JP3558417B2 - Power supply device for moving objects - Google Patents
Power supply device for moving objects Download PDFInfo
- Publication number
- JP3558417B2 JP3558417B2 JP20389595A JP20389595A JP3558417B2 JP 3558417 B2 JP3558417 B2 JP 3558417B2 JP 20389595 A JP20389595 A JP 20389595A JP 20389595 A JP20389595 A JP 20389595A JP 3558417 B2 JP3558417 B2 JP 3558417B2
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- strip
- anode
- cathode
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、模型の自動車,動物等の移動体が一定のフィールド内で外部からの電力供給を受けて移動するゲーム機の給電装置に関する。
【0002】
【従来の技術】
上記ゲーム機において複数の移動体へ給電する装置が提案されている(実公平5−11906)。
この装置は、帯状電極を絶縁板の上面と下面に交叉する方向に敷設し、相隣り合う電極が交互に陽極と陰極となるように一つおきに貫通孔を設け、これを電気的に接続することによって一本の帯状電極に複数の電力供給点を備えたものである。移動体は集電子を帯状電極に常に接触させて電力供給されるようになっている。
このような構成を採用することにより、同時に複数の移動体が同一帯状電極上を走行する場合、電源供給部(端子電極)より遠方になる移動体ほど、中間の移動体の電力消費によって電力供給が低下して車速が減速ぎみとなることを防止している。
すなわち、同一電極に複数の移動体の集電子が集中してもいずれの集電子も距離の差の影響をほとんど受けることなく電力供給点から略等しい電力が常に供給され、公平なレース展開を可能にしている。
【0003】
ところが、この装置は、複数の電力供給点を有しているものの電源供給部から複数の移動体まで個別の配電ルートが形成されず共通配電ルートが形成される。この共通配電ルートにおける消費電力は当該ルートの電気抵抗で決定される。これは、片面の帯状電極と貫通孔によってもう片面の帯状電極に接続され、この接続路が複数並設接続されている構成であるから、ある程度の抵抗が存在し、同時に複数の移動体が同一帯電極上を走行する場合、電力供給点から略等しい電力が常に供給されるというものの実際にはまだかなり各移動体に供給される電力に差があった。
【0004】
さらに上記装置は、帯状電極への集電子の接触をスプリングによって帯状電極方向に付勢し給電板に多少の凹凸を生じても接触を維持するようにしているが、移動体の走行に伴って帯状電極と集電子とを摺動させているので、この接触抵抗は大きく変動し、移動体への供給電圧を不安定にし、移動体をスムーズに走行させることができない。
これを緩和させるために複数の集電子を配置し、常にいくつかの集電子を接触させることによって、十分な接触が得られなかった集電子があった場合でもいずれかの集電子で補うようにしている。
【0005】
【発明が解決しようとする課題】
しかしながら、常に接触している集電子数を多くするために集電子総数を多くすることは、瞬時的に機能しない集電子が多くなって効率が悪くなリ、集電子総数分の付勢圧による機械抵抗がかえって増加し移動体をスムーズに走行させることができない。
本発明の目的は、上記問題を解決するもので、給電板を絶縁板と導電層の交互多段積層構造にし、積層された導電層の少なくとも1つを陽極配電体に、少なくとも他の1つを陰極配電体に対応させ、最小限の集電子総数で常に陽極および陰極に接する集電子数を極力多くすることにより、移動体の位置に関係なく各移動体への電力供給を安定化し、各移動体は同じ電力が得られるとともに移動体の移動に対し極力機械的抵抗を少なくして円滑な走行を可能にした移動体への給電装置を提供することにある。
【0006】
【課題を解決するための手段】
前記目的を達成するために本発明による移動体への給電装置は、ゲーム機のフィールド内を自在に移動する移動体に給電するため、フィールド内の上方または下方に設けられ、交互に陽極,陰極になるように電源に接続される帯状電極を表面層に形成した給電板と、各移動体に搭載され、その移動体の移動に伴い多数の集電子が前記給電板の表面層に押し当てられて摺動させられることにより、前記給電板の帯状電極から移動体に電力を供給する集電器とからなる給電装置において、前記給電板は、絶縁板と導電層を交互に積層して構成し、少なくとも前記導電層を表面層も含めて3層以上にし、表面層の導電層の少なくとも1つは、一定の間隔を隔てて平行に繰り返し配置した帯状電極とし、他の導電層の少なくとも1つは陽極配電体、さらに他の導電層の少なくとも1つは陰極配電体として電源に接続し、前記帯状電極の相隣り合う電極は、交互に陰極と陽極になるように内壁に導電体を有する複数の貫通孔によって前記陽極配電体と陰極配電体に接続してある。
【0007】
上記構成によれば、移動体の位置に関係なく各移動体への電力供給を安定化し、各移動体は同じ電力が得られるとともに移動体の移動に対し極力機械的抵抗を少なくして円滑な走行が可能になる。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明をさらに詳しく説明する。
図1は、本発明による移動体への給電装置を適用したゲーム機の外観斜視図である。この例は、カーレースゲーム,競馬ゲーム,競艇ゲームなどであり、環状トラック上を複数の自動車等の模型体2が自由自在に走行し、ゲームを行うものである。
環状トラックの周囲には複数のターミナル3が配設され、このターミナル3にはモニタ7,操作パネル4,コイン投入口5,コイン払出口6が付設されている。コインを投入し、操作パネル4を操作して入賞が予想される模型体2に投票することによりゲームを行うことができる。
【0009】
図2は、本発明による給電装置を設けた移動体の側面図である。
模型体2の下方にトラックを介し移動体44が存在し、模型体2と移動体44は、互いに吸引する方向であってトラックとの間に若干の距離を隔てた位置にそれぞれ磁石25が設置されている。
模型体2自体は、動力源がないが、前輪が1個以上のキャスタ(または球体車輪)15、後輪は左右にそれぞれ独立車輪12があり、動力源を備えている移動体44の進む走行方向にスムーズに追従するようになっている。
トラックは、3層構造になっていて、上層に布製のゲームフィールド8,中層に樹脂製の補強板22,下層に本発明に係わる給電板11が敷設されている。
【0010】
給電板11の下方には移動体44が走行する空間を介し走行路23が敷設され、この走行路23の下には前後左右方向に一定の間隔あるいはコーナー部においては等角度でXY座標位置を伝える発信器20が設置された位置発信板21が設けられている。また、さらに下方にはスペーサを介し補強材24が敷設されている。
移動体44は、2個の操舵兼駆動用モータ17,図示しない赤外線通信手段,位置検出器,制御装置,モータドライバ等を備え、前方に1個以上のキャスタ(または球体車輪)15,19,後方に左右にそれぞれ独立車輪13,18で構成される2組の走行手段が設けられている。
【0011】
この2組の走行手段は、それぞれ天井面および床面に車輪が接触する方向に配置され、その間にトーションスプリング26による圧縮弾性をもつ平行リンク16が存在する。これによって移動体走行空間を上下方向に加圧し、また、移動体の前後方向の振動を抑え、スムーズに走行できるようになっている。
また下部後輪18は操舵兼駆動用モータ17にギア結合し駆動されるが、2個のモータはそれぞれ左右別々の車輪を駆動し、この回転比を変えることによって自由に操舵できるようになっている。
上部走行手段の車輪固定部材には上方に突出する方向に本発明に係わる複数の集電子10が配置された集電器9が固定され、これに給電板11上の帯状電極が接触することにより移動体44に電力が供給される。
【0012】
また、移動体44の走行制御についてゲーム機本体は、赤外線通信手段によってスタートからゴールまでの一定時間単位の座標データの集合(すなわち、数分後にX,Yの座標に到着していなければならないという速度とコースデータ)を移動体44に送信する。移動体44はこの受信信号に基づいて操舵兼駆動用モータ17を駆動するが、走行路23上の発信器20の発信信号を位置検出器を介して検出し、これを制御装置にフィードバックすることにより所定の速度で所定のコースを走行させている。
【0013】
図3(a)は、給電板の積層構造の実施例を示す断面図、(b)はAーA’断面図である。この例は、4層基板の製造プロセスによって実現されたもので、導電層が表皮層となるように3層の絶縁板37と4層の導電層とが交互に積層されている。
表皮導電層の片面には、電源との接続のための陰極端子電極34と陽極端子電極35が電線の引き出し易い位置に配置され、他の片面には幅Wの帯状電極(陽極)33と帯状電極(陰極)36が間隔tで平行に配置されている。
この帯状電極(陽極)33,帯状電極(陰極)36部分と陰極端子電極34,陽極端子電極35の所定の位置に給電板11を貫通する孔32が複数設けられている。
【0014】
貫通孔32は一般的にビアホールと呼ばれ、極めて小さい径の孔の内壁に導電体38が形成され上記帯状電極(陽極)33と陽極端子電極35との間および帯状電極(陰極)36と陰極端子電極34をそれぞれ電気的に接続している。
貫通孔32の内径に対し集電子10の接触面の径は大きいので、集電子10は摺動に対し貫通孔32をスムーズに通過することができる。
内層導電層は貫通孔32によって帯状電極の相隣り合う電極が交互に異なる極層と接続され、また、陰極端子電極34と陽極端子電極35が異なる極層と接続されるように、接続しない内層導電層の貫通孔部分に絶縁のためのギャップ30a,31aを設けてある。したがって、内層導電層の一つは陰極配電体31に、他の一つは陽極配電体30になり、相隣り合う帯状電極(陰極)36と帯状電極(陽極)33は交互に配置されることになる。
【0015】
なお、図3の例では端子電極に接続するための貫通孔は帯状電極に接続するための貫通孔を兼ねているが、異なる貫通孔を用いても良い。
この例では端子電極に接続するための貫通孔が1本の場合を示しているが、複数でも良い。また端子電極を帯状電極と別の面に設けたが、帯状電極に直接、電線を接続しても良い。
複数の給電板を並べてフィールド内に設置する場合、給電板の縁から帯状電極までの寸法を(1/2)tにすることによって複数の給電板をつなぎ合わせたとき、つなぎめにできる間隔をtにすることができる。
同様に複数の給電板を並べて設置する場合であって図1のコーナー部のような場所に設置する給電板を複数に分割する場合、給電板の2面の表面層を帯状電極とし、片面の帯状電極から透視方向に他方の帯状電極を見たときその配置を同一にすることにより、この給電板を2枚使用し、このうちの1枚を裏返して対称の位置に帯状電極を直線状になるように配置することにより、1枚の給電板で2枚分の給電板を兼ねることもできる。
【0016】
また、必要に応じて配電体の層厚や積層数を変えることができる。
給電板に若干の反りやゆがみがあっても集電子の付勢圧によって帯状電極への接触は維持することができるが、反りやゆがみがひどくなる(ひどい反りやゆがみとともに耐久性に定める集電子の頭の磨耗があっても接触を維持させるには集電子移動ストロークは膨大な寸法となるため、このストロークを適度な値とすると)と接触を維持できなくなる。したがって、電力の供給が断たれる事態も生じうるので、給電板は極力、平坦に保たなければならない。
しかしながら本発明によれば、切れ目のない2以上の導電層が積層されるため、温度差による反りやゆがみを防止できるとともに剛性が高いので、そのまま天井面あるいは床面として使用できる。
【0017】
図4は、集電器の構造を示す側面図である。
集電子10は、先端10aが半球状の円柱形状であり、上部と下部にフランジ10b,10cが形成されている。上部フランジ10bと集電子支持体40との間に圧縮スプリング41を介在させ、適当な圧力で集電子の先端10aを給電板11に接触させている。
これにより給電板11に多少の凹凸があっても常に接触を保つとともに小さな接触抵抗を実現し、移動体に安定した電力を供給している。下部フランジ10cはストッパの役割を果している。
【0018】
なお、一般的に帯状電極は必要な電流を流せる断面積が必要であり、帯状電極と電極間ギャップとの段差はある程度生じる。また、1枚の給電板は加工上、最大サイズが限定されるため、1つのフィールドを構成するには複数の給電板をつなぎ合わせる場合があり、このつなぎ目段差もある程度生じる。したがって移動体が走行し、これらの段差を乗り越えるとき、集電子の付勢圧力によって1,2本の集電子が引っかかり易くなる。
しかしながら、上記給電板の構造によって主に陽極配電体,陰極配電体から帯状電極に電力供給するので、帯状電極の厚みを薄くできる。それに加えて以下に述べるように必要最小限の集電子数で常に接触している集電子数を多くし、総合的に十分な接触抵抗を得られる程度に1本当たりの集電子の付勢圧を少なくしているので集電子の引っ掛かりを抑えることができる。
【0019】
図5は、給電板の帯状電極と集電子の接触状態を説明するための図である。
図5に示すように集電器は所定の直径を有する正多角形の頂点位置または頂点位置と中心位置に集電子10を配置し、所定の式および条件を満たすことにより移動体44がいかなる方向に走行しても必要最小限の集電子数で帯状電極33,36にそれぞれ所定の数以上の集電子10が常に接触する。
上記所定の直径とは、帯状電極の幅をW,帯状電極の間のギャップをt,複数の集電子を結ぶ直線からこれと直交し任意の集電子までの寸法をXn とし、mを所定の直径内に含まれる帯状電極の数とすると、
m(W+t)−t<Xn <m(W+t)+t…(A)のとき集電子が帯状電極間の1ギャップ上にあり給電できない状態であり、この(A)式が成り立つ以外の位置に集電子を配置することによって決定される。ただし、この条件を満たさない場合であっても他の集電子が接触できるときはこの限りではない。
【0020】
帯状電極の陽極および陰極に、それぞれが予め決められた数以上の集電子が接触する条件を満足させ、この条件を必要最小限の集電子総数で構成させるには、Xn >2W+3tの条件では給電できる状態であるが、最小角数の正多角形の頂点位置ではW>Xn を満足しなくなるので条件外とする。すなわちm=3以上は条件外である。したがって、(A)式にm=1,2を代入すると、
【式1】
W<Xn <W+2t…(A)’
2W+t<Xn <2W+3t…(A)”となり、
この式(A)’,(A)”が成り立つ位置を避けた位置は、つぎの式となる。
Xn <W, W+2t<Xn <2W+t …(B)
このときの関係を図6に示してある。
【0021】
ただし、以下の条件を満足しなければならない。
条件(i) 最小集電子数は両極分の常時接触数+ギャップ上に並ぶ集電子数以上であること。
条件(ii) W値未満のXn (Xn <W)はXa と定義し、このXa は帯電間のギャップに落ちる集電子の数が最も多い場合のそのギャップに落ちた集電子から接触している集電子が予め決められた数に達するまでの集電子との間の寸法であり、かつ、Xn の内の最大寸法によって決定する。
(W+2t)以上のXn (W+2t<Xn )はXb と定義し、(2W+t)以下のXn (Xn <2W+t)はXc と定義する。
条件(iii) それぞれの帯状電極に常に接触する集電子の予め決められた数が奇数の場合、中心位置に1つの集電子を加える。
条件(iv) 上記(B)式を満たさない場合に他の集電子が接触できる場合を除く。
【0022】
図7は、具体的な計算結果の例を示す図である。
図7(a)(b)は陽極帯状電極および陰極帯状電極にそれぞれ少なくとも2以上の集電子が常に接触する例である。
帯状電極の幅をW=8mm,電極間の間隔をt=1mmとすると、図7(a)に示すように正6角形の頂点位置に集電子を配置したときが最小角数(2つの集電子がギャップに落ちた場合、陽極帯状電極と陰極帯状電極にそれぞれ2つずつ集電子が接触することが必要で、2+4=6角形)となり、この頂点位置を結んだ直径は以下の計算式で求めることができる。
【式2】
Xa <W …(1)
Xb >W+2t …(2)
Xc <2W+t …(3)
正6角形を形成する円の直径をφとすると、
したがって正6角形の頂点を結んだ直径は13.3mm<φ<16mmであれば良い。なお、かかる場合に電極間の間隔をt=1mmではなく2mmとすると16mm<φ<16mmとなり、答えが矛盾し、上記式を満足する直径を求めることができず、この場合は無視する。
【0023】
つぎに帯状電極の幅をW=8mm,電極間の間隔をt=2mmとした場合には、図7(b)に示すように正7角形の頂点位置に集電子を配置したときが最小角数(図7(a)でW=8mm,t=2mmとした場合、答えが矛盾するので、正6角形は成り立たず、1つ角数の多い7角形が最小角数となる)となり、この頂点位置を結んだ直径は以下の計算式で求めることができる。
【式3】
Xa <W …(4)
Xb >W+2t …(5)
Xc <2W+t …(6)
正7角形を形成する円の直径をφとすると、
したがって、頂点位置を結んだ直径は、14.8mm<φ<18.9mmであれば良い。
【0024】
図7(c)(d)は、陽極および陰極にそれぞれ少なくとも3以上の集電子が常に接触する例である。
帯状電極の幅をW=8mm,電極間の間隔をt=1mmとすると、図7(c)に示すように正8角形の頂点位置と中心位置に集電子を配置したときが最小角数(接触数が奇数であるので、条件(iii) より中心位置に集電子があり、正6角形のように中心位置も含めて3個ギャップに落ちた場合、陽極帯状電極と陰極帯状電極にそれぞれ3つずつ集電子が接触することが必要で、結局2+6=8角形となる)となり、この頂点位置を結んだ直径は以下の計算式で求めることができる。
【式4】
Xa <W …(7)
Xb >W+2t …(8)
Xc <2W+t …(9)
ここでXc =2Xa であり、Xc <2Wの条件が成り立つので、Xc <2W+t…(9) を計算することはない。
正8角形を形成する円の直径をφとすると、
したがって、頂点位置を結んだ直径は、14.1mm<φ<16mmであれば良い。なお、かかる場合に電極間の間隔をt=1mmではなく2mmとすると17mm<φ<16mmとなり、答えが矛盾し、上記式を満足する直径を求めることができず、この場合は無視する。
【0025】
つぎに帯状電極の幅をW=8mm,電極間の間隔をt=2mmとした場合には、図7(d)に示すように正9角形の頂点位置と中心位置に集電子を配置したときが最小角数(図7(c)でW=8mm,t=2mmとした場合、答えが矛盾するので、正8角形は成り立たず、1つ角数の多い9角形が最小角数となる)となり、この頂点位置を結んだ直径は以下の計算式で求めることができる。
【式5】
Xa <W …(10)
Xb >W+2t …(11)
Xc <2W+t …(12)
正9角形を形成する円の直径をφとすると、
なお、図7(d)の例は、(A)’式に該当する例であるが、たとえCの寸法がW≦C≦W+2tになったとしても一方の帯状電極に▲9▼▲1▼▲2▼の集電子が、もう一方の帯状電極に《10》▲7▼▲4▼の集電子が接触するので問題はない。またDの寸法がW≦D≦W+2tになったとしても一方の帯状電極に▲1▼▲6▼▲5▼の集電子が、もう一方の帯状電極に▲8▼《10》▲3▼の集電子が接触するので問題はない。これは、条件(iv)に該当する例であり、▲6▼▲5▼の集電子に対する▲3▼▲8▼の集電子,▲4▼▲7▼の集電子に対する▲2▼▲9▼の集電子の場合は、(B)式の適用を除くものである。
したがって、頂点位置を結んだ直径は、16mm<φ<17mmであれば良い。なお、上記《10》の《》記号は○を意味するものである。
【0026】
つぎに(B)式および条件(i)(ii)(iii)(iv)にしたがって図7(a)(b)(c)(d)のXa , Xb , Xc を決定する方法について説明する。
図7(a)において、Xn <Wを考察すると、この式は条件 (ii) の前段に対応するものである。条件 (ii) の前段では例えば▲3▼▲5▼の集電子がギャップに落ちたときがギャップに最も多く集電子が落ちた場合であり、2つが接触する集電子は▲2▼▲6▼の集電子であり、▲3▼(▲5▼でも良い)の集電子からの最大寸法の集電子は▲2▼(▲5▼からは▲6▼となる)となる。したがってXa は▲2▼と▲3▼を結ぶ距離となる。
図7(b)(c)(d)についても同様にしてXa を決定している。図7(b)の場合には例えば▲3▼▲6▼の2つの集電子が落ちたとき、図7(c)は例えば▲3▼▲9▼▲7▼の3つの集電子が落ちたとき、図7(d)は例えば▲5▼▲6▼の2つの集電子が落ちたときがギャップに最も多く集電子が落ちた場合である。
【0027】
図7(a)において条件 (ii) の中段では(W+2t)以上のときXn はXb と定義し、Xn がWより大きい場合には、▲2▼▲4▼の距離をXb とおけば、Xb が(W+2t)以上であればそれぞれの帯状電極に常に接触する集電子が2以上になる。よってXb は▲2▼▲4▼の距離である。図7(b)(c)(d)も同様にして決定している。
図7(a)において条件 (ii) の後段では(2W+t)以下のときXn はXc と定義し、Xn がWより大きい場合には、▲1▼▲4▼の距離をXc とおけば、Xc が(2W+t)以下であればそれぞれの帯状電極に常に接触する集電子が2以上になる。よってXc は▲1▼▲4▼の距離である。図7(b)(c)(d)も同様にして決定している。
【0028】
図8は、集電子と移動体電極端子との接続構造を示す図である。
それぞれの集電子の出力は、それぞれ電流方向が逆方向の2つのダイオードに接続され、このダイオードの正方向同士の出力線を1つにまとめて陽極とし、ダイオードの逆方向同士の出力線を1つにまとめて陰極とし、移動体側に電力が供給される。
このように接続してあるので、移動体が移動して集電子の接触する帯状電極が変わっても極性が変化することなく常に移動体の陽極側には+電位が、陰極側には−電位が接続される。
各ダイオードはまた給電板上の陽極と陰極が短絡しないようにする機能も兼ねている。さらに、このダイオード回路は整流であるため、給電板に供給する電圧は直流,交流のいずれを接続しても良い。
【0029】
【発明の効果】
以上、説明したように本発明は、従来例とは異なり、給電板を絶縁板と導電層を交互に積層して構成し、導電層の少なくとも1つを陽極配電体に、他の少なくとも1つを陰極配電体とし、これらを介して帯状電極に電力を供給する構成であるので、配電ルートにおける電気抵抗が低くなり、配電ルートにおける無用な電力消費を少なくすることができるとともに、各移動体への電力供給をほぼ等しくすることができる。例えば、最低限の積層構造にした場合、すなわち陽極配電体と陰極配電体をそれぞれ1面ずつ占有した場合、電気抵抗は従来例に比べおおよそ1/3に抑えることができた。
また、主に陽極配電体,陰極配電体によって電力供給するため、帯状電極の厚みを薄くすることができるので、集電子の電極乗り越え段差を小さくし集電子の摺動の抵抗を少なくでき移動体を円滑に走行させることができる。
【0030】
さらに、複数の給電板を並べてフィールド内に設置する場合であって半円状のコーナー部の給電板を複数に分割するとき、導電層を4層以上とし、表および裏の表面層を帯状電極にし一方の帯状電極側の透視方向から見た他の帯状電極の形状を同一にすれば、1種類の給電板を2枚使用し、この内の1枚を裏返しで対象の位置に配置することができ給電板の共通部品化を図ることができ、コストの低減および部品管理が容易になるという効果がある。
また、多積層構造であるので、従来例に比較し反り,ゆがみは少なく、剛性も増加し、移動体への安定な電力供給に寄与できる。
【0031】
本発明は、移動体の姿勢がいかなる場合でも集電子条件が等しくなる正多角形の頂点位置または頂点位置と中心位置に集電子を設け、1番過酷な状態、すなわち複数の集電子が帯状電極間の1ギャップ上にあり給電できない状態でも、帯状電極の陽極および陰極にそれぞれが予め決められた数以上の集電子が接触し、この条件を必要最小限の集電子総数で実現できる構成にしてあるので、以下のような効果が得られる。
すなわち必要最小限の集電子数で、常に接触している集電子数を多くできるので、十分な接触を得ることでき、上記多積層構造の給電板と相まって移動体への電力供給を安定化できる。
【0032】
そして、移動体が走行し、帯状電極の乗り越え段差あるいは給電板のつなぎ目段差では1,2本の集電子が引っかかり易くなるが、上述したように給電板の帯状電極を薄くしているので、段差部の乗り越え抵抗が少なくなる上、総合的に十分な接触抵抗を得られる程度に1本あたりの集電子の付勢圧を小さくすることができるので、集電子の引っかかりが少なくなり、移動体をスムーズに走行させることができるとともに集電子の磨耗も抑制され耐久性を向上させることができる。
また、最小の集電子数で常に接触している集電子数を多くし、十分な接触を得ているので、給電板の掃除期間を延長でき、メンテナンスが簡易になる。
【図面の簡単な説明】
【図1】本発明による移動体への給電装置を適用したゲーム装置の概略斜視図である。
【図2】本発明による給電装置を設けた移動体の側面図である。
【図3】(a)は給電板の積層構造の実施例を示す断面図、(b)はAーA’断面図である。
【図4】集電器の構造を示す側面図である。
【図5】給電板の帯状電極と集電子の接触状態を説明するための図である。
【図6】必要最小限の集電子数で所定以上の接触する集電子数を決める式を導き出す方法を説明するための図である。
【図7】6角形〜9角形の各頂点および中心点に集電子を配置したときの条件を説明するための図である。
【図8】集電子と移動体電極端子との接続構造を示す図である。
【符号の説明】
1…ゲーム機
2…模型体
3…ターミナル
4…操作パネル
5…コイン投入口
6…コイン払出口
7…モニタ
8…ゲームフィールド
9…集電器
10…集電子
11…給電板
12,13,18…独立車輪
14,15,19…キャスタ
16…平行リンク
17…操舵兼駆動用モータ
20…発信器
21…位置発信板
22…補強板
23…走行路
24…補強材
25…磁石
26…トーションスプリング
30…陽極配電体
31…陰極配電体
32…貫通孔
33…帯状電極(陽極)
34…陰極端子電極
35…陽極端子電極
36…帯状電極(陰極)
37…絶縁板
38…導電体
40…集電子支持体
41…圧縮スプリング
43…ダイオード
44…移動体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply device for a game machine in which a moving object such as a model car or animal moves by receiving external power supply in a certain field.
[0002]
[Prior art]
In the above-mentioned game machine, a device for supplying power to a plurality of moving objects has been proposed (Japanese Utility Model Publication No. 5-11906).
In this device, strip electrodes are laid in a direction crossing the upper and lower surfaces of the insulating plate, and every other through hole is provided so that adjacent electrodes alternately become an anode and a cathode, and these are electrically connected. Thus, a single strip electrode is provided with a plurality of power supply points. The moving body is supplied with electric power by always bringing the current collector into contact with the strip electrode.
By adopting such a configuration, when a plurality of moving bodies run on the same strip-shaped electrode at the same time, the moving body located farther from the power supply unit (terminal electrode) is supplied with power by the power consumption of the intermediate moving body. To prevent the vehicle speed from becoming slower.
In other words, even if the current collectors of multiple moving objects are concentrated on the same electrode, almost the same power is always supplied from the power supply point with almost no influence of the distance difference between all the current collectors, enabling fair race development I have to.
[0003]
However, although this device has a plurality of power supply points, a separate power distribution route is not formed from a power supply unit to a plurality of moving objects, and a common power distribution route is formed. The power consumption in this common distribution route is determined by the electric resistance of the route. This is a configuration in which a band-shaped electrode on one side and a band-shaped electrode on the other side are connected to each other by a through hole, and a plurality of connection paths are connected in parallel. When traveling on the strip electrode, substantially the same power is always supplied from the power supply point, but actually there is still a considerable difference in the power supplied to each moving body.
[0004]
Further, the above-described device urges the contact of the current collector to the strip-shaped electrode in the direction of the strip-shaped electrode by a spring so as to maintain the contact even if some irregularities are generated on the power supply plate. Since the strip electrode and the current collector are slid, the contact resistance fluctuates greatly, making the supply voltage to the moving body unstable, and the moving body cannot run smoothly.
In order to alleviate this, a plurality of current collectors are arranged, and some current collectors are always in contact with each other so that any current collectors that did not make sufficient contact can be compensated for by any one of the current collectors. ing.
[0005]
[Problems to be solved by the invention]
However, increasing the total number of current collectors in order to increase the number of current collectors that are always in contact is due to the fact that the number of current collectors that do not function instantaneously increases, resulting in poor efficiency, and the energizing pressure for the total number of current collectors. The mechanical resistance rather increases and the moving body cannot run smoothly.
An object of the present invention is to solve the above-described problem. The power supply plate has an alternate multi-layered structure of an insulating plate and a conductive layer, and at least one of the stacked conductive layers is used as an anode power distribution body, and at least the other is used as a power supply plate. The power supply to each mobile unit is stabilized regardless of the position of the mobile unit by making the number of current collectors in contact with the anode and cathode as small as possible with the minimum total number of current collectors corresponding to the cathode power distribution unit. It is an object of the present invention to provide a power supply apparatus for a moving body which can obtain the same electric power and reduce a mechanical resistance to the movement of the moving body as much as possible to enable smooth running.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a power supply apparatus for a moving object according to the present invention is provided above or below a field of a game machine to supply power to a moving object freely moving in a field of the game machine. A power supply plate formed on the surface layer with a strip-shaped electrode connected to a power supply so as to be mounted on each mobile body, and a large number of current collectors are pressed against the surface layer of the power supply plate as the mobile body moves. By being slid, in a power supply device including a current collector that supplies power to a moving body from the band-shaped electrode of the power supply plate, the power supply plate is configured by alternately stacking insulating plates and conductive layers, At least the conductive layer includes at least three layers including a surface layer, at least one of the conductive layers of the surface layer is a strip-shaped electrode repeatedly arranged in parallel at a predetermined interval, and at least one of the other conductive layers is Anode power distribution At least one of the other conductive layers is connected to a power source as a cathode power distribution, and the adjacent electrodes of the strip-shaped electrode are formed by a plurality of through-holes having a conductor on an inner wall so as to alternately become a cathode and an anode. Connected to the anode and cathode distributors.
[0007]
According to the above configuration, the power supply to each mobile unit is stabilized regardless of the position of the mobile unit, and each mobile unit can obtain the same power and reduce mechanical resistance as much as possible to the movement of the mobile unit, so that it is smooth. Running becomes possible.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 is an external perspective view of a game machine to which a power supply device for a moving object according to the present invention is applied. This example is a car racing game, a horse racing game, a boat racing game, or the like, in which a model body 2 such as a plurality of automobiles runs freely on an annular track and plays a game.
A plurality of
[0009]
FIG. 2 is a side view of a moving body provided with the power supply device according to the present invention.
A moving body 44 exists below the model body 2 via a truck, and the model body 2 and the moving body 44 are each provided with a
The model body 2 itself has no power source, but the front wheel has one or more casters (or spherical wheels) 15, and the rear wheel has independent wheels 12 on the left and right sides, respectively, and the traveling body 44 provided with the power source travels. It follows the direction smoothly.
The truck has a three-layer structure, in which a
[0010]
A traveling path 23 is laid below the power supply plate 11 through a space in which the moving body 44 travels. Under the traveling path 23, the XY coordinate positions are set at a constant interval in the front-rear and left-right directions or at equal angles in corners. A position transmitting plate 21 provided with a transmitting transmitter 20 is provided. Further, a reinforcing member 24 is laid down further below via a spacer.
The moving body 44 includes two steering / driving motors 17, infrared communication means (not shown), a position detector, a control device, a motor driver, and the like. One or more casters (or spherical wheels) 15, 19, Two sets of running means each including left and right independent wheels 13 and 18 are provided at the rear.
[0011]
The two sets of traveling means are arranged in the directions in which the wheels contact the ceiling surface and the floor surface, respectively, and there are parallel links 16 having compression elasticity by a torsion spring 26 therebetween. As a result, the moving body travel space is pressurized in the vertical direction, and the vibration of the moving body in the front-rear direction is suppressed, so that the moving body can travel smoothly.
The lower rear wheel 18 is driven by being gear-coupled to a steering / drive motor 17, but the two motors drive left and right separate wheels, respectively, and can change the rotation ratio to freely steer. I have.
A
[0012]
In addition, regarding the traveling control of the moving body 44, the game machine body needs to reach a set of coordinate data in a fixed time unit from the start to the goal (that is, arrive at the X and Y coordinates a few minutes later) by the infrared communication means. (Speed and course data) to the mobile unit 44. The moving body 44 drives the steering / drive motor 17 based on the received signal, but detects the transmission signal of the transmitter 20 on the traveling path 23 via the position detector and feeds it back to the control device. Is running on a predetermined course at a predetermined speed.
[0013]
FIG. 3A is a cross-sectional view illustrating an example of a laminated structure of a power supply plate, and FIG. 3B is a cross-sectional view along AA ′. This example is realized by a manufacturing process of a four-layer substrate, in which three insulating plates 37 and four conductive layers are alternately stacked so that the conductive layer becomes a skin layer.
On one surface of the skin conductive layer, a cathode terminal electrode 34 and an anode terminal electrode 35 for connection to a power source are arranged at positions where the electric wires can be easily pulled out, and on the other surface, a band-shaped electrode (anode) 33 having a width W and a band-shaped electrode. Electrodes (cathodes) 36 are arranged in parallel at an interval t.
A plurality of holes 32 penetrating the power supply plate 11 are provided at predetermined positions of the strip-shaped electrode (anode) 33, the strip-shaped electrode (cathode) 36, the cathode terminal electrode 34, and the anode terminal electrode 35.
[0014]
The through hole 32 is generally called a via hole, and a conductor 38 is formed on the inner wall of the hole having an extremely small diameter. The through hole 32 is provided between the strip electrode (anode) 33 and the anode terminal electrode 35 and between the strip electrode (cathode) 36 and the cathode. The terminal electrodes 34 are electrically connected to each other.
Since the diameter of the contact surface of the
The inner conductive layer is not connected such that adjacent electrodes of the strip-shaped electrode are alternately connected to different polar layers by the through-holes 32 and the cathode terminal electrode 34 and the anode terminal electrode 35 are connected to different polar layers. Gaps 30a and 31a for insulation are provided in the through holes of the conductive layer. Therefore, one of the inner conductive layers serves as the
[0015]
In the example of FIG. 3, the through hole for connecting to the terminal electrode also serves as the through hole for connecting to the strip electrode, but a different through hole may be used.
In this example, one through hole for connecting to the terminal electrode is shown, but a plurality of through holes may be used. Further, although the terminal electrode is provided on a surface different from that of the strip electrode, an electric wire may be directly connected to the strip electrode.
When a plurality of power supply plates are arranged side by side in a field, by setting the dimension from the edge of the power supply plate to the band-shaped electrode to (1/2) t, when the plurality of power supply plates are connected to each other, the interval that can be connected is increased. t.
Similarly, in the case where a plurality of power supply plates are arranged side by side and the power supply plate to be installed in a place such as a corner portion in FIG. 1 is divided into a plurality of power supply plates, the two surface layers of the power supply plate are band-shaped electrodes, By seeing the other strip electrode in the perspective direction from the strip electrode, by arranging the same, the two feed plates are used, and one of them is turned upside down and the strip electrode is linearly arranged at a symmetrical position. With such arrangement, one power supply plate can also serve as two power supply plates.
[0016]
In addition, the thickness and the number of layers of the power distribution body can be changed as needed.
Even if the power supply plate is slightly warped or distorted, the contact with the band-shaped electrode can be maintained by the biasing pressure of the current collector, but the warpage and distortion become severe (the current collector determined to be durable together with severe warpage and distortion). In order to maintain the contact even if the head is worn, the current collecting movement stroke has a huge size, and if this stroke is set to an appropriate value, the contact cannot be maintained. Therefore, a situation in which power supply is cut off may occur, and the power supply plate must be kept as flat as possible.
However, according to the present invention, since two or more continuous conductive layers are laminated, warpage and distortion due to a temperature difference can be prevented and rigidity is high, so that the conductive layer can be used as it is as a ceiling surface or a floor surface.
[0017]
FIG. 4 is a side view showing the structure of the current collector.
The
As a result, even if the power supply plate 11 has some irregularities, the contact is always maintained, and a small contact resistance is realized, so that stable power is supplied to the moving body. The lower flange 10c functions as a stopper.
[0018]
In general, the strip electrode needs to have a cross-sectional area through which a necessary current can flow, and a step between the strip electrode and the gap between the electrodes is generated to some extent. In addition, since the maximum size of one power supply plate is limited in terms of processing, a plurality of power supply plates may be connected to form one field, and this connection step also occurs to some extent. Therefore, when the moving body travels and gets over these steps, one or two current collectors are easily caught by the urging pressure of the current collector.
However, since the power is mainly supplied to the strip electrode from the anode power distribution and the cathode power distribution by the structure of the power supply plate, the thickness of the strip power can be reduced. In addition, as described below, the number of current collectors that are always in contact with the minimum required number of current collectors is increased, and the energizing pressure of each current collector is sufficient to obtain sufficient contact resistance overall. Is reduced, so that the current collector can be prevented from being caught.
[0019]
FIG. 5 is a diagram for explaining a contact state between the band electrode of the power supply plate and the current collector.
As shown in FIG. 5, the current collector arranges the
The above-mentioned predetermined diameter means the width of the strip-shaped electrode as W, the gap between the strip-shaped electrodes as t, and the dimension from a straight line connecting a plurality of current collectors to an arbitrary current collector orthogonal to the straight line. n And m is the number of strip electrodes included within a predetermined diameter,
m (W + t) -t <X n When <m (W + t) + t (A), the current collector is on one gap between the strip-shaped electrodes and power cannot be supplied, and is determined by arranging the current collector at a position other than the case where the expression (A) is satisfied. You. However, even if this condition is not satisfied, this does not apply when another current collector can be contacted.
[0020]
In order to satisfy the condition that each of the anode and the cathode of the strip-shaped electrode is in contact with a predetermined number or more of current collectors, and to configure this condition with the minimum necessary number of current collectors, X n > 2W + 3t, power can be supplied, but at the vertex position of the regular polygon having the minimum angle, W> X n Is not satisfied because the condition is not satisfied. That is, m = 3 or more is out of the condition. Therefore, substituting m = 1, 2 into equation (A) gives:
(Equation 1)
W <X n <W + 2t ... (A) '
2W + t <X n <2W + 3t ... (A) ",
The positions avoiding the positions where the expressions (A) ′ and (A) ″ hold are represented by the following expressions.
X n <W, W + 2t <X n <2W + t (B)
The relationship at this time is shown in FIG.
[0021]
However, the following conditions must be satisfied.
Condition (i) The minimum number of current collectors must be equal to or greater than the number of constant contacts between the two poles plus the number of current collectors arranged on the gap.
Condition (ii) X less than W value n (X n <W) is X a And this X a Is the dimension between the current collectors falling in the gap when the number of current collectors falling in the gap between charging is the largest and the current collectors in contact with the current collectors reaching a predetermined number, And X n Determined by the largest dimension of
X of (W + 2t) or more n (W + 2t <X n ) Is X b And X of (2W + t) or less n (X n <2W + t) is X c Is defined.
Condition (iii) If the predetermined number of current collectors that are always in contact with each strip electrode is an odd number, one current collector is added to the center position.
Condition (iv) Except when another current collector can be contacted when the above equation (B) is not satisfied.
[0022]
FIG. 7 is a diagram illustrating an example of a specific calculation result.
FIGS. 7A and 7B are examples in which at least two or more current collectors always contact the anode strip electrode and the cathode strip electrode, respectively.
Assuming that the width of the strip-shaped electrode is W = 8 mm and the interval between the electrodes is t = 1 mm, the minimum angle (two current collectors) is obtained when the current collectors are arranged at the apexes of a regular hexagon as shown in FIG. When the electrons fall into the gap, two current collectors need to be in contact with each of the anode strip electrode and the cathode strip electrode, and 2 + 4 = hexagon), and the diameter connecting the apex positions is calculated by the following formula. You can ask.
[Equation 2]
X a <W ... (1)
X b > W + 2t (2)
X c <2W + t (3)
When the diameter of a circle forming a regular hexagon is φ,
Therefore, the diameter connecting the vertices of the regular hexagon may be 13.3 mm <φ <16 mm. In such a case, if the interval between the electrodes is 2 mm instead of 1 mm, then 16 mm <φ <16 mm, the answer is inconsistent, and a diameter that satisfies the above equation cannot be obtained, and is ignored in this case.
[0023]
Next, when the width of the strip-shaped electrode is W = 8 mm and the interval between the electrodes is t = 2 mm, the minimum angle is obtained when the current collector is arranged at the vertex position of a regular heptagon as shown in FIG. If W = 8 mm and t = 2 mm in FIG. 7 (a), the answers are inconsistent, so a regular hexagon does not hold and a heptagon with a large number of squares becomes the minimum square number. The diameter connecting the apex positions can be obtained by the following formula.
[Equation 3]
X a <W ... (4)
X b > W + 2t (5)
X c <2W + t (6)
If the diameter of a circle forming a regular heptagon is φ,
Therefore, the diameter connecting the apex positions may be 14.8 mm <φ <18.9 mm.
[0024]
FIGS. 7C and 7D are examples in which at least three current collectors always contact the anode and the cathode, respectively.
Assuming that the width of the strip-shaped electrode is W = 8 mm and the interval between the electrodes is t = 1 mm, the minimum angle (when the current collector is arranged at the vertex position and the center position of the regular octagon as shown in FIG. Since the number of contacts is an odd number, if there is a current collector at the center position according to the condition (iii), and three gaps including the center position are dropped, such as a regular hexagon, three points are applied to the anode strip electrode and the cathode strip electrode, respectively. It is necessary for the current collectors to come into contact with each other, which results in 2 + 6 = octagon), and the diameter connecting the apexes can be obtained by the following formula.
(Equation 4)
X a <W… (7)
X b > W + 2t (8)
X c <2W + t (9)
Where X c = 2X a And X c Since the condition of <2W holds, X c <2W + t (9) is not calculated.
When the diameter of a circle forming a regular octagon is φ,
Therefore, the diameter connecting the apex positions may be 14.1 mm <φ <16 mm. In this case, if the interval between the electrodes is 2 mm instead of 1 mm, then 17 mm <φ <16 mm, the answer is inconsistent, and a diameter satisfying the above equation cannot be obtained, and is ignored in this case.
[0025]
Next, when the width of the strip-shaped electrode is W = 8 mm and the interval between the electrodes is t = 2 mm, as shown in FIG. (W = 8 mm and t = 2 mm in FIG. 7 (c), since the answers are inconsistent, a regular octagon does not hold, and a 9-sided polygon with one corner becomes the minimum corner) And the diameter connecting the apex positions can be obtained by the following formula.
(Equation 5)
X a <W ... (10)
X b > W + 2t (11)
X c <2W + t (12)
Assuming that the diameter of a circle forming a regular octagon is φ,
Although the example of FIG. 7D is an example corresponding to the expression (A) ′, even if the dimension of C satisfies W ≦ C ≦ W + 2t, one of the band-shaped electrodes is (9) (1). There is no problem because the current collector of (2) comes in contact with the current collector of (10), (7) and (4) on the other strip electrode. Even if the dimension of D satisfies W ≦ D ≦ W + 2t, the current collector of (1), (6) and (5) is applied to one of the strip electrodes, and (8), (10) and (3) of the other strip electrode. There is no problem because the current collector contacts. This is an example corresponding to the condition (iv), ie, (3) to (8) for the current collector of (6), (5), and (2) to (9) for the current collector of (4) and (7). (B) excludes the application of the formula (B).
Therefore, the diameter connecting the apex positions may be 16 mm <φ <17 mm. The symbol <<>> in the above << 10 >> means ○.
[0026]
Next, according to the formula (B) and the conditions (i), (ii), (iii), and (iv), X in FIGS. a , X b , X c Will be described.
In FIG. 7A, X n Considering <W, this equation corresponds to the former stage of condition (ii). In the preceding stage of the condition (ii), for example, when the current collectors of (3) and (5) fall into the gap, the most current collectors fall in the gap. The two current collectors contact (2) and (6). The current collector having the maximum size from the current collector of (3) (or (5)) is (2) (from (5) to (6)). Therefore X a Is the distance connecting (2) and (3).
7 (b), (c), and (d), X a Is determined. In the case of FIG. 7 (b), for example, when two current collectors of (3) and (6) fall, FIG. 7 (c) shows, for example, three current collectors of (3), (9) and (7) fall FIG. 7D shows a case where two current collectors (5) and (6) fall, for example, in the gap most frequently.
[0027]
In FIG. 7A, in the middle stage of the condition (ii), when (W + 2t) or more, X n Is X b And X n Is larger than W, the distance of (2) and (4) is X b If you go, X b Is equal to or more than (W + 2t), the number of current collectors constantly in contact with each strip electrode is two or more. Therefore X b Is the distance of (2) and (4). 7B, 7C, and 7D are determined in the same manner.
In FIG. 7A, in the subsequent stage of the condition (ii), X is equal to or less than (2W + t). n Is X c And X n Is greater than W, the distance of (1) and (4) is c If you go, X c Is less than or equal to (2W + t), there are two or more current collectors constantly in contact with each strip electrode. Therefore X c Is the distance of (1) and (4). 7B, 7C, and 7D are determined in the same manner.
[0028]
FIG. 8 is a diagram showing a connection structure between a current collector and a mobile electrode terminal.
The output of each current collector is connected to two diodes whose current directions are opposite to each other, and the output lines of the diodes in the positive direction are combined into one anode, and the output lines of the diodes in the opposite direction are connected to one another. Power is supplied to the moving body side as a cathode.
Since the connection is made in this way, even if the moving body moves and the strip-shaped electrode with which the current collector contacts changes, the polarity does not change and the positive potential is always applied to the anode side of the moving body and the negative potential is applied to the cathode side. Is connected.
Each diode also has a function of preventing a short circuit between the anode and the cathode on the power supply plate. Furthermore, since this diode circuit is rectified, the voltage supplied to the power supply plate may be either DC or AC.
[0029]
【The invention's effect】
As described above, the present invention is different from the conventional example in that the power supply plate is configured by alternately stacking the insulating plate and the conductive layer, and at least one of the conductive layers is provided on the anode power distribution body and at least one of the other is provided. Is a cathode power distribution body, and power is supplied to the strip-shaped electrodes through these, so that the electric resistance in the power distribution route is reduced, and unnecessary power consumption in the power distribution route can be reduced. Can be made almost equal. For example, in the case of the minimum laminated structure, that is, in the case where one surface of each of the anode power distribution and the cathode power distribution is occupied, the electric resistance can be reduced to about 1/3 as compared with the conventional example.
In addition, since power is supplied mainly by the anode and cathode power distribution bodies, the thickness of the strip-shaped electrodes can be reduced, so that the steps of the current collectors passing over the electrodes can be reduced and the resistance of the current collectors to sliding can be reduced. Can run smoothly.
[0030]
Furthermore, in the case where a plurality of power supply plates are arranged side by side in a field and the power supply plate at the semicircular corner portion is divided into a plurality of portions, the conductive layer is made to be four or more, and the front and rear surface layers are band-shaped electrodes. If the shape of the other strip electrode is the same as seen from the perspective direction of one strip electrode side, two types of power supply plates are used, and one of these is turned upside down and placed at the target position. Thus, the power supply plate can be used as a common component, which has the effect of reducing costs and facilitating component management.
In addition, because of the multi-layer structure, warpage and distortion are small and rigidity is increased as compared with the conventional example, thereby contributing to stable power supply to the moving body.
[0031]
The present invention provides a current collector at a vertex position or a vertex position and a center position of a regular polygon in which the current collection conditions are equal regardless of the posture of the moving body, and the most severe state, that is, a plurality of current collectors is a strip electrode Even if power cannot be supplied due to being on one gap between them, a predetermined number or more of current collectors are brought into contact with the anode and the cathode of the strip-shaped electrode, respectively. Therefore, the following effects can be obtained.
That is, since the number of current collectors that are always in contact can be increased with the minimum number of current collectors, sufficient contact can be obtained, and power supply to the moving body can be stabilized in combination with the power supply plate having the multi-layer structure. .
[0032]
Then, the moving body travels, and one or two current collectors are apt to be caught at a step over the strip-shaped electrode or at a joint at the feed plate. However, as described above, the step-shaped electrode of the feed plate is made thin, In addition to reducing the crossover resistance of the part, the energizing pressure of the current collector per one can be reduced to the extent that a sufficient contact resistance can be obtained comprehensively. The vehicle can run smoothly, and wear of the current collector can be suppressed to improve durability.
In addition, since the number of current collectors that are always in contact with the minimum number of current collectors is increased and sufficient contact is obtained, the cleaning period of the power supply plate can be extended and maintenance can be simplified.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a game device to which a power supply device for a moving object according to the present invention is applied.
FIG. 2 is a side view of a moving body provided with a power supply device according to the present invention.
3A is a cross-sectional view illustrating an example of a laminated structure of a power supply plate, and FIG. 3B is a cross-sectional view along AA ′.
FIG. 4 is a side view showing the structure of the current collector.
FIG. 5 is a diagram for explaining a contact state between a band electrode of a power supply plate and a current collector.
FIG. 6 is a diagram for explaining a method for deriving an equation for determining the number of current collectors that contact at least a predetermined number with the minimum number of current collectors required.
FIG. 7 is a diagram for explaining conditions when current collectors are arranged at vertices and center points of a hexagon to a non-pentagon.
FIG. 8 is a diagram showing a connection structure between a current collector and a moving body electrode terminal.
[Explanation of symbols]
1: Game console
2 ... Model body
3. Terminal
4: Operation panel
5 ... Coin slot
6 ... Coin payout exit
7. Monitor
8… Game field
9 ... current collector
10 ...
11 Power supply plate
12, 13, 18… Independent wheels
14, 15, 19 ... casters
16 ... Parallel link
17 ... Steering and driving motor
20 ... Transmitter
21 ... Position transmission board
22 ... reinforcement plate
23… Runway
24 ... Reinforcing material
25 ... magnet
26 ... Torsion spring
30 ... Anode distribution body
31 ... Cathode power distribution
32 ... Through-hole
33 ... Strip electrode (anode)
34 ... Cathode terminal electrode
35 ... Anode terminal electrode
36 ... Strip-shaped electrode (cathode)
37 ... Insulating plate
38 Conductor
40 ... current collector support
41 ... compression spring
43… Diode
44… moving body
Claims (1)
前記給電板は、絶縁板と導電層を交互に積層して構成し、少なくとも前記導電層を表面層も含めて3層以上にし、
表面層の導電層の少なくとも1つは、一定の間隔を隔てて平行に繰り返し配置した帯状電極とし、他の導電層の少なくとも1つは陽極配電体、さらに他の導電層の少なくとも1つは陰極配電体として電源に接続し、
前記帯状電極の相隣り合う電極は、交互に陰極と陽極になるように内壁に導電体を有する複数の貫通孔によって前記陽極配電体と陰極配電体に接続したことを特徴とする移動体への給電装置。In order to supply power to a moving body that moves freely in the field of a game machine, a power supply is formed on the surface layer of strip electrodes provided above or below the field and connected to a power supply so as to alternately become an anode and a cathode. Plate, mounted on each moving body, a large number of current collectors are pressed against the surface layer of the power supply plate and slid with the movement of the moving body, so that the band-shaped electrode of the power supply plate moves to the moving body. In a power supply device including a current collector for supplying power,
The power supply plate is configured by alternately laminating an insulating plate and a conductive layer, at least three conductive layers including a surface layer,
At least one of the conductive layers of the surface layer is a strip-like electrode repeatedly arranged in parallel at a predetermined interval, at least one of the other conductive layers is an anode power distribution body, and at least one of the other conductive layers is a cathode. Connect to the power supply as a power distribution body,
Adjacent electrodes of the strip-shaped electrode are connected to the anode power supply and the cathode power supply by a plurality of through-holes having a conductor on the inner wall so as to be alternately a cathode and an anode. Power supply device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20389595A JP3558417B2 (en) | 1995-07-18 | 1995-07-18 | Power supply device for moving objects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20389595A JP3558417B2 (en) | 1995-07-18 | 1995-07-18 | Power supply device for moving objects |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004125112A Division JP3810415B2 (en) | 2004-04-21 | 2004-04-21 | Power supply device for moving body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0928922A JPH0928922A (en) | 1997-02-04 |
JP3558417B2 true JP3558417B2 (en) | 2004-08-25 |
Family
ID=16481500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20389595A Expired - Lifetime JP3558417B2 (en) | 1995-07-18 | 1995-07-18 | Power supply device for moving objects |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3558417B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3547425A1 (en) * | 2018-03-30 | 2019-10-02 | Contemporary Amperex Technology Co., Limited | Current collector, electrode plate and electrochemical device |
EP3629408A1 (en) * | 2018-09-30 | 2020-04-01 | Contemporary Amperex Technology Co., Limited | Current collector, electrode plate and electrochemical device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7235013B2 (en) | 2000-12-07 | 2007-06-26 | Konami Corporation | Game machine using self-propelled members |
JP3591771B2 (en) | 2001-01-10 | 2004-11-24 | コナミ株式会社 | Race game machine |
ITTO20060610A1 (en) * | 2006-08-17 | 2008-02-18 | Sequoia Automation Srl | ENERGY BIBERONAGE SYSTEM WITH A QUICK RELEASE OF AN ELECTRIC TRACTION MEDIUM, MADE OF EVERY STOP FROM THE VEHICLE BY MEANS OF A DIRECTLY AND AUTOMATICALLY CONNECTED CONNECTION |
-
1995
- 1995-07-18 JP JP20389595A patent/JP3558417B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3547425A1 (en) * | 2018-03-30 | 2019-10-02 | Contemporary Amperex Technology Co., Limited | Current collector, electrode plate and electrochemical device |
EP3629408A1 (en) * | 2018-09-30 | 2020-04-01 | Contemporary Amperex Technology Co., Limited | Current collector, electrode plate and electrochemical device |
Also Published As
Publication number | Publication date |
---|---|
JPH0928922A (en) | 1997-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3558417B2 (en) | Power supply device for moving objects | |
CN103246286A (en) | Arrangement of area wire for unmanned autonomous operating vehicle and control apparatus of the same | |
US7235013B2 (en) | Game machine using self-propelled members | |
US6751048B2 (en) | Power rail distribution system and method for an automated robotic device in a data storage system | |
CN110901426B (en) | Charging device, unmanned aerial vehicle, charging panel and unmanned aerial vehicle charging system | |
JP3810415B2 (en) | Power supply device for moving body | |
US6791788B2 (en) | Segmented power strip for an automated robotic device and method for joining same | |
CN111129061B (en) | Display panel, maintenance method thereof and display device | |
US6840837B2 (en) | Racing game machine | |
US12074505B2 (en) | Systems, apparatuses, and methods for active end-turn cooling for an electric motor with four-bar linkages | |
JP3633986B2 (en) | Position detection device for moving body | |
JP2006174548A (en) | Collector wheel for cordless power transmission | |
US5452199A (en) | Multifunction machine module | |
EP3921051B1 (en) | Ride system with dynamic ride vehicle configurations | |
US6644212B2 (en) | Model vehicles | |
JP2669822B2 (en) | Work route determination device for work vehicles | |
CN1478670A (en) | Strip and block type power suplly network | |
JP3602451B2 (en) | Horse racing game machine with self-propelled body | |
JP2008054438A (en) | Floor power supply system | |
JP2002306833A (en) | Game machine using self-traveling body | |
KR20020033299A (en) | robot power supply apparatus for robot soccer gaming apparatus | |
JP3294078B2 (en) | Multi-needle recording device | |
JP2002334777A (en) | El display device | |
JP4193976B2 (en) | Truck and system for supplying power to electrical equipment operating wirelessly | |
KR200268982Y1 (en) | Track for supplying electric power to radio controlled apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040518 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100528 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110528 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120528 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120528 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120528 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140528 Year of fee payment: 10 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |