循環させることが困難となって、暖房運転ができなくなってしまったり、熱媒体の凍結により管路が破損してしまうというような問題を回避することができる。
【0082】
ところで、上記不凍液は、一般的に、水よりも搬送熱量が低く、不凍液だけで熱媒体を形成すると、熱量の搬送効率が大幅に低下してしまうという問題が生じてしまうが、上記各実施の形態例に示したカプセル型潜熱体を混在させることにより、不凍液を用いても熱媒体の熱量の搬送効率低下を回避することができるという画期的な効果を奏することができる。
【0083】
さらに、上記第3の実施の形態例では、加熱熱量制御部40は暖房運転時に設定の加熱温度と熱媒体温度情報と吸収熱量検出データとに基づき熱媒体が必要とする熱量を求め、この検出熱量とバーナ10の燃焼能力データに基づきバーナ燃焼能力(加熱熱量)を求めるという如く、2段階で加熱装置4の加熱熱量を求め、その熱量となるように加熱熱量を制御していたが、熱媒体の温度と、該温度を有する熱媒体を設定の加熱温度まで上昇するのに必要なバーナ燃焼能力(加熱熱量)との関係データを予め実験や演算等により求めておき、このデータに基づき段階を踏まずに加熱熱量を求めて加熱熱量を制御するようにしてもよい。
【0084】
さらに、上記第4の実施の形態例では、前記式(1)に示す温風温度tは暖房用潜熱材料71の融点の近傍温度にほぼ一定していることから、定数として予め求めデータ記憶部41に与えられていたが、温風温度tを定数とせず、温風温度を検出するための温風温度センサを設けて、放熱熱量検出部42は暖房運転時における熱媒体の循環中、検出風量Wと検出空気温度tと共に温風温度センサの検出温風温度tを取り込んで、それら検出値を前記式(1)に代入し演算を行って、熱媒体の暖房放熱熱量を検出するようにしてもよい。
【0085】
さらに、上記第4の実施の形態例では、制御装置25のデータ記憶部41に放熱熱量検出データである演算式データが格納されており、放熱熱量検出部42は、暖房運転時に、上記演算式データを用いて演算により放熱熱量を検出していたが、放熱熱量検出手法は他の検出手法でもよく、例えば、放熱ファン6の風量Wと放熱ファン6に取り込まれる空気温度tの関係から熱媒体の放熱熱量Pを検出するための表データを実験や演算等により予め求めて放熱熱量検出データとしてデータ記憶部41に格納しておき、放熱熱量検出部42は、暖房運転時に、放熱ファン風量検出センサ31あるいは放熱ファン回転数検出センサ30のセンサ出力により得られる検出放熱ファン風量Wと、空気温度センサ32の検出空気温度tとを取り込んで、それらの値を前記データ記憶部41の放熱熱量検出データに照合して熱媒体の放熱熱量Pを検出するようにしてもよい。
【0086】
さらにまた、上記各実施の形態例では図6に示すシステム構成の冷・暖房器を例にして説明したが、本発明の冷・暖房器は図6のシステム構成の暖房器に限定されるものではなく、熱媒体を用いて冷・暖房領域の冷・暖房を行うものであれば、他のシステム構成の冷・暖房器でも構わず、例えば、冷房用媒体循環路と暖房用媒体循環路が別個独立に形成されているものでもよい。この場合には熱媒体の流れを暖房側と冷房側のどちらかに切り換える切り換え機構(切り換え弁33,36)を設ける必要がない。
【0087】
【発明の効果】
この発明によれば、熱媒体に含む冷房用や暖房用の潜熱材料を殻の内部空間に収容する構成としたので、潜熱材料が固体の状態であっても冷房用や暖房用の媒体循環路をスムーズに循環することができる。また、潜熱材料が凝固の相変化により固化して媒体循環路の内壁に付着してしまうのを防止することができることから、潜熱材料付着に起因した放熱効率悪化が回避され、熱媒体の冷・暖房保有熱を効率良く冷・暖房領域へ放熱でき、冷・暖房効率の向上を図ることが可能となる。
【0088】
また、冷房放熱温度の領域に融点を持つ冷房用潜熱材料と暖房放熱温度の領域に融点を持つ暖房用潜熱材料を用いているので、冷房放熱温度や暖房放熱温度の領域での単位質量当たりの熱媒体の冷・暖房放熱熱量は、潜熱材料の融解・凝固の相変化によって、水の冷・暖房放熱熱量よりも格段に多くなり、カプセル型潜熱体混在の熱媒体を用いて水だけの熱媒体と同程度の熱量を冷・暖房放熱させる場合には放熱部へ搬送する熱媒体の量、つまり、搬送量を低減させることができる。このことより、熱媒体を循環させるためのポンプの駆動エネルギーを削減可能でポンプの小型化を図ることができる。
【0089】
さらに、放熱部で潜熱材料に相変化を生じさせることによって、上記の如く、多量の冷・暖房放熱熱量を冷・暖房領域へ放熱できる上に、潜熱材料は相変化中に温度が殆ど変化しないことから、放熱部での熱媒体の急激な温度変化が抑えられ、つまり、放熱部での熱媒体の温度分布が均一化され、一定温度の冷・温風を安定して冷・暖房領域へ供給することができる。
【0090】
さらに、前記の如く、冷房放熱温度領域に融点を持つ冷房用潜熱材料と暖房放熱温度領域に融点を持つ暖房用潜熱材料を用いているので、冷・暖房運転時に、放熱部で通風により潜熱材料に融解(冷房時)・凝固(暖房時)の相変化を生じさせることによって、通風を冷・暖房放熱温度の一定温度に冷却・加熱することが可能となる。このように、冷・暖房運転時に、放熱部で潜熱材料に相変化を生じさせるだけで冷・暖房放熱温度の一定温度の通風を冷・暖房領域へ吹き出すことができることから、冷・暖房運転時に、熱媒体の温度制御を精度良く行う必要がなくなって加熱部の加熱制御や冷却部の冷却制御の構成を簡単にすることができる。
【0091】
さらに、前記の如く、熱媒体に冷房用と暖房用の潜熱材料を用いているので、冷房運転時に冷房用潜熱材料の凝固の相変化により冷却部で熱媒体が吸収する冷却熱量や、暖房運転時に暖房用潜熱材料の融解の相変化によって加熱部で熱媒体が吸収する加熱熱量が水だけで熱媒体を形成した場合に比べて非常に多くなり、熱媒体は冷却部の冷媒蒸発による冷却熱量や加熱装置が発した加熱熱量を無駄なく吸収することが可能となり、熱媒体の冷却・加熱効率を向上させることができる。
【0092】
さらに、冷房用と暖房用の潜熱材料をそれぞれ別の殻の内部空間に収容し冷房用と暖房用のカプセル型潜熱体を形成し、それらカプセル型潜熱体を液体に混在させて熱媒体を形成する構成にあっては、冷房用と暖房用の潜熱材料が直接接触することがないので、例えば、冷房用と暖房用の潜熱材料が接合反応を起こして別の接合物質になり冷・暖房放熱温度領域に融点を持たなくなってしまうということもなく、冷房用と暖房用の潜熱材料の組み合わせを考慮することなく、冷房用と暖房用の潜熱材料をそれぞれ別々に選択することが可能である。
【0093】
ところで、上記の如く、冷房用と暖房用のカプセル型潜熱体を形成する場合には、冷房用と暖房用の潜熱材料の比重の違いから、熱媒体の液体中で冷房用と暖房用のカプセル型潜熱体が均等に混ざり合わない、つまり、冷房用と暖房用の潜熱材料の分布に偏りが生じる虞がある。これに対して、冷房用と暖房用の潜熱材料を共通の殻の内部に収容した冷暖房用カプセル型潜熱体を形成し、この潜熱体を液体に混在させて熱媒体を形成する構成にあっては、上記問題を確実に回避することができる。
【0094】
さらに、熱媒体が暖房放熱部において放熱する放熱熱量を検出する放熱熱量検出部と加熱熱量制御部を設け、暖房運転時に放熱熱量検出部が検出した熱媒体の暖房放熱部においての放熱熱量を補うように加熱部の加熱熱量を制御する構成にあっては、暖房放熱部で暖房用潜熱材料に凝固の相変化を確実に生じさせ潜熱を放熱させることができ、暖房放熱温度の温風を安定的に暖房領域へ供給することができる。
【0095】
さらに、熱媒体の液体を不凍液により形成した構成にあっては、不凍液を用いることにより、冬期に熱媒体が凍結して媒体循環路を破損してしまったり、熱媒体が媒体循環路を循環できず冷・暖房器の動作が行えないというような問題を防止することができる。さらに、不凍液は、一般的に、水よりも搬送熱量が小さく、不凍液だけで熱媒体を形成すると、熱量の搬送効率が大幅に低下するという問題が生じるが、不凍液にカプセル型潜熱体を混在させて熱媒体を構成することにより、カプセル型潜熱体の潜熱材料の搬送熱量が非常に大きいので、上記問題を回避することができる。
【0096】
さらに、冷房放熱部と暖房放熱部が兼用の放熱部を成している構成にあっては、冷房放熱部と暖房放熱部を別個に設けないので、その分、冷・暖房器の小型化を図ることが可能であり、冷・暖房器のコストを低減させることができる。
【図面の簡単な説明】
【図1】本発明の冷・暖房器の媒体循環路を循環する冷房用と暖房用のカプセル型潜熱体混在の熱媒体の一例を示すモデル図である。
【図2】本発明の冷・暖房器の媒体循環路を循環する冷暖房用カプセル型潜熱体混在の熱媒体の一例を示すモデル図である。
【図3】潜熱材料温度と該潜熱材料の吸収・放熱熱量との関係例を示すグラフである。
【図4】第3の実施の形態例の冷・暖房器における制御装置の構成を示すブロック図である。
【図5】第4の実施の形態例の冷・暖房器における制御装置の構成を示すブロック図である。
【図6】冷・暖房器のシステム構成の一例を示す説明図である。
【図7】図1や図2に示す熱媒体の温度とその熱媒体の吸収熱量との関係例を示すグラフである。
【符号の説明】
2 冷房用媒体循環路
3 暖房用媒体循環路
4 加熱装置
6 放熱ファン
9 冷却装置
23 放熱熱交換器
25 制御装置
26 加熱部入側温度センサ
27 加熱部出側温度センサ
30 放熱ファン回転数検出センサ
31 放熱ファン風量検出センサ
32 空気温度センサ
33,36 切り換え弁
40 加熱熱量制御部
42 放熱熱量検出部
44 蒸発器
45 吸収器
48 冷媒循環系
50 冷媒
61 冷却媒体循環路
65 水
66 冷房用カプセル型潜熱体
67 暖房用カプセル型潜熱体
68 殻
70 冷房用潜熱材料
71 暖房用潜熱材料
72 冷暖房用カプセル型潜熱体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling / heating device that performs cooling / heating using a heat medium such as water.
[0002]
[Prior art]
FIG. 6 shows an example of a system configuration of a cooling / heating device, which is unknown and has been prototyped by the applicant. The cooling / heating device includes an indoor unit 5, an outdoor unit 7, and an outdoor unit 5. And the pipelines 34 and 35 connecting the outdoor unit 7. The indoor unit 5 supplies cold / hot air to the cooling / heating area (indoor), and includes a heat radiating fan 6 and a heat radiating heat exchanger 23. The heat radiation medium is cooled and heated by the heat of the heat medium (for example, water) flowing through the heat radiation heat exchanger 23 when passing through the heat exchanger 23, and the cold / hot air is blown into the room. The radiator serves as a radiator for cooling and radiating the heat medium.
[0003]
One end of a pipe 34 is connected to the inlet side of the heat radiation heat exchanger 23, and the other end of the pipe 34 is led to the outdoor unit 7. One end of a pipe 35 is connected to the outlet side of the heat radiation heat exchanger 23, and the other end of the pipe 35 is guided to the outdoor unit 7, and the heat medium is transmitted from the outdoor unit 7 through the pipe 34. Flows into the heat radiating heat exchanger 23, and the heat medium flowing through the heat radiating heat exchanger 23 passes through the pipe 35 and returns to the outdoor unit 7.
[0004]
The outdoor unit 7 includes a heating device (heating unit) 4, a cooling device 9, a pump 18, a tank 19 for storing a heat medium, switching valves 33, 36, and pipes 37, 38, 39. The pipe 35 is connected to the tank 19. A pipe 37 is connected to the tank 19, and the pipe 37 is branched downstream of the pump 18 into pipes 38 and 39, and a switching valve 36 is provided at a branch portion, and a flow path of the heat medium is provided. Is switched to one of the pipeline 38 (cooling side) and the pipeline 39 (heating side). The line 38 passes through the cooling device 9 for cooling the heat medium, and the line 39 passes through the heating device 4 for heating the heat medium, and the lines 38 and 39 join the line 34. A switching valve 33 is provided at the junction, and a cooling side (pipe 38 side) through which the heat medium flows from the pipe 38 into the pipe 34 and a heating side (pipe side) through which the heat medium flows from the pipe 39 into the pipe 34. 39 side).
[0005]
The tank 19, the pipe 37, the pump 18, the switching valve 36, the pipe 38, the switching valve 33, the pipe 34, the radiating heat exchanger 23 and the pipe 35 constitute the cooling medium circulation path 2. The heating medium circulation path 3 is constituted by 19, a pipe 37, a pump 18, a switching valve 36, a pipe 39, a switching valve 33, a pipe 34, a radiating heat exchanger 23 and a pipe 35. As described above, the cooling medium circulation path 2 and the heating medium circulation path 3 are configured such that the switching unit 33, 36 and the indoor unit 5 side are formed by a common pipe, and a common heat medium circulates. When the switching valves 33 and 36 are switched to the pipeline 38 (cooling side), the heat medium is transferred from the tank 19 to the pipelines 37, 38 and 34, the radiating heat exchanger 23 and the pipeline 35 by driving the pump 18. When the switching valves 33 and 36 are switched to the pipe line 39 (heating side) when the switching valves 33 and 36 are switched to the pipe line 39 (heating side), the heat medium is transferred from the tank 19 to the tank 19. It is formed to circulate in the heating medium circulation path 3 returning to the tank 19 via the paths 37, 39, 34, the heat radiation heat exchanger 23, and the pipe 35.
[0006]
The switching valves 33 and 36 form a switching mechanism for the heat radiating section (radiating heat exchanger 23). As described above, when the switching valves 33 and 36 are switched to the cooling side, the heat medium is supplied to the cooling device 9. The cooled heat medium passes through the heat radiating heat exchanger 23, and cool air blows out from the indoor unit 5, the heat radiating heat exchanger 23 forms a cooling heat radiating unit, and the switching valves 33, 36 When the heating medium is switched to the heating side, the heat medium is heated through the heating device 4, and the heated heat medium is blown out of the indoor unit 5 through the heat radiating heat exchanger 23, so that the heat radiating heat exchange is performed. The heat exchanger 23 is configured to switch the heat radiation heat exchanger 23 to one of the cooling heat radiation section and the heating heat radiation section by the switching operation of the switching valves 33 and 36 so as to form a heating heat radiation section.
[0007]
The heating device 4 includes a combustion chamber 8, a burner 10 provided in the combustion chamber 8, a gas supply path 11 for guiding gas to the burner 10, and a gas supply path 11 provided in the gas supply path 11 for opening and closing the gas supply path 11. An electromagnetic valve 12 and an electromagnetic valve 14 to be performed, a proportional valve 13 for controlling a gas supply amount to the burner 10 by an opening amount, and an upper side of the burner 10 which is provided in a pipe 39 of the heating medium circulation path 3. And a combustion fan 17 provided below the burner 10 to supply and exhaust air. The burner 10 of the heating device 4 performs burner combustion with the gas guided by the gas supply path 11 and the air supplied by the rotational drive of the combustion fan 17, and heats the heat medium flowing through the heat exchanger 16.
[0008]
The cooling device 9 has a refrigerant circulation system 48 including an evaporator 44 that is a cooling unit that cools the heat medium flowing through the pipe 38 of the cooling medium circulation path 2 by evaporating a refrigerant (for example, water). The refrigerant circulation system 48 includes an evaporator 44, an absorber 45, a regenerator 46, a condenser 47, and conduits 53, 54, 55, 56, 57 connecting them. The refrigerant circulation system 48 is provided with a cooling medium circulation path 61 that passes through the absorber 45 and the condenser 47.
[0009]
The internal space of the evaporator 44 is maintained in a vacuum state of, for example, about 6.5 mmHg abs (absolute pressure), and the cooling space provided in the pipe 38 of the cooling medium circulation path 2 is provided in the internal space. An exchanger 22 is provided, and a liquid refrigerant 50 (for example, water) is stored below the cooling heat exchanger 22, and is a refrigerant at a low temperature of about 5 ° C. in a vacuum state of, for example, 6.5 mmHg abs. Water evaporates, and the heat medium flowing through the cooling heat exchanger 22 is cooled to about 7 ° C. by the evaporation of the refrigerant.
[0010]
The cooling temperature of the heat medium is determined based on a predetermined cooling heat radiation temperature (the temperature of the cool air blown from the indoor unit 5), and the cooling heat radiation temperature is generally set to 7 to 10 ° C. The evaporator 44 is formed in a vacuum state in its internal space so that the refrigerant for cooling the heat medium to 7 to 10 ° C. evaporates.
[0011]
The refrigerant vapor generated in the evaporator 44 flows into the absorber 45 through the pipe 53. A cooling medium circulation path 61 is passed through the internal space of the absorber 45, and a refrigerant absorbing liquid (for example, lithium bromide liquid) 51 for taking in refrigerant vapor is stored at the bottom side of the absorber 45. The cooling medium (for example, water) flowing through the medium circulation path 61 absorbs the heat of the refrigerant vapor flowing into the absorber 45, that is, the cooling medium cools the refrigerant vapor, and the refrigerant vapor is taken in by the refrigerant absorbing liquid 51. Heat is generated by the reaction of taking in the refrigerant vapor, and this heat is also absorbed by the cooling medium in the cooling medium circulation path 61. The refrigerant-absorbed liquid diluted by the refrigerant is sent to the regenerator 46 through the pipe 54.
[0012]
The regenerator 46 is provided with a burner 60 for heating the regenerator 46. The lean refrigerant absorbing liquid is burned and heated by the burner 60, the refrigerant in the refrigerant absorbing liquid evaporates and separates, and the refrigerant absorbing liquid is regenerated (densified). ) Is done. The regenerated refrigerant absorbing liquid passes through the pipe 57 and is taken away by the dilute refrigerant absorbing liquid flowing through the inlet pipe 54 to the regenerator 46 in the heat exchange section, and is returned to the absorber 45. On the other hand, the refrigerant vapor generated in the regenerator 46 flows into the condenser 47 through the pipe 55.
[0013]
A cooling medium circulation path 61 is passed through the condenser 47, and the cooling steam flowing into the condenser 47 is deprived of heat by the cooling medium in the cooling medium circulation path 61, that is, cooled and liquefied, and the liquid refrigerant is cooled. The liquid is returned to the evaporator 44 via a pipe 56.
[0014]
As described above, the refrigerant evaporates in the evaporator 44 and cools the heat medium flowing through the cooling heat exchanger 22 (the pipe 38 of the cooling medium circulation path 2). The refrigerant circulates through the refrigerant circulation system 48 such that the refrigerant is regenerated into a liquid refrigerant via the regenerator 46 and the condenser 47 and returns to the evaporator 44.
[0015]
A cooling tower 62 for cooling the cooling medium by ventilation is provided in the cooling medium circulation path 61, and the cooling tower 62 transfers heat of the cooling medium absorbed and held by the absorber 45 and the condenser 47. The cooling medium is usually formed to cool the cooling medium to an absorption operating temperature of 31 ° C. to 32 ° C. so that the heat is radiated and the cooling medium can smoothly absorb the heat of the refrigerant vapor in the absorber 45 and the condenser 47. I have.
[0016]
In the figure, reference numeral 26 denotes an outdoor unit entrance temperature sensor (heating unit entrance temperature sensor) for detecting the temperature of the heat medium flowing into the outdoor unit 7, and 27 denotes the temperature of the heat medium flowing out of the heat exchanger 16. A heating unit output side temperature sensor to be detected is shown, 30 is a radiating fan speed detecting sensor for detecting the fan speed of the radiating fan 6, and 31 is a radiating fan air volume detecting sensor for detecting the fan air volume of the radiating fan 6. Reference numeral 32 denotes an air temperature sensor for detecting the temperature of the air taken into the heat radiating fan 6 by the rotation of the heat radiating fan 6.
[0017]
The cooling / heating device (apparatus) having the above system configuration is usually provided with a control device 25 having a remote controller (not shown). The control device 25 includes various components such as the heating unit output side temperature sensor 27 and the like. The control of the pump 18, the drive control of the burner 10 and the combustion fan 17 of the heating device 4, the heating control of the burner 60 of the cooling device 9, the rotation of the radiator fan 6 Controlling the appliance operation such as control and switching control of the switching valves 33 and 36 and performing cooling operation and heating operation.
[0018]
For example, during the cooling operation, the switching valves 33 and 36 are switched to the cooling side (the pipeline 38 side), the cooling device 9 is started such as burning the burner 60 of the cooling device 9, and the pump 18 is driven. The heat medium flows from the tank 19 into the cooling device 9 through the pipes 37 and 38, and is cooled to, for example, about 7 ° C. by the cooling operation of the cooling device 9, and the cooled heat medium is transferred via the pipe 34. The cooling air is conveyed to the heat radiation heat exchanger 23 and cools the ventilation of the heat radiation fan 6 (absorbs the heat of the ventilation), and the cool air blows out to the cooling area (room) to perform cooling of the room. Then, the heat medium that has absorbed the heat of the ventilation (cooled and radiated heat) is returned to the outdoor unit 7 via the pipe 35, cooled by the cooling device 9, and sent to the indoor unit 5 again. In this way, the cooling medium is circulated in the cooling medium circulation path 2 and the cooling of the cooling area is performed by repeatedly performing the cooling and cooling heat radiation (absorption of heat of ventilation) of the heating medium.
[0019]
In the heating operation, the switching valves 33 and 36 are switched to the heating side (the pipe 39 side), the pump 18 is driven, and the heating device 4 is activated, so that the heat medium is transferred from the tank 19 to the pipes 37 and 39. The heat medium flows into the heat exchanger 16 of the heating device 4 via the burner and is heated by the burner combustion. The heated heat medium is conveyed to the heat radiating heat exchanger 23 through the conduit 34 to heat the ventilation of the heat radiating fan 6 (heat). The medium radiates the retained heat), and the warm air blows out to the heating area (room) to heat the room. Then, the heat medium that has been heated and radiated and cooled is returned to the outdoor unit 7 via the pipe line 35, heated by the heating device 4, and sent to the indoor unit 5 again. As described above, the heating medium is circulated in the heating medium circulation path 3 and heating and heat radiation of the heating medium are repeatedly performed, thereby heating the heating area.
[0020]
When the heating device 4 is operated, the control device 25 is provided with a combustion capability (minimum combustion capability) at the time of minimum combustion and a combustion capability (maximum combustion capability) at the time of maximum combustion of the burner combustion. The device 25 controls the amount of gas supplied from the gas supply passage 11 to the burner 10, that is, the opening amount of the proportional valve 13 (the proportional valve) so that burner combustion is performed within the range from the minimum combustion capacity to the maximum combustion capacity. The amount of electric current) and the amount of air supplied from the combustion fan 17 to the burner 10 are controlled such that the heat medium passing through the heat exchanger 16 is heated to a predetermined heating temperature (for example, 80 ° C.) by these controls. Controlling. The heating temperature of the heating medium is determined based on a predetermined heating heat radiation temperature (the temperature of the hot air blown from the indoor unit 5), and the heating heat radiation temperature is usually set to 50 ° C to 80 ° C. Is done.
[0021]
In addition, during the cooling / heating operation, the control device 25 normally controls the rotation of the heat radiating fan 6 to control the amount of cold / hot air blown out and manages the temperature in the cooling / heating region. For example, an indoor temperature sensor (not shown) for detecting the temperature in the room, which is a cooling / heating area, is provided at an appropriate location such as a remote controller or the indoor unit 5. The controller 25 takes in the information on the indoor set temperature, and when the detected indoor temperature is higher than the indoor set temperature during the cooling operation, the rotation amount of the combustion fan 6 is increased to increase the amount of blown cool air to cool the room. When the detected indoor temperature is lower than the indoor set temperature during the heating operation, the rotation amount of the radiating fan 6 is increased to increase the amount of hot air blown out, thereby increasing the heating radiated heat amount of the heat medium to warm the room. Automatically manage indoor temperature. Of course, there is also a simple type of device that manually controls the switching of the amount of rotation of the heat radiating fan 6 by operating a switch or the like.
[0022]
The control device 25 is provided at an appropriate place as required, such as provided in the outdoor unit 7, provided in the indoor unit 5, or provided separately from the outdoor unit 7 and the indoor unit 5. When the temperature of the air taken into the heat radiating fan 6 is considered to be substantially equal to the room temperature in the cooling / heating region, the air temperature sensor is not provided separately from the air temperature sensor 32 shown in FIG. 32 may be configured to also serve as an indoor temperature sensor.
[0023]
[Problems to be solved by the invention]
By the way, the present inventor has proposed that the heat medium be replaced with water in order to increase the heat transfer efficiency of the heat medium by the heat medium, that is, to increase the heat amount (transfer heat amount) that the heat medium holds and transfers per unit mass (volume). We have been studying a latent-heat-material-mixed medium in which a latent-heat material is mixed with water, instead of just forming it. As is well known, the latent heat material is a material utilizing latent heat (heat of solidification or heat of fusion) accompanying a phase change between solid and liquid, and is formed of, for example, a higher alcohol or clathrate hydrate, and has a unit of Latent heat per mass is large. As the heating latent heat material used for heating, a latent heat material having a melting point in a region of a predetermined heat radiation temperature (for example, 50 ° C. to 80 ° C.) is selected, and as a cooling latent heat material used for cooling, A latent heat material having a melting point in a region of a cooling heat radiation temperature (for example, 7 ° C. to 10 ° C.) is selected, and the latent heat material is directly mixed with water to form a heat medium. Table 1 shows examples of latent heat materials used for heating, and Table 2 shows examples of latent heat materials used for cooling.
[0024]
[Table 1]
Figure 0003559381
[0025]
[Table 2]
Figure 0003559381
[0026]
When the latent heat material shown in Table 1 causes a phase change of solidification from a liquid to a solid in the radiating heat exchanger 23 during heating, the latent heat (heat at the melting point) is radiated by heating, and the melting point temperature of the heating latent heat material, that is, When the warm air of the heating heat radiation temperature blows out to the heating area, and the latent heat material shown in Table 2 causes a phase change of melting from solid to liquid in the heat radiation heat exchanger 23 during cooling, the latent heat is cooled and radiated, that is, The heat of the ventilation fan 6 is absorbed to cool the ventilation, and the melting point temperature of the cooling latent heat material, that is, the cooling air at the cooling heat radiation temperature blows out to the cooling region.
[0027]
By the way, when the heat medium is formed only with water as in the conventional case, the water does not cause a phase change in the region of the cooling heat radiation temperature or the heating heat radiation temperature and is as small as 1 cal / g. The water temperature rises and falls rapidly, and there is a large difference in water temperature between the inlet side and the outlet side of the heat radiation heat exchanger 23, so that there is a problem that it is not possible to stably blow cold / hot air at a constant temperature. On the other hand, in a heating medium in which a latent heat material for cooling and heating is mixed, the latent heat material for heating undergoes a melting point during heating, that is, a phase change occurs in the heat radiation temperature range, and the latent heat material for cooling during cooling. In addition to causing a phase change at the melting point (the temperature in the cooling heat radiation temperature range), the heat transfer amount of the latent heat material is large (for example, 3 to 10 times as large as the heat transfer amount of water). It is considered that the temperature of the heat medium hardly changes, the temperature distribution of the heat medium in the heat radiating heat exchanger 23 is almost uniform, and a constant temperature of cold / hot air can be stably supplied to the cooling / heating area. Was.
[0028]
However, during heating, the heating latent heat material that has undergone a solidification phase change in the heat radiation heat exchanger 23 and solidified adheres to the inner wall of the pipe of the heat radiation heat exchanger 23 and cannot be circulated through the heating medium circulation path 3. The attached heating latent heat material acts as a heat transfer resistor to lower the heat dissipation efficiency of the heat radiating heat exchanger 23, thereby deteriorating the heating efficiency. The cooling heat radiation efficiency of the heat radiation heat exchanger 23 is reduced and the cooling efficiency is also deteriorated as a heat transfer resistor, and the phase change of the coagulation by the cooling heat exchanger 22 of the cooling device 9 during cooling. The raised and solidified cooling latent heat material adheres to the pipe inner wall of the cooling heat exchanger 22 and cannot be circulated in the cooling medium circulation path 2, and the adhered cooling latent heat material becomes a heat transfer resistor. Cooling of the cooling heat exchanger 22 Efficiency is lowered, and that is, a problem that exacerbate the cooling efficiency can no longer cool the heat medium occurs.
[0029]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a heat transfer device that can smoothly transfer a solid latent heat material and that prevents the latent heat material from adhering to the inner wall of a pipe. It is an object of the present invention to provide a cooling / heating device in which a medium is constructed to increase the heat transfer efficiency and the cooling / heating heat efficiency.
[0030]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides means for solving the above-mentioned problems with the following configuration. That is, the first invention is provided with a cooling medium circulation path and a heating medium circulation path through which the heat medium circulates, and the cooling medium circulation path is a cooling unit that deprives the heat medium of the heat medium and cools the heat medium. And a cooling radiator that takes in the air, absorbs the heat of the air into the heat medium, and supplies the cooled air to the cooling area.The heating medium circulation path heats the heat medium and heats the heat medium. The cooling medium circulation path and the heating medium circulation path are circulated through a heating unit that supplies heat to the heating medium and a heating radiating unit that radiates heat possessed by the heat medium to the heating area by ventilation. In a cooling / heating device having a configuration in which a medium circulates, the heating medium is formed by mixing a cooling-type capsule-type latent heat element and a heating-type capsule-type latent heat element that are not dissolved in a liquid. Capsule-type latent heat element does not dissolve in the liquid Is formed by containing a cooling latent heat material that undergoes a phase change from solid to liquid in the cooling heat radiation temperature range in the internal space, and the heating capsule-type latent heat element is formed in a shell heat dissipation temperature region that does not dissolve in the liquid. Is formed to contain a latent heat material for heating that performs a phase change from liquid to solid A radiating fan for radiating the retained heat of the heat medium to the heating area by the ventilation in the heating radiating portion of the heating medium circulation path, and a radiating fan air volume information sensor for detecting a ventilation air volume due to rotation of the radiating fan, An air temperature sensor for detecting the temperature of the air taken in by the heat radiating fan by the rotation of the heat radiating fan is provided, and a heat medium is generated by the ventilation of the heat radiating fan based on the output of the heat radiating fan air volume information sensor and the air temperature sensor. A radiating heat amount detecting section for calculating a radiating heat amount to be radiated in the heating radiating section; A heating calorie control unit for controlling the calorie of heating is provided. With such a configuration, the above problem is solved.
[0031]
According to a second aspect of the present invention, a cooling medium circulation path through which a heat medium circulates and a heating medium circulation path are provided, and the cooling medium circulation path is a cooling unit that takes away the heat of the heat medium and cools the heat medium. And a cooling radiator that takes in the air, absorbs the heat of the air into the heat medium, and supplies the cooled air to the cooling area.The heating medium circulation path heats the heat medium and heats the heat medium. The cooling medium circulation path and the heating medium circulation path are circulated through a heating unit that supplies heat to the heating medium and a heating radiating unit that radiates heat possessed by the heat medium to the heating area by ventilation. In a cooling / heating device having a configuration in which a medium is circulated, the heating medium is formed by mixing a cooling / heating capsule-type latent heat element that does not dissolve in the liquid with the liquid, and the cooling / heating capsule-type latent heat element includes the liquid. Cooling heat radiation temperature in the inner space of the shell that does not dissolve in Formed by housing a heating latent heat material which performs phase change from liquid to solid phase change from solid to liquid in the heating radiator temperature region and for cooling the latent heat material carried in region A radiating fan for radiating the retained heat of the heat medium to the heating area by the ventilation in the heating radiating portion of the heating medium circulation path, and a radiating fan air volume information sensor for detecting a ventilation air volume due to rotation of the radiating fan, An air temperature sensor for detecting the temperature of the air taken in by the heat radiating fan by the rotation of the heat radiating fan is provided, and the heat medium is generated by the ventilation by the rotation of the heat radiating fan based on the heat radiating fan air volume information sensor and the sensor output of the air temperature sensor. A radiating heat amount detecting section for calculating a radiating heat amount to be radiated in the heating radiating section; A heating calorie control unit for controlling the calorie of heating is provided. With such a configuration, the above problem is solved.
[0032]
Further, a third aspect of the present invention is a means for solving the above-mentioned problem with a configuration in which the liquid of the heat medium in the first or second aspect is formed of an antifreeze.
[0035]
In addition, 4 The invention of the first Or second or third The cooling part of the cooling medium circulation path according to the invention is connected to a refrigerant circulation system including an evaporator for cooling the heat medium by evaporating the refrigerant and an absorber for absorbing the heat of the steam generated in the evaporator. The refrigerant circulation system is provided with a cooling medium circulation path that absorbs and radiates heat obtained by evaporation of the refrigerant. Medium The cooling medium circulating in the circulation path is formed by mixing a cooling capsule-type latent heat element that does not dissolve in the liquid with the liquid, and the cooling capsule-type latent heat element is formed in the inner space of the shell that does not dissolve in the liquid. The means for solving the above-mentioned problem is constituted by containing a cooling latent heat material having a melting point in an absorption operation temperature region of the absorber.
[0036]
Furthermore, 5 The invention of the first to the first 4 The cooling radiating portion and the heating radiating portion in any one of the inventions form a combined radiating portion. In cooling, the combined radiating portion is switched to the cooling radiating portion, and in heating, the shared radiating portion is changed to the heating radiating portion. A configuration in which a switching mechanism for switching is provided is a means for solving the above problem.
[0037]
In the invention having the above configuration, the heating medium in which the capsule-type latent heat element for heating and the capsule-type latent heat element for cooling is mixed in the liquid, or the heat medium in which the capsule-type latent heat element for cooling and heating is mixed in the liquid is cooled during the cooling operation. When the cooling medium circulates through the circulation path, for example, the cooling latent heat material undergoes a phase change of solidification inside the shell in the cooling section, radiates the latent heat and cools, and the cooling latent heat material melts inside the shell in the cooling heat dissipation section. Is generated to absorb the heat of the ventilation and cool the ventilation (radiation of cooling), and this cool air is supplied to the cooling area to cool the cooling area.
[0038]
Further, when the heating medium circulates in the heating medium circulation path during the heating operation, for example, the heating latent heat material causes a phase change of melting inside the shell to absorb and store the latent heat in the heating unit, and the heating heat radiation unit As a result, the heating latent heat material causes a phase change of solidification inside the shell and radiates latent heat to the heating area to heat the heating area. As described above, by storing the latent heat material in the shell, it becomes possible to transport the latent heat material in a liquid or solid state in the same manner, and the solidified latent heat material can be conveyed in a pipeline. Prevents sticking to the inner wall.
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the cooling / heating device of each embodiment described below is for the same system as the cooling / heating device shown in FIG. 6, and the overlapping description will be omitted.
[0040]
What is characteristic in the first embodiment is that, as shown in FIG. 1, a common heat medium circulating in the medium circulation passages 2 and 3 for cooling and heating uses water 65 as a liquid for cooling. That is, the capsule-type latent heat element 66 and the heating capsule-type latent heat element 67 are mixed. The cooling capsule-type latent heat element 66 is provided in the inner space 69 of a shell 68 formed of a material (for example, a fluorine-based resin such as melamine resin) that does not dissolve in the liquid (water) 65 as shown in Table 2 above. As shown in Table 1 above, the heating capsule type latent heat element 67 is formed by housing a latent heat material 70 for use. It is formed to accommodate the heating latent heat material 71. The size of the particles of the capsule-type latent heat bodies 66 and 67 is, for example, as small as 3 to 5 μm, and the capsule-type latent heat bodies 66 and 67 are obtained by microencapsulating the latent heat materials 70 and 71. , 71 can be smoothly transported together with the liquid 65 regardless of whether they are in a liquid state or a solid state.
[0041]
In this embodiment, the heat medium is formed by mixing capsule-type latent heat bodies 66 and 67 for cooling and heating in the water 65 as described above, and the capsule-type latent heat bodies 66 and 67 for the water 65. The mixing ratio of the capsule-type latent heat elements for cooling and heating can be appropriately set if necessary, as long as the capsule-type latent heat elements 66 and 67 can be smoothly transported. It can be appropriately set so that the efficiency is improved together.
[0042]
When the heat medium having the above configuration circulates in the cooling medium circulation path 2 by the cooling operation of the appliance, the heat medium is cooled by evaporating the refrigerant in the evaporator (cooling unit) 44 of the cooling device 9 and the heat medium is cooled. By causing the cooling latent heat material 70 to undergo a solidification phase change, the latent heat of the cooling latent heat material 70 is radiated. Then, the cooled heat medium is conveyed to the heat radiation heat exchanger 23, and the ventilation heat radiation 6 causes the cooling latent heat material 70 to undergo a phase change of melting, thereby absorbing the heat of the ventilation as latent heat and absorbing the ventilation. The cooling air is cooled to the cooling heat radiation temperature (the heat medium radiates the cooling heat), and the cool air having the cooling heat radiation temperature is blown to the cooling area to cool the room.
[0043]
When the heating medium is circulated through the heating medium circulation path 3 by the heating operation of the appliance, the heating medium (heating unit) 4 heats the heating medium to a temperature equal to or higher than the melting point of the heating latent heat material 71 and turns the heating medium into the heating latent heat material 71. By causing the phase change of the melting, the heating latent heat material 71 absorbs and stores the latent heat, and is conveyed to the radiating heat exchanger 23, where the radiating heat exchanger (radiator) 23 rotates by the radiating fan 6 to allow ventilation. By causing the phase change of the solidification, the latent heat is radiated, the ventilation of the radiating fan 6 is warmed, and the warm air of the heating radiated temperature is blown out to the heating area to heat the room.
[0044]
As described above, the latent heat materials 70 and 71 for cooling and heating cause a phase change of melting or solidification to absorb and radiate the latent heat in the heat radiating heat exchanger 23, but as shown in FIG. Since the latent heat materials 70 and 71 absorb and dissipate heat (radiate heat for cooling and heating), the temperature hardly changes. Is hardly changed, and the difference in the temperature of the heat medium between the inlet side and the outlet side of the heat radiation heat exchanger 23 is reduced, that is, the heat medium temperature distribution in the heat radiation heat exchanger 23 is made uniform. Accordingly, it is possible to stably supply the cold / hot air having a substantially constant temperature to the cooling / heating area.
[0045]
On the other hand, when the heat medium is formed only with water, the water does not undergo a phase change in the heat radiating heat exchanger 23, and the water temperature rises and falls in proportion to the heat absorption / radiation heat (cooling / heating heat radiation). Therefore, the water temperature changes abruptly due to the ventilation of the radiating fan 6, and the difference between the water temperature on the inlet side and the water temperature on the outlet side of the radiating heat exchanger 23 is large.
[0046]
As described above, the heat medium mixed with the capsule-type latent heat element causes the phase change of the latent heat materials 70 and 71 in the heat radiating heat exchanger 23, so that the heat radiating heat exchanger is slightly changed even if the heat radiating heat amount of the heat medium is slightly increased or decreased. The temperature of the heat medium on the outlet side of 23 becomes substantially constant. That is, the temperature of the heat medium flowing into the cooling device 9 during the cooling operation becomes substantially constant, and the temperature of the heat medium flowing into the heating device 4 during the heating operation becomes substantially constant. Accordingly, the cooling medium 9 can cool the heating medium to a substantially constant temperature only by cooling the heating medium with a constant cooling capacity, and the heating apparatus 4 heats the heating medium with a constant combustion capacity (heating amount). The heating medium can be heated to a substantially constant temperature alone.
[0047]
As described above, the heat medium can be cooled and heated to a desired temperature by the cooling device 9 or the heating device 4 without strictly controlling the cooling and heating of the heat medium. For example, during the cooling operation, the temperature of the heat medium on the outlet side of the cooling device 9 is set lower than the melting point of the latent heat material 70 for cooling by a predetermined temperature (for example, 5 ° C.). In the heating operation, the temperature of the heat medium is controlled such that the temperature of the heat medium on the outlet side of the heating device 4 is higher than the melting point of the latent heating material 71 by a predetermined temperature (for example, 5 ° C.). Is easy.
[0048]
In the case where the heat medium is formed only with water, the water is cooled and radiated by the heat radiating heat exchanger 23 to radiate heat, and the water temperature is rapidly changed. During cooling, the heated water is returned to the cooling device 9, and Since the cooled water is sometimes returned to the heating device 4, the difference in water temperature between the inlet side and the outlet side of the cooling device 9 or the heating device 4 becomes large, whereas the heat shown in the present embodiment is different. The medium hardly changes its temperature even when radiating heat for cooling and heating in the radiating heat exchanger 23, is returned to the cooling device 9 at a temperature slightly higher than the melting point of the cooling latent heat material 70 at the time of cooling, and is heated at the time of heating. The material 71 is returned to the heating device 4 at a temperature slightly lower than the melting point of the material 71, and the difference in the temperature of the heating medium between the inlet and the outlet of the cooling device 9 or the heating device 4 is reduced.
[0049]
As described above, the temperature difference between the inlet side and the outlet side of the cooling device 9 and the heating device 4 in the heat medium using the latent heat materials 70 and 71 for cooling and heating is extremely small as compared with the heat medium using only water. Most of the cooling heat due to the evaporation of the refrigerant in the cooling heat exchanger 22 of the evaporator 44 of the apparatus 9 is retained inside the cooling latent heat material 70 due to the solidification phase change of the cooling latent heat material 70 (that is, the cooling latent heat material 70). The material 70 is cooled by radiating the latent heat) and most of the heating heat of the burner 10 of the heating device 4 is stored inside the heating latent heat material 71 due to the phase change of the melting of the heating latent heat material 71. The amount of cooling / heating heat absorbed by the heat medium from the cooling heat exchanger 22 or the heat exchanger 16 due to the phase change of the latent heat material is very large. For this reason, a decrease in the temperature of the cooling heat exchanger 22 is suppressed, an increase in external cooling heat radiation of the cooling heat exchanger 22 due to a decrease in the temperature of the cooling heat exchanger 22 can be prevented, and a rise in the temperature of the heat exchanger 16 can be prevented. The efficiency of the cooling heat exchanger 22 and the heat exchanger 16 is improved as compared with the heat medium using only water since the heat is suppressed and the external heat radiation of the heat exchanger 16 due to the temperature rise of the heat exchanger 16 can be prevented. That is, by using the latent heat materials 70 and 71 for cooling and heating, there is almost no waste of heat due to external heat radiation of the cooling heat exchanger 22 and the heat exchanger 16, and the cooling heat exchanger 22 and the heat exchanger 16 Efficiency can be improved.
[0050]
According to this embodiment, the latent heat materials 70 and 71 for cooling and heating are accommodated in the inner space 69 of the shell 68 to form capsule-type latent heat bodies 66 and 67 for cooling and heating, respectively. Since the heat medium is formed by mixing the latent heat bodies 66 and 67 with water, the capsule-type latent heat bodies 66 and 67 of the heat medium are used when the latent heat materials 70 and 71 in the inner space of the shell 68 are either liquid or solid. Even if water is present, the medium circulation paths 2 and 3 can be smoothly circulated together with water, and cooling and heating can be performed efficiently. Further, since the latent heat materials 70 and 71 are housed in the shell 68 as described above, the latent heat materials 70 and 71 are solidified by the solidification phase change and are formed on the inner walls of the cooling heat exchanger 22 and the radiating heat exchanger 23. Since it is possible to avoid the heat transfer resistor from adhering, the heat exchange efficiency in the cooling heat exchanger 22 and the heat radiation heat exchanger 23 can be maintained in a good state, and the cooling / heating efficiency can be further improved. Is possible.
[0051]
Furthermore, since the latent heat materials 70 and 71 for cooling and heating are used, the amount of heat radiated from the heat medium for cooling / heating per unit mass (volume) for use in cooling / heating is equal to the cooling capacity of water per unit mass.・ It is much larger than the heat radiation heat. Accordingly, when the heat medium mixed with the capsule-type latent heat elements 66 and 67 for cooling and heating tries to radiate the same amount of heat for cooling and heating by the heat-radiating heat exchanger 23 as the heat medium containing only water, The amount of the heat medium mixed with the latent heat element is smaller than that of the water-only heat medium. That is, it is possible to reduce the transfer amount of the heat medium, reduce the driving energy (transfer energy) of the pump 18, and reduce the size of the pump 18. (Light weight) can be achieved.
[0052]
Furthermore, since the cooling latent heat material 70 having a melting point in the cooling heat radiation temperature region and the heating latent heat material 71 having a melting point in the heating heat radiation temperature region are used, the cooling heat latent heat material 23 melts into the cooling latent heat material 70 during cooling. It is possible to stably blow cold / hot air at a constant temperature to the cooling / heating region simply by causing a phase change of solidification in the heating latent heat material 71 by the radiating heat exchanger 23 during heating. . For this reason, even if the temperature control of the heat medium is not strictly performed during the cooling / heating operation, for example, during cooling, the temperature of the heat medium on the exit side of the cooling device 9 is set to a set temperature (for example, the melting point of the latent heat material 70 for cooling). (5 ° C.), only by cooling the heat medium with the cooling device 9 so as to have a cooling temperature as low as about 5 ° C., it is possible to cause a phase change of melting in the cooling latent heat material 70 in the heat radiation heat exchanger 23. During heating, the heating medium is simply heated by the heating device 4 so that the temperature of the heating medium on the outlet side of the heating device 4 becomes higher than the melting point of the latent heating material 71 by a set temperature (for example, 5 ° C.). Since it is possible to cause a phase change of coagulation in the heating latent heat material 71 by the heat radiation heat exchanger 23, it is possible to easily perform ventilation at a constant cooling / heating heat radiation temperature without accurately controlling the temperature of the heat medium. Air into the cooling and heating area Kill.
[0053]
Further, as described above, since the latent heat materials 70 and 71 for cooling and heating are used, the amount of cooling heat absorbed by the heat medium from the cooling heat exchanger 22 due to the phase change of the solidification of the latent heat material 70 for cooling during the cooling operation. And the temperature of the cooling heat exchanger 22 is suppressed to prevent an increase in heat radiation from the outside of the cooling heat exchanger 22. In addition, during the heating operation, the heat exchanger 16 changes due to a phase change in the melting of the heating latent heat material 71. Since the amount of heat absorbed by the heat medium is very large, the rise in temperature of the heat exchanger 16 is suppressed, and the increase in external heat radiation of the heat exchanger 16 can be suppressed, so that the external heat radiation of the cooling heat exchanger 22 and the heat exchanger 16 is wasted. Can be almost eliminated, and the efficiency of the cooling heat exchanger 22 and the heat exchanger 16 can be improved as compared with the heat medium using only water. In particular, during heating, as described above, a rise in the temperature of the heat exchanger 16 is suppressed, that is, overheating of the heat exchanger 16 can be prevented, so that heat deterioration of the heat exchanger 16 is avoided and a long service life of the heat exchanger 16 is achieved. Can be achieved.
[0054]
Hereinafter, a second embodiment will be described. This embodiment is different from the first embodiment in that the heating latent heat material 71 shown in Table 1 and the cooling latent heat material 70 shown in Table 2 are separately provided. Instead of being housed inside the shell 68, the cooling latent heating material 70 and the heating latent heat material 71 are both housed in the common space of the shell 68 to form the cooling / heating capsule-type latent heat body 72. A common heat medium flowing through the medium circulation passages 2 and 3 for cooling and heating is constituted by mixing the capsule-type latent heat element 72 with water 65 which is a liquid, and other structures are the same as those of the first embodiment. The embodiment is the same as that of the first embodiment, and the description thereof will not be repeated.
[0055]
The cooling / heating capsule-type latent heat element 72 is formed of a material (for example, a fluorine-based resin such as a melamine resin) which has good heat resistance to heat in a region of a heat radiation temperature (for example, 50 ° C. to 80 ° C.) and does not dissolve in a liquid. A cooling latent heat material 70 as shown in Table 2 and a heating latent heat material 71 as shown in Table 1 are both accommodated in an inner space 69 of the shell 68 thus formed. The particle size of the capsule-type latent heat element for cooling and heating 72 is as small as, for example, 3 to 5 μm, and the capsule-type latent heat element for cooling and heating 72 is obtained by integrating the latent heat materials 70 and 71 for cooling and heating into one microcapsule. The structure is such that the latent heat materials 70 and 71 can be smoothly transported together with water regardless of whether they are liquid or solid.
[0056]
As described above, the heating medium is formed by mixing the cooling / heating capsule-type latent heat element 72 with the water 65, and the mixing ratio of the cooling / heating capsule-type latent heat element 72 with respect to the water 65 is as follows. If the ratio 72 is such that the media circulation paths 2 and 3 can be smoothly transported, the ratio can be appropriately set as needed.
[0057]
The heat medium having the above-described configuration circulates in the cooling medium circulation path 2 during the cooling operation, and the phase of melting and solidification is applied to the cooling latent heat material 70 of the cooling / heating capsule-type latent heat element 72 in the same manner as in the first embodiment. By causing a change to cause the latent heat to be absorbed and dissipated, cooling in the cooling area is performed with a high cooling efficiency. Also, by causing the heating latent heat material 71 of the cooling / heating capsule-type latent heat element 72 to undergo a phase change of melting and solidification, similarly to the first embodiment, heating of the heating area is performed with high heating efficiency. Will be.
[0058]
According to this embodiment, the latent heat materials 70 and 71 for cooling and heating are accommodated in the internal space 69 of the common shell 68 to form the capsule-type latent heat element 72 for cooling and heating. Since the heat medium is formed by mixing the body 72 with the liquid 65, the latent heat materials 70 and 71 adhere to the pipe inner wall of the cooling heat exchanger 22 and the heat radiation heat exchanger 23 as in the first embodiment. Can be avoided, and even if the latent heat materials 70 and 71 are in a solid state, the medium circulation paths 2 and 3 can be smoothly circulated, and cooling and heating can be performed efficiently. Can be.
[0059]
Also in this embodiment, as in the case of the first embodiment, since the heat medium contains the latent heat materials 70 and 71 for cooling and heating, the first embodiment is different from the first embodiment. Excellent effects can be achieved by using the latent heat materials 70 and 71 as described above.
[0060]
By the way, as shown in the first embodiment, in the configuration in which the cooling latent heat material 70 and the heating latent heat material 71 are accommodated in separate shells 68, for example, the cooling latent heat material 70 and the heating latent heat material Due to the difference in specific gravity of 71, the cooling capsule-type latent heat element 66 and the heating capsule-type latent heat element 67 are not evenly mixed in the liquid of the heat medium, and the distribution of the cooling latent heat material 70 and the heating latent heat material 71 is biased. Although this may occur, in this embodiment, since the latent heat materials 70 and 71 for cooling and heating are both housed inside the common shell 68, the above problem can be prevented.
[0061]
The cooling latent heat material 70 used in the cooling / heating units of the first and second embodiments is not limited to the latent heat material shown in Table 2, but may be a cooling heat radiation temperature (for example, 7 ° C. to 10 ° C.) region. As long as the latent heat material has a melting point, other latent heat materials may be used. Further, the heating latent heat material 71 is not limited to the latent heat material shown in Table 1, but may be a region having a heating radiation temperature (for example, 50 ° C. to 80 ° C.). Other latent heat materials may be used as long as they have a melting point.
[0062]
Hereinafter, a third embodiment will be described. The characteristic feature of this embodiment is that either one of the heat medium shown in the first embodiment and the heat medium shown in the second embodiment is used, and FIG. As shown, the control unit 25 is provided with a heating calorie control unit 40 to variably control the burner combustion capacity (heating calorie) of the heating unit 4 during the heating operation, and to use the heat-dissipating heat exchanger 23 to the heating medium latent heat material 71 of the heating medium. The configuration is such that the solidification phase change is surely caused to radiate the latent heat, and the other configuration is the same as that of each of the above embodiments, and the duplicated description will be omitted.
[0063]
In this embodiment, as shown in FIG. 4, the control device 25 includes a heating calorie control unit 40 and a data storage unit 41. The data storage unit 41 is constituted by a storage device, and a temperature higher than the melting point of the latent heating material 71 by a predetermined temperature (for example, 5 ° C.) is given to the data storage unit 41 as a heating temperature. ing. In addition, the data storage unit 41 stores absorption heat amount detection data, which is data relating to the heat medium temperature and the absorption heat amount, as shown in FIG. 7, and the heat medium on the inlet side of the heat exchanger 16 rises to the heating temperature during the heating operation. Heating calorie detection data required for heating calorie control such as combustion capacity data of the burner 10 for supplying the heat absorption amount necessary for the heating medium to the heat medium is obtained through experiments, calculations, and the like.
[0064]
During the circulation of the heat medium during the heating operation, the heating heat amount control unit 40 takes in the sensor output of the heating unit outlet temperature sensor 27 or the heating unit inlet temperature sensor 26 to reduce the temperature of the heat medium on the outlet side of the heat exchanger 16. The heating heat amount of the heating device 4 (combustion capacity of the burner 10) is controlled so as to reach the heating temperature stored in the data storage unit 41. For example, the amount of heat required for the heat medium to rise to the heating temperature is determined based on the sensor output, the heating temperature, and the absorbed heat amount detection data, and based on the detected heat amount and the combustion performance data of the burner 10. The combustion capacity of the burner 10 (the amount of heat to be heated by the heating unit) is obtained by controlling the amount of gas supplied to the burner 10 by the opening amount of the proportional valve 13 so that the combustion capacity is obtained. Is supplied to the burner 10 so as to control the combustion of the burner 10, that is, the heat quantity of the heating device 4.
[0065]
According to this embodiment, the control unit 25 is provided with the heating calorie control unit 40, and the heating medium is heated by the heat exchanger 16 at a temperature higher than the melting point of the heating latent heat material 71 by a predetermined temperature during the heating operation. During the heating operation, the heat medium is heated by the heat exchanger 16 to a temperature higher than the melting point of the heating latent heat material 71 by a predetermined temperature, and the heat radiation A solidification phase change can be reliably generated in the heating latent heat material 71 by the exchanger (radiator) 23, so that the heating latent heat material 71 does not undergo a solidification phase change in the heat radiation heat exchanger 23. In addition, the problem that the hot air having the heat radiation temperature cannot be blown out can be avoided, and the warm air having the heat radiation temperature can be reliably supplied to the heating area. Needless to say, since the heat medium shown in the first or second embodiment is used, the same excellent effects as those of the above embodiments can be obtained.
[0066]
Hereinafter, a fourth embodiment will be described. A characteristic of the fourth embodiment is that the heat medium of the capsule-type latent heat element for cooling and heating shown in FIG. 1 and the heat medium of the capsule-type latent heat element for cooling and heating 72 shown in FIG. As shown in FIG. 5, the control device 25 is provided with a radiating heat amount control unit 42 for obtaining a radiating heat amount of heat radiated by the heat medium in the radiating heat exchanger 23 during the heating operation. The heating calorie control unit 40 performs heating control of the heating device 4 based on the detected heat radiation calorific value. The other configurations are the same as those of the above-described embodiments, and the description thereof will not be repeated.
[0067]
In this embodiment, as shown in FIG. 5, the control device 25 includes a heating heat amount control unit 40, a data storage unit 41, and a heat radiation heat amount detection unit 42. During the heating operation, the radiated heat amount detection unit 42 fetches sensor outputs of the air temperature sensor 32 and the radiated fan air volume information sensor constituted by the radiated fan air volume detection sensor 31 or the radiated fan rotation speed detection sensor 30, and As described above, the heat radiation heat quantity P of the heat medium in the heat radiation heat exchanger 23 is detected.
[0068]
The radiated heat amount P is W as the air volume of the radiator fan 6 and t is the air temperature taken in by the radiator fan 6. 1 , The temperature of the hot air blown from the heat radiation heat exchanger 23 is represented by t 2 When the amount of heat radiated when the temperature of the heat medium decreases by 1 ° C. in the heating radiation temperature range is represented by C, the heat amount can be obtained by Expression (1).
[0069]
P = W · (t 2 -T 1 ) ・ C ・ ・ ・ ・ ・ (1)
[0070]
The air flow W of the heat radiating fan 6 can be detected directly by the sensor output of the heat radiating fan air flow detecting sensor 31 or indirectly by the sensor output of the heat radiating fan rotation speed detecting sensor 30. 2 Is almost constant at a temperature near the melting point of the heating latent heat material 71 as described above, and can be given as a constant determined in advance through experiments or the like. 1 Can be detected by the air temperature sensor 32, and the amount of heat C to be radiated when the temperature of the heat medium decreases by 1 ° C. in the radiating heat exchanger 23 can be obtained in advance through experiments or calculations and given as a constant. Equation (1) and a constant t of the equation 2 , And C are stored in the data storage unit 41 as heat radiation heat amount detection data, and the heat radiation heat amount detection unit 42 detects the heat radiation fan air volume detection sensor 31 or the heat radiation fan rotation speed detection sensor during circulation of the heat medium during the heating operation. 30 detects the air flow W of the radiating fan 6 based on the sensor output of 1 Then, a heat radiation heat amount detection calculation based on the heat radiation heat amount detection data of the data storage unit 41 is performed, and the heat radiation heat amount P is detected.
[0071]
The data storage section 41 stores heating heat amount detection data in addition to the heat radiation heat amount detection data. The heating calorie detection data is data for detecting a heating calorie for supplementing the calorie radiated by the heat medium in the radiating heat exchanger 23 during the heating operation with the heating device 4. The relationship of the heating calorie of the apparatus 4 (combustion capacity of the burner 10) is obtained in advance by experiments or calculations and stored in the data storage unit 41 as heating calorie detection data such as an arithmetic expression, table data, or graph data.
[0072]
During the circulation of the heat medium during the heating operation, the heating heat amount control unit 40 takes in the heat radiation amount of the heat medium detected by the heat radiation amount detection unit 42, and stores the detected heat radiation amount and the heating heat amount detection data of the data storage unit 41. Based on this, the heating heat amount of the heating device 4 (combustion capability of the burner 10) is detected, and the gas supply amount to the burner 10 is determined by the opening amount of the proportional valve 13 so that the burner 10 performs the burner combustion with the detected combustion capability. In addition, the rotation of the combustion fan 17 is controlled to send air matching the gas supply amount to the burner 10, thereby controlling the combustion capacity of the burner 10.
[0073]
According to this embodiment, the heat radiation amount detection unit 42 is provided, and the heating heat amount control unit 40 controls the heating of the heating device 4 to compensate for the heat radiation amount of the heat medium detected by the heat radiation amount detection unit 42 during the heating operation. Since the heat amount is controlled, the temperature of the heat medium flowing into the heat radiating heat exchanger 23 during the heating operation is kept substantially constant, for example, a predetermined temperature higher than the melting point of the heating latent heat material 71 of the heat medium. Temperature, and the heating latent heat material 71 reliably causes a phase change of coagulation in the heat radiating heat exchanger 23 to radiate the latent heat. Can be supplied to
[0074]
Also, in this embodiment, since the capsule-type latent heat element-mixed heat medium shown in the first or second embodiment is used, the same excellent effects as those of the above-described embodiments are exerted. be able to.
[0075]
Hereinafter, a fifth embodiment will be described. What is characteristic in this embodiment is that the cooling medium circulating in the cooling medium circulation path 61 of the cooling device 9 shown in FIG. 6 is formed by mixing water, which is liquid, with a capsule-type latent heat element for cooling. The other configurations are the same as those of the above-described embodiments, and the description thereof will not be repeated.
[0076]
The above-mentioned cooling capsule type latent heat element has a configuration in which a cooling latent heat material is accommodated in an inner space of a shell formed of a material that does not dissolve in water (for example, a fluorinated resin such as a melamine resin). As the latent heat material, a latent heat material having a melting point in a region of an absorption operation temperature (for example, 31 ° C. to 32 ° C.) of the absorber 45 of the refrigerant circulation system 48 is selected, and the cooling latent heat material is placed in the inner space of the shell. It is accommodated to form a capsule-type latent heat element for cooling. Table 3 shows an example of the latent heat material for cooling.
[0077]
[Table 3]
Figure 0003559381
[0078]
By causing the absorber 45 to cause a phase change of melting in the cooling latent heat material, the cooling latent heat material absorbs, as latent heat, the retained heat of the refrigerant vapor and the heat of reaction between the refrigerant and the refrigerant absorbing liquid. As described above, although the cooling latent heat material absorbs heat in the absorber 45, the temperature does not rise during the phase change despite the heat absorption, so that the temperature is slightly lower than the melting point of the cooling latent heat material. The low-temperature cooling medium that has just risen to the outside flows out of the absorber 45 and passes through the condenser 47, which can promote the cooling and liquefaction of the refrigerant vapor. The cooling medium is conveyed to the cooling tower 62, and the latent heat material for cooling causes a phase change of solidification in the cooling tower 62 to radiate the latent heat. The cooling medium is cooled and returned to the absorber 45.
[0079]
According to this embodiment, a cooling capsule type latent heat element containing a cooling latent heat material having a melting point in the region of the absorption operation temperature of the absorber 45 is mixed in the water of the cooling medium circulating in the cooling medium circulation path 61. The cooling operation of the absorber 45 and the condenser 47 can be efficiently performed by utilizing the phase change of the melting and solidification of the cooling latent heat material. Further, since the cooling latent heat material is contained in the shell, the latent heat material solidified by the phase change of solidification can be prevented from adhering to the inner wall of the cooling medium circulation path 61, and the latent heat material pipe can be prevented. Deterioration of cooling efficiency due to road adhesion can be reliably prevented.
[0080]
Note that the present invention is not limited to the above embodiments, but can adopt various embodiments. For example, in each of the above embodiments, the heating device 4 that heats the heat medium during the heating operation has a burner combustion heating system configuration using the burner 10, but a heater heating system using an electric heater is employed. A heating device may be used, and a heating device other than the burner combustion heating method may be used as long as the heating device can heat the heating medium to a temperature equal to or higher than the melting point of the heating latent heat material 71 of the heating medium.
[0081]
Further, in the above embodiments, the heat medium is formed by mixing the capsule-type latent heat element with water, but the liquid forming the heat medium is not limited to water, and may be other liquids. Alternatively, the heat medium may be formed by mixing a capsule-type latent heat element with an antifreeze formed by ethyl glycol, propyl glycol, or the like. By using the above antifreeze, the heat medium freezes in winter and it becomes difficult to circulate through the heating medium circulation path 3, so that the heating operation cannot be performed or the pipe line is broken due to the freezing of the heat medium. It is possible to avoid such a problem.
[0082]
By the way, the antifreeze liquid generally has a lower heat transfer amount than water, and when the heat medium is formed only with the antifreeze liquid, a problem that the transfer efficiency of the heat amount is significantly reduced occurs. By mixing the capsule-type latent heat element shown in the embodiment, it is possible to achieve an epoch-making effect that even if an antifreeze is used, it is possible to avoid a decrease in the heat transfer efficiency of the heat medium.
[0083]
Further, in the third embodiment, the heating heat amount control unit 40 obtains the heat amount required by the heat medium based on the set heating temperature, the heat medium temperature information, and the absorbed heat amount detection data during the heating operation. The heating heat amount of the heating device 4 is obtained in two stages, such as obtaining the burner combustion performance (heating heat amount) based on the heat amount and the combustion performance data of the burner 10, and the heating heat amount is controlled to be the heat amount. Relational data between the temperature of the medium and the burner combustion capacity (heated heat) required to raise the heat medium having the temperature to the set heating temperature is obtained in advance by experiments, calculations, and the like, and based on this data, The heating heat amount may be obtained without step to control the heating heat amount.
[0084]
Further, in the fourth embodiment, the warm air temperature t 2 Is almost constant at a temperature near the melting point of the heating latent heat material 71, and was previously obtained as a constant and given to the data storage unit 41. 2 Is not a constant, a hot air temperature sensor for detecting the hot air temperature is provided, and the heat radiation amount detecting section 42 detects the detected air amount W and the detected air temperature t during circulation of the heat medium during the heating operation. 1 And the detected hot air temperature t of the hot air temperature sensor 2 May be taken in, and the detected values may be substituted into the above equation (1) to perform an operation to detect the heat radiation heat quantity of the heat medium.
[0085]
Further, in the above-described fourth embodiment, the arithmetic expression data that is the heat radiation amount detection data is stored in the data storage unit 41 of the control device 25. Although the heat radiation amount was detected by calculation using the data, the heat radiation amount detection method may be another detection method, for example, the air flow W of the heat radiation fan 6 and the air temperature t taken into the heat radiation fan 6. 1 Table data for detecting the heat dissipation heat amount P of the heat medium from the relationship is obtained in advance by experiments, calculations, and the like, and stored in the data storage unit 41 as heat dissipation heat amount detection data. A detected radiating fan air volume W obtained from a sensor output of the radiating fan air volume detecting sensor 31 or the radiating fan rotation speed detecting sensor 30, and a detected air temperature t of the air temperature sensor 32. 1 And the values may be compared with the heat radiation amount detection data in the data storage unit 41 to detect the heat radiation amount P of the heat medium.
[0086]
Further, in each of the above embodiments, the cooling / heating device having the system configuration shown in FIG. 6 has been described as an example, but the cooling / heating device of the present invention is limited to the heating device having the system configuration shown in FIG. Rather, a cooling / heating device having another system configuration may be used as long as cooling / heating in the cooling / heating region is performed using a heat medium.For example, a cooling medium circulation passage and a heating medium circulation passage may be used. It may be formed separately and independently. In this case, there is no need to provide a switching mechanism (switching valves 33 and 36) for switching the flow of the heat medium between the heating side and the cooling side.
[0087]
【The invention's effect】
According to the present invention, since the cooling or heating latent heat material contained in the heat medium is accommodated in the inner space of the shell, even if the latent heat material is in a solid state, the cooling or heating medium circulation path is provided. Can be circulated smoothly. Further, since the latent heat material can be prevented from solidifying due to the solidification phase change and adhering to the inner wall of the medium circulation path, deterioration of the heat radiation efficiency due to the adhesion of the latent heat material is avoided, and the cooling of the heat medium is prevented. The heating possession heat can be efficiently radiated to the cooling / heating area, and the cooling / heating efficiency can be improved.
[0088]
Also, since a cooling latent heat material with a melting point in the cooling heat radiation temperature region and a heating latent heat material with a melting point in the heating heat radiation temperature region are used, per unit mass in the cooling heat radiation temperature and heating heat radiation temperature regions Due to the phase change of the latent heat material, the heat of cooling and heating of the heat medium is much larger than the heat of cooling and heating of water due to the phase change of the latent heat material. When cooling / heating heat is dissipated by the same amount of heat as the medium, the amount of the heat medium conveyed to the heat radiating portion, that is, the amount of conveyance can be reduced. Thus, the driving energy of the pump for circulating the heat medium can be reduced, and the size of the pump can be reduced.
[0089]
Furthermore, by causing a phase change in the latent heat material in the heat radiating portion, a large amount of heat for cooling / heating can be radiated to the cooling / heating area as described above, and the temperature of the latent heat material hardly changes during the phase change. As a result, a rapid change in the temperature of the heat medium in the heat radiating section is suppressed, that is, the temperature distribution of the heat medium in the heat radiating section is made uniform, and a constant temperature of cold / hot air is stably transferred to the cooling / heating area. Can be supplied.
[0090]
Further, as described above, since the cooling latent heat material having a melting point in the cooling heat radiation temperature region and the heating latent heat material having a melting point in the heating heat radiation temperature region are used, the latent heat material can be ventilated by the heat radiating portion during the cooling / heating operation. By causing a phase change of melting (at the time of cooling) and solidification (at the time of heating), the ventilation can be cooled and heated to a constant cooling / heating radiation temperature. As described above, during the cooling / heating operation, the ventilation at the constant temperature of the cooling / heating radiating temperature can be blown out to the cooling / heating region only by causing a phase change in the latent heat material in the radiating section. In addition, it is not necessary to precisely control the temperature of the heat medium, and the configuration of the heating control of the heating unit and the cooling control of the cooling unit can be simplified.
[0091]
Further, as described above, since the latent heat materials for cooling and heating are used as the heat medium, the amount of cooling heat absorbed by the heat medium in the cooling unit due to the phase change of the solidification of the latent heat material for cooling during the cooling operation and the heating operation Sometimes the heating medium absorbed by the heating medium in the heating section due to the phase change of the melting of the latent heat material for heating becomes much larger than when the heating medium is formed only with water, and the heating medium is the cooling heat due to the evaporation of the refrigerant in the cooling section. And the amount of heating heat generated by the heating device can be absorbed without waste, and the cooling / heating efficiency of the heating medium can be improved.
[0092]
Furthermore, the latent heat materials for cooling and heating are housed in separate shell inner spaces to form capsule-type latent heat bodies for cooling and heating, and these capsule-type latent heat bodies are mixed with a liquid to form a heat medium. In such a configuration, the latent heat materials for cooling and heating do not come into direct contact with each other, and for example, the latent heat materials for cooling and heating cause a bonding reaction and become different bonding substances, resulting in cooling / heating radiation. It is possible to separately select the cooling and heating latent heat materials without considering the combination of the cooling and heating latent heat materials without having the melting point in the temperature region.
[0093]
By the way, as described above, when forming a capsule-type latent heat element for cooling and heating, due to the difference in specific gravity of the latent heat material for cooling and heating, the capsule for cooling and heating in the liquid of the heat medium is used. There is a possibility that the mold latent heat elements are not evenly mixed, that is, the distribution of the latent heat materials for cooling and heating is biased. On the other hand, there is a configuration in which a capsule-type latent heat element for cooling and heating in which a latent heat material for cooling and heating is accommodated in a common shell and the latent heat element is mixed with a liquid to form a heat medium. Can reliably avoid the above problem.
[0094]
further, Detects the amount of heat radiated by the heat medium in the heating radiator Heat radiation amount detection part , Heating heat control section When Is provided, and the heat medium detected by the heat release In the heat radiation section In the configuration that controls the heating heat amount of the heating unit so as to supplement the heat radiation amount, heating The heat radiating section can surely cause a phase change of solidification in the heating latent heat material to radiate the latent heat, and can stably supply warm air at the heating radiating temperature to the heating area.
[0095]
Furthermore, in the configuration in which the liquid of the heat medium is formed of antifreeze, the use of antifreeze allows the heat medium to freeze in winter and damage the medium circulation path, or the heat medium can circulate through the medium circulation path. It is possible to prevent such a problem that the operation of the cooling / heating device cannot be performed. In addition, antifreeze liquid generally has a lower heat transfer capacity than water, and if a heat medium is formed using only the antifreeze liquid, there is a problem that the heat transfer efficiency is greatly reduced.However, a capsule-type latent heat element is mixed in the antifreeze liquid. When the heat medium is formed by using the heat medium, the above-described problem can be avoided because the amount of heat for transporting the latent heat material of the capsule-type latent heat element is very large.
[0096]
Furthermore, in a configuration in which the cooling radiator and the heating radiator form a combined radiator, the cooling radiator and the heating radiator are not provided separately, so the size of the cooling / heating unit can be reduced accordingly. It is possible to reduce the cost of the heater / cooler.
[Brief description of the drawings]
FIG. 1 is a model diagram showing an example of a heat medium mixed with a capsule type latent heat element for cooling and heating which circulates in a medium circulation path of a cooler / heater of the present invention.
FIG. 2 is a model diagram showing an example of a heating medium mixed with a capsule-type latent heat element for cooling and heating, which circulates in a medium circulation path of the cooling / heating apparatus of the present invention.
FIG. 3 is a graph showing an example of the relationship between the latent heat material temperature and the amount of heat absorbed and radiated by the latent heat material.
FIG. 4 is a block diagram illustrating a configuration of a control device in a cooling / heating unit according to a third embodiment.
FIG. 5 is a block diagram illustrating a configuration of a control device in a cooling / heating unit according to a fourth embodiment.
FIG. 6 is an explanatory diagram showing an example of a system configuration of a cooling / heating device.
FIG. 7 is a graph showing an example of the relationship between the temperature of the heat medium shown in FIGS. 1 and 2 and the amount of heat absorbed by the heat medium.
[Explanation of symbols]
2 Cooling medium circulation path
3 Heating medium circulation path
4 Heating device
6 Radiation fan
9 Cooling device
23 Heat radiation heat exchanger
25 Control device
26 Heating unit inlet side temperature sensor
27 Heating unit outlet temperature sensor
30 Radiation fan rotation speed detection sensor
31 Radiation fan air volume detection sensor
32 Air temperature sensor
33, 36 switching valve
40 Heating heat control unit
42 Heat dissipation calorie detector
44 Evaporator
45 absorber
48 Refrigerant circulation system
50 refrigerant
61 Cooling medium circuit
65 water
66 Capsule type latent heat element for cooling
67 Capsule type latent heat element for heating
68 shell
70 Latent heat materials for cooling
71 Latent heat material for heating
72 Capsule type latent heat element for cooling and heating

Claims (5)

熱媒体が循環する冷房用媒体循環路と暖房用媒体循環路が設けられ、冷房用媒体循環路は、熱媒体の保有熱を奪って熱媒体を冷却する冷却部と、空気を取り込んでその空気の熱を熱媒体に吸収させて冷却した空気を冷房領域へ供給する冷房放熱部とを通り循環形成され、暖房用媒体循環路は、熱媒体を加熱し熱媒体に熱を供給する加熱部と、熱媒体の保有熱を通風により暖房領域へ放熱させる暖房放熱部とを通り循環形成されており、上記冷房用媒体循環路と暖房用媒体循環路は共通の熱媒体が循環する構成となっている冷・暖房器において、前記熱媒体は液体に該液体に溶解しない冷房用カプセル型潜熱体と暖房用カプセル型潜熱体を混在させて形成されており、冷房用カプセル型潜熱体は前記液体に溶解しない殻の内部空間に冷房放熱温度領域で固体から液体への相変化を行う冷房用潜熱材料を収容して形成され、暖房用カプセル型潜熱体は前記液体に溶解しない殻の内部空間に暖房放熱温度領域で液体から固体への相変化を行う暖房用潜熱材料を収容して形成され、暖房用媒体循環路の暖房放熱部には熱媒体の保有熱を通風によって暖房領域へ放熱させるための放熱ファンと、放熱ファンの回転による通風風量を検出するための放熱ファン風量情報センサと、放熱ファンの回転により放熱ファンが取り込む空気温度を検出する空気温度センサとが設けられており、前記放熱ファン風量情報センサと空気温度センサのセンサ出力に基づいて放熱ファンの回転による通風により熱媒体が暖房放熱部において放熱する放熱熱量を求める放熱熱量検出部と、該放熱熱量検出部の検出放熱熱量を補う熱量を加熱部で熱媒体に供給するための加熱部の加熱熱量を求めて加熱部の加熱熱量を制御する加熱熱量制御部とを設ける構成としたことを特徴とする冷・暖房器。A cooling medium circulation path and a heating medium circulation path through which the heat medium circulates are provided.The cooling medium circulation path is provided with a cooling section that takes away the heat of the heat medium and cools the heat medium, A cooling medium radiating section is formed to circulate through a cooling radiator that absorbs heat of the heat medium into the heat medium and supplies cooled air to the cooling area, and a heating medium circulation path heats the heat medium and supplies heat to the heat medium. The cooling medium circulation path and the heating medium circulation path have a configuration in which a common heat medium circulates through a heating radiator that radiates heat held by the heat medium to the heating area by ventilation. In the cooling / heating device, the heat medium is formed by mixing a cooling capsule-type latent heat body and a heating capsule-type latent heat body that do not dissolve in the liquid, and the cooling capsule-type latent heat body is formed in the liquid. Cooling heat radiation temperature in the inner space of the shell that does not melt The capsule-type latent heat element for heating is formed by containing a cooling latent heat material that performs a phase change from a solid to a liquid in the region, and the heating capsule-type latent heat element is provided in the inner space of the shell that does not dissolve in the liquid in the heating / radiation temperature region. A heat-dissipating fan, which is formed by containing a heating latent heat material that changes, is provided in the heating heat-dissipating portion of the heating-medium circulation path, and a heat-dissipating fan for dissipating the heat of the heat medium to the heating area by ventilation, and ventilation by rotating the heat-dissipating fan A radiating fan air volume information sensor for detecting an air volume and an air temperature sensor for detecting an air temperature taken in by the radiating fan by rotation of the radiating fan are provided, and sensor output of the radiating fan air volume information sensor and the air temperature sensor are provided. A heat radiation amount detecting unit for calculating a heat radiation amount of the heat medium radiated by the heat radiating unit by the ventilation by rotation of the heat radiation fan based on the heat radiation amount detected by the heat radiation amount detecting unit; Cooling and heating, characterized in that it has a structure in which Ru is provided a heating heat quantity control unit for controlling the amount of heat of the heating unit seeking heating heat quantity of the heating unit for supplying the heat medium in the heating unit the amount of heat to compensate for heat vessel. 熱媒体が循環する冷房用媒体循環路と暖房用媒体循環路が設けられ、冷房用媒体循環路は、熱媒体の保有熱を奪って熱媒体を冷却する冷却部と、空気を取り込んでその空気の熱を熱媒体に吸収させて冷却した空気を冷房領域へ供給する冷房放熱部とを通り循環形成され、暖房用媒体循環路は、熱媒体を加熱し熱媒体に熱を供給する加熱部と、熱媒体の保有熱を通風により暖房領域へ放熱させる暖房放熱部とを通り循環形成されており、上記冷房用媒体循環路と暖房用媒体循環路は共通の熱媒体が循環する構成となっている冷・暖房器において、前記熱媒体は液体に該液体に溶解しない冷暖房用カプセル型潜熱体を混在させて形成されており、冷暖房用カプセル型潜熱体は前記液体に溶解しない殻の内部空間に冷房放熱温度領域で固体から液体への相変化を行う冷房用潜熱材料と暖房放熱温度領域で液体から固体への相変化を行う暖房用潜熱材料を収容して形成され、暖房用媒体循環路の暖房放熱部には熱媒体の保有熱を通風によって暖房領域へ放熱させるための放熱ファンと、放熱ファンの回転による通風風量を検出するための放熱ファン風量情報センサと、放熱ファンの回転により放熱ファンが取り込む空気温度を検出する空気温度センサとが設けられており、前記放熱ファン風量情報センサと空気温度センサのセンサ出力に基づいて放熱ファンの回転による通風により熱媒体が暖房放熱部において放熱する放熱熱量を求める放熱熱量検出部と、該放熱熱量検出部の検出放熱熱量を補う熱量を加熱部で熱媒体に供給するための加熱部の加熱熱量を求めて加熱部の加熱熱量を制御する加熱熱量制御部とを設ける構成としたことを特徴とする冷・暖房器。A cooling medium circulation path and a heating medium circulation path through which the heat medium circulates are provided.The cooling medium circulation path is provided with a cooling section that takes away the heat of the heat medium and cools the heat medium, A cooling medium radiating section is formed to circulate through a cooling radiator that absorbs heat of the heat medium into the heat medium and supplies cooled air to the cooling area, and a heating medium circulation path heats the heat medium and supplies heat to the heat medium. The cooling medium circulation path and the heating medium circulation path have a configuration in which a common heat medium circulates through a heating radiator that radiates heat held by the heat medium to the heating area by ventilation. In a cooling / heating device, the heat medium is formed by mixing a cooling / heating capsule-type latent heat element that does not dissolve in the liquid with the liquid, and the cooling / heating capsule-type latent heat element is located in the inner space of the shell that does not dissolve in the liquid. Solid to liquid in the cooling heat radiation temperature range Is the cooling latent heat material which performs a phase change and formation accommodating the heating latent heat material which performs phase change from liquid to solid in the heating radiator temperature region holding the heat medium in the heating heat radiating portion of the heating medium circulation channel A radiating fan for radiating heat to the heating area by ventilation, a radiating fan air volume information sensor for detecting the amount of ventilation air due to the rotation of the radiating fan, and an air temperature for detecting an air temperature taken in by the radiating fan by rotating the radiating fan. A radiating heat amount detecting unit that obtains a radiating heat amount in which the heat medium is radiated in the heating radiating unit by the ventilation by the rotation of the radiating fan based on the sensor output of the radiating fan air volume information sensor and the air temperature sensor. The heating calorie of the heating unit for supplying the heating medium with the calorific value compensating for the heat dissipation calorie detected by the heat dissipation calorie detector is obtained, and the heating calorie of the heating unit is controlled. Cooling and heating device, characterized in that a structure in which Ru is provided a heating heat quantity control unit. 熱媒体の液体は不凍液により形成される構成としたことを特徴とする請求項1又は請求項2記載の冷・暖房器。3. The cooling / heating device according to claim 1, wherein the liquid of the heat medium is formed of an antifreeze. 冷房用媒体循環路の冷却部には冷媒の蒸発により熱媒体を冷却する蒸発器とこの蒸発器で発生した蒸気の熱を吸収する吸収器とを含む冷媒循環系が連接され、この冷媒循環系には冷媒の蒸発により得た熱を吸収・放熱する冷却媒体循環路が設けられており、この冷却媒体循環路を循環する冷却媒体は液体に該液体に溶解しない冷却用カプセル型潜熱体を混在させて形成され、冷却用カプセル型潜熱体は前記液体に溶解しない殻の内部空間に前記冷媒循環系の吸収器の吸収動作温度領域に融点を持つ冷却用潜熱材料を収容して形成されている構成としたことを特徴とする請求項1又は請求項2又は請求項3記載の冷・暖房器。The cooling part of the cooling medium circulation path is connected to a refrigerant circulation system including an evaporator that cools the heat medium by evaporating the refrigerant and an absorber that absorbs the heat of the vapor generated by the evaporator. Is provided with a cooling medium circulating path for absorbing and radiating heat obtained by evaporation of the refrigerant, and the cooling medium circulating in the cooling medium circulating path includes a cooling capsule type latent heat element that does not dissolve in the liquid. The cooling capsule-type latent heat element is formed by housing a cooling latent heat material having a melting point in an absorption operation temperature region of the absorber of the refrigerant circulation system in an inner space of a shell that does not dissolve in the liquid. The cooling / heating device according to claim 1 , wherein the cooling / heating device has a configuration. 冷房放熱部と暖房放熱部は兼用の放熱部を成し、冷房時にはその兼用の放熱部を冷房放熱部へ切り換え、暖房時には兼用の放熱部を暖房放熱部へ切り換える切り換え機構が設けられている構成としたことを特徴とする請求項1乃至請求項のいずれか1つに記載の冷・暖房器。A configuration in which a cooling radiator and a heating radiator form a combined radiator, and a switching mechanism that switches the dual radiator to the cooling radiator during cooling and switches the dual radiator to the heating radiator during heating is provided. The cooling / heating device according to any one of claims 1 to 4 , wherein:
JP06532996A 1996-02-27 1996-02-27 Cooling / heating unit Expired - Fee Related JP3559381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06532996A JP3559381B2 (en) 1996-02-27 1996-02-27 Cooling / heating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06532996A JP3559381B2 (en) 1996-02-27 1996-02-27 Cooling / heating unit

Publications (2)

Publication Number Publication Date
JPH09236288A JPH09236288A (en) 1997-09-09
JP3559381B2 true JP3559381B2 (en) 2004-09-02

Family

ID=13283780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06532996A Expired - Fee Related JP3559381B2 (en) 1996-02-27 1996-02-27 Cooling / heating unit

Country Status (1)

Country Link
JP (1) JP3559381B2 (en)

Also Published As

Publication number Publication date
JPH09236288A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
US11518212B2 (en) Systems and methods for thermal battery control
JP2007263401A (en) Heat storage device
JP2012505105A (en) Electric motor vehicle having a cooling circuit for a power circuit connected to a heating radiator in a passenger compartment
US20100257870A1 (en) Vehicle air conditioner
JP3559381B2 (en) Cooling / heating unit
JPH10238972A (en) Heat transfer unit
JP2001349633A (en) Heat storage device
JP3691574B2 (en) heater
WO2002020292A1 (en) High-efficiency thermoelectric cooling and heating box for food and drink storage in a vehicle
JP2001289550A (en) Thermoelectric module type electric refrigerator
JP3631097B2 (en) Thermal storage air conditioner
JP2007051829A (en) Heat storage type hot water supply apparatus
JPH0739688Y2 (en) Heat storage type quick heating system
KR101863501B1 (en) Core-integrated low-power consumption air-conditioning device
JPH064232Y2 (en) Heat exchanger
KR100306513B1 (en) A cooling pipe for improving cooling efficient in thermoelectric element and a cooler using thereof
JP3831924B2 (en) Capsule type latent heat storage system
TWI692577B (en) Carton heating system of lunch box
KR20060030805A (en) An electric boiler
TWI300118B (en)
JP2020165613A (en) Heat storage device and heat storage heating device
JP2001263903A (en) Peltier cooling system
JP3831923B2 (en) Latent heat storage device
JP2004255912A (en) Heat storage device
JPH1163578A (en) Cold and warmth storage device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees