JP2669822B2 - Work route determination device for work vehicles - Google Patents

Work route determination device for work vehicles

Info

Publication number
JP2669822B2
JP2669822B2 JP62122329A JP12232987A JP2669822B2 JP 2669822 B2 JP2669822 B2 JP 2669822B2 JP 62122329 A JP62122329 A JP 62122329A JP 12232987 A JP12232987 A JP 12232987A JP 2669822 B2 JP2669822 B2 JP 2669822B2
Authority
JP
Japan
Prior art keywords
work
sub
route
area
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62122329A
Other languages
Japanese (ja)
Other versions
JPS63286910A (en
Inventor
直人 東修
悦男 硲口
大造 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62122329A priority Critical patent/JP2669822B2/en
Publication of JPS63286910A publication Critical patent/JPS63286910A/en
Application granted granted Critical
Publication of JP2669822B2 publication Critical patent/JP2669822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は作業領域のデータに基づいて自動的に作業車
の作業経路を決定する作業車の作業経路決定装置に関す
る。 ロ)従来の技術 近年、掃除ロボット等のようにコンセントから給電を
受けながら所定の作業領域内を自走しながら掃除等の作
業を行うものがある。このような作業車は例えば特願昭
61−108070号等に示されている。ところで、このような
作業車の作業方式としてはオペレータが走行経路をプロ
グラムするティーチングによる方式や、作業領域間を自
ら有する外界認識手段を用いてランダムに走行し、作業
が完了する方式が中心であった。 ハ)発明が解決しようとする問題点 ところで、このようなティーチングによる作業方式で
は作業領域の形状が変化すると、使用者がその度に作業
車に走行経路を教え込まなければならず汎用性が悪い。
一方、ランダム走行による方式では作業を重複して行う
危険性があり、作業時間がかかると云う問題があった。 ニ)問題点を解決するための手段 本発明は、給電コードが、障害物のある作業領域内に
設けられたコンセントに接続され、該給電コードからの
給電によって自走しながら作業を行う作業車の経路を決
定する作業車の作業経路決定装置において、作業領域内
の障害物及びコンセントの位置情報を作業領域データと
して検出する作業領域検出手段と、作業領域データに応
じて、作業領域を複数のサブ領域に分割する分割手段
と、作業時に、給電コードが障害物の角に引っかかる点
が最も少なくなるように、複数のサブ領域の作業順序を
決定する作業順序決定手段と、各サブ領域間の移動距離
が最小となるような各サブ領域の作業開始点及び作業終
了点を決定する始点終点決定手段と、作業開始点及び作
業終了点に基づいて各サブ領域内での作業車の作業経路
を決定するサブ経路決定手段と、を備えていることを特
徴とする。 (ホ)作用 本発明によれば、作業車内の障害物及びコンセントの
位置情報に応じて効率的な作業経路の決定が成され得
る。また、給電コードが障害物の角に引っかかる箇所が
最も少なくなる作業順序が決定されるので、作業時の給
電コード長の制御が容易となる。更に、各サブ領域の作
業終了点から次のサブ領域の作業開始点までの距離が最
小となるように決定された各サブ領域の作業開始始点及
び作業終了点に基づいて、各サブ領域毎の作業経路が決
められるので、作業車のターン数及び走行経路が最小と
なる。 ヘ)実施例 第1図は本発明作業経路決定装置のブロック図であっ
て、(1)は作業車の作業(例えば清掃作業)すべき作
業領域の形状を、例えば第2図のように障害物(I)
(II)のある作業領域ではP0,P1,P2,P3,P4の座標点
及びコンセントKの座標点を作業領域データとして検出
する作業領域検出手段であって、具体的には作業車の走
行距離や方向を検知する距離検知器や方位検知器、さら
には障害物の検知を行う音波センサ等から成る。(2)
は作業領域データ内の中央に配置された障害物(I)の
障害物データに応じて例えば第3図のように作業領域を
複数の長方形の探索領域(A)(B)…(H)に分割す
るとともに第4図のようなその連結状態(ネットワーク
状態)を作成するネットワーク作成手段、(3)はこの
ネットワーク生成手段(2)で生成されたネットワーク
に基き、連接する探索領域(A)(B)…(H)を第5
図に示すように適当に組合わせたサブ領域(ADF)…に
よる作業領域の分割の分割方法(イ)(ロ)…を選出す
る分割方法選出手段であって、サブ領域として、長方形
領域となるものが選ばれる。(4)は上記分割方法選出
手段(3)で選出された分割方法(イ)(ロ)…内、構
成サブ領域の数が最も少いものをピックアップするピッ
クアップ手段、(5)はこのピックアップ手段(4)で
ピックアップされた各分割方法において給電コード長の
制御が困難にならないよう各サブ領域の作業車順序を決
める作業領域決定手段であって、具体的には作業時、給
電コードが障害物(I)の角に引っかかる点(固定点)
が最も少くなるよう作業(清掃)順序が決められる。
(6)は夫々の分割方向において各サブ領域の作業(清
掃)終了点から次のサブ領域の作業(清掃)開始点まで
の距離が最小となるよう作業開始点及び作業終了点を決
定する始点、終点決定手段、(7)はこの始点終点決定
手段(6)で決定された各サブ領域の作業開始点、終了
点に基いて各サブ領域毎に作業経路を決定するサブ経路
決定手段であり、作業車のターン数及び走行経路が最小
になるよう決められる。(8)は、このようにして決ま
った各分割方法における作業経路を作業車が走るのに要
する時間を計算し、その時間が最小のものを選び出す作
業経路選択手段を示し、こうして選択された作業経路は
実際に作業車が走行する経路としてセットされる。 このような作業経路決定装置が登載された作業車とし
ては前述した特願昭61−108070号のような給電コードで
の給電によって作業が行なわれるものが使われる。こう
した作業車において、作業経路を決定するには、作業領
域検出手段(1)で作業領域の形状を検出することから
始まる。即ち、作業車が作業車自身に内蔵されている蓄
電池を駆動電源として作業領域を周回しながら距離検知
器や方位検知器や音波センサにより、第2図のような長
方形の作業領域において作業領域を示す座標P0,P4、コ
ンセントを示す座標k、障害物(I)(II)を示す座標
P1,P2,P3を検出する。このような作業領域の検出方法
は例えば特願昭61−304432号に示されている。ネットワ
ーク作成手段(2)はこうして検出された作業領域デー
タの内、作業領域中央に配置された障害物(I)のデー
タに基き、作業領域を第3図のような長方形の複数の探
索領域(A)(B)…(H)に分割し、第4図のような
これ等の探索領域(A)(B)…(H)の連結状態(ネ
ットワーク状態)を保持する。分割方法選出手段(3)
は上記のように生成された探索領域(A)(B)…
(H)に基いて、これ等の探索領域(A)(B)…
(H)を適当に組み合わせて成る長方形のサブ領域
(A)(B)…(H)(AB)(AD)…を形成し、これ等
のサブ領域の組合わせで作業領域を法わす表わし方、即
ち作業領域のサブ領域による分割方法を第5図のように
選び出す。このようにして選び出された分割方法(イ)
(ロ)…の内、構成サブ領域数の最も少い最大分割法が
ピックアップ手段(4)でピックアップされる。この実
施例のように中央に障害物が1つある場合は、サブ領域
の数が最も少い最大分割方法は16種類あり、そのときの
サブ領域の数は4つである。然し乍ら、作業能率の点か
ら作業開始をコンセントKのある面のコーナ、即ち、
(A)又は(C)のコーナから開始し、(B)を含むサ
ブ領域を2番目に作業する必要があり、この制限を上記
ピックアップ手段(4)に加えることで第6図のような
11種類の最大分割方法がピックアップされる。 このようにして、ピックアップされた各最大分割方法
において、作業順序決定手段(5)は給電コードが引っ
かかる点が最も少くなるような順で作業領域内のサブ領
域の作業順序を決める。即ち例えば{(ADF)(BC)(E
H)(G)}と云う最大分割方法において第7図のよう
なの順で作業を行うと、障害物(I)の3つの
コーナ(R1,R2,R3)に同時に給電コードが引っかかる
場合があり、給電コードの長さ制御が難かしくなる。こ
れに対し、第8図のようなの順序で各サブ領域
の作業を行うと最大でも2つのコーナ(R1,R2)にしか
引っかからず、第7図の場合より給電コード長の制御が
容易になる。従って、第8図のような作業順序が選ばれ
る。このような作業順序は作業領域の各最大分割方法に
おいて、夫々一意的に決定される。こうして作業順序が
決められると、始点終点決定手段(6)は各サブ領域の
作業終了点と作業開始点間の移動距離が最小となるよ
う、各々のサブ領域の作業開始点(Si)及び作業終了点
(Ei)を決める(i=1,2,3,4)。具体的には、第9図
のように第j番目の作業終了点(Ej)と第(j+1)番
目の作業開始点(Sj+1)が離れているもの(j=1,2,
3)は省かれ、第10図のように終了点(Ej)と開始点(S
j+1)が近接するよう決定される。このような作業開始
点、作業終了点の決定も各最大分割方法毎に行なわれ
る。 その後、サブ経路決定手段(7)は各サブ領域の作業
開始点(Si)及び作業終了点(Ei)の情報を得て各サブ
領域における作業方向及び作業巾を決める。第11図、第
12図のように作業開始点(Si)と作業終了点(Ei)が対
角にない場合作業車の作業方向は一意的に決められる。
一方、作業開始点(Si)と作業終了点(Ei)が対角に存
在する場合は第13図のように作業方向は長手方向に採る
ようにする。これは作業車の走行開始から走行停止まで
の速度特性が第14図のように加速及び減速区間を有した
ものになるとともに、方向転換するときには必ず一旦停
止をする必要があり、方向転換が少い方が作業時間が短
かくなるからである。そして作業方向が決まると作業幅
を決める。これは作業車が清掃作業を行うものであれば
吸入口の巾が基準となる。即ち作業巾が吸入口の巾を超
えない範囲で均等な作業巾で作業が行える最大の作業巾
が選ばれる。こうすることにより重複して清掃される部
分はサブ領域全体に分布することになり、作業ムラがな
くなる。 このようにして、例えば第15図のように、各最大分割
方法に対して作業経路を決定した後、作業経路選択手段
(8)は夫々の作業経路を作業車が走行するのに要する
時間を計算し最も時間の少いものを選び出し実際に作業
車が走行する経路としてセットされる。例えば、作業車
の走行速度、作業車に取り付けられた掃除機の吸引巾、
作業領域、コンセント位置、障害物(I)(II)の位置
を第16図のようにした場合、各分割方法においてかかる
時間は第6図のようになり{(AB)(CEH)(DF)
(G)}と云う分割が最も少い時間になる。このように
して作業経路が決まると、作業車はコンセント位置まで
移動して給電プラグを接続し、外部から給電を受けなが
ら上記経路に沿って、作業(清掃)を行う。 尚、本願において、各サブ領域内の作業経路の決定に
際して、作業開始点、作業終了点が決められたもに対し
て作業経路を決めるものを示したが、一般的に長方形形
状の作業領域で作業開始点のみを定めて、最も作業時間
を短く作業を行うことが考えられる。この作業経路の決
定における流れ図を第17図に示す。即ち、この流れは最
初長方形の作業領域を認識した後、長方形の作業領域に
対し、縦方向に作業を行うのか横方向に作業を行うのか
を決め、その後、作業終了点及び作業巾の決定を行っ
て、作業経路が決定される。 以下、この作業経路の決定方法について詳述する。こ
こで対象となる作業は掃除とし、移動ロボットは全方向
移動機能を持ち、第14図に示す如く減速パターンに従い
走行するものとする。つまり、ロボットは走行距離に応
じて低速期間(図中t2−t1間)を変化させる。 まずロボットは与えられた長方形状の作業領域データ
に基づき作業方向を決定する。決定方法を第18図、第19
図を用いて説明する。第18図に示された作業領域が与え
られた時、作業車に設けられた作業経路決定装置は作業
領域の各辺の長さ(L,W)及び作業車自身の大きさ(φ
Rの円筒形とする。)から作業時間が短くなるように作
業方向を決定する。ここで計算を簡略化するために、L
=mR,W=nR(m,nは自然数かつm>nとする。)とし、
図示された長辺L側に平行に移動して作業を行う経路に
て作業を行った時の作業時間を算出する。 全走行距離は辺L方向の走行距離(Σ(III)の走行
距離)と辺W方向の走行距離(Σ(IV)の走行距離)と
の和で表わされる。 (Σ(III)の走行距離)=n(m−1)R… (Σ(IV)の走行距離)=(n−1)R… 次に,各々の経路を走行するのに要する時間は、
R=2Vmax2/aとすると (に要する時間)=n(2m−1)・Vmax/a…′ (に要する時間)=3(n−1)・Vmax/a…′ つまり全作業時間は(2mn+2n−3)・Vmax/a…″
となる。 逆に短辺L側に平行に移動して作業を行う場合は、全
作業時間=(2mn+2m−3)・Vmax/a…″となり、
″>″である。(∵m>n)つまる長辺に沿って作
業を行い、短辺側で作業幅だけ移動する方が作業時間が
短かくなる。また全方向移動機能を持たない作業車に於
いては(に要する時間)にターンに要する時間が加わ
る。つまる全作業車時間は″及び″においてはπ=
3と近似した時、 =(2mn+10n−11)・Vmax/a =(2mn+10m−11)・Vmax/a となり、との差異は″と″の差異以上のも
のがある。ここで第19図(a)(b)においてL=8R,W
=4R,Vmax=30cm/s,a=15cm/s2とした時の作業時間は (a):138(S) (b):154(S) (全方向移動機能あり) (a):186(S) (b):266(S) (全方向移動機能なし) となる。2辺L,W(L>W)の比(L/W)が大きい程、作
業時間の差は大きくなる。(尚、第 図巾Sは作業開始
地点、Eは終了地点を表す。)上記方法により作業方向
が決定された後、作業終了地点と作業幅を決定する。第
20図(a),(b)は同じ作業領域に対して作業方向は
同じとし、作業幅が異なる2種類の作業経路である。両
図とも作業開始地点Sに対して、作業終了地点Eが定ま
っている時、(a)の作業幅決定方式は作業幅として考
えられる最大値Rで作業を行い、最後だけ作業幅をL
1(<R)とする方法で(b)の決定方式は、作業幅L2
(L2<R)と均等に決定する方式である。(a)の場
合、第21図(a)に示す如く、Vの領域は2度、VIの領
域は3度作業が行われ、作業場所により作業のムラがあ
るが(b)の場合、2度作業を行う領域(第21図(b)
中V)が作業領域全体にわっているため、平均化された
作業が行えているため、ムラがないと思われる。そこで
作業が第21図(b)のように均等な作業幅にて行うもの
とする。 ト)発明の効果 以上述べた通り本発明によれば、作業領域内の障害物
及びコンセントの位置情報に応じて効率的な作業経路の
決定が成されるとともに、給電コードが障害物の角に引
っかかる箇所が最も少なくなる作業順序が決定されるの
で、作業時の給電コード長の制御が容易となる。 また、各サブ領域の作業終了点から次のサブ領域の作
業開始点までの距離が最小となるように決定された各サ
ブ領域の作業開始点及び作業終了点に基づいて、各サブ
領域毎の作業経路が決められるので、作業車のターン数
及び走行経路が最小となり、作業車のより一層効率的な
作業が可能となる。
TECHNICAL FIELD The present invention relates to a work route determination device for a work vehicle that automatically determines the work route of the work vehicle based on data of a work area. (B) Conventional Technology In recent years, there is a cleaning robot or the like that performs work such as cleaning while self-propelled in a predetermined work area while receiving power from an outlet. Such a working vehicle is, for example,
61-108070. By the way, as a working method of such a work vehicle, a method based on teaching in which an operator programs a traveling route, or a method in which the work is completed by randomly traveling by using an external world recognition means having a work area between them is mainly. It was C) Problems to be solved by the invention By the way, in such a work method by teaching, when the shape of the work area changes, the user has to teach the traveling route to the work vehicle each time, and the versatility is poor. .
On the other hand, the random traveling method has a problem that there is a risk that the work is duplicated and that the work takes a long time. D) Means for Solving the Problems The present invention relates to a work vehicle in which a power supply cord is connected to an outlet provided in a work area with an obstacle, and works by self-propelled by power supply from the power supply cord. A work route determination device for a work vehicle that determines a route of a work area, a work area detection unit that detects position information of obstacles and outlets in the work area as work area data, and a plurality of work areas according to the work area data. Dividing means for dividing into sub-regions, work order determining means for determining the work order of a plurality of sub-regions, and a work order determining means for determining the work order of the plurality of sub-regions so as to minimize the points at which the feeding cords are caught on the corners of the obstacle during work. Starting point / end point determining means for determining a work start point and a work end point of each sub-region that minimizes the movement distance, and a work vehicle in each sub-region based on the work start point and the work end point And a sub-route determining means for determining the work route of. (E) Operation According to the present invention, an efficient work route can be determined according to the position information of the obstacle and the outlet in the work vehicle. Further, since the work order in which the place where the power supply cord is caught on the corner of the obstacle is minimized is determined, it is easy to control the length of the power supply cord during work. Further, based on the work start and end points of each sub-region determined so that the distance from the work end point of each sub-region to the work start point of the next sub-region is minimized, Since the work route is determined, the number of turns of the work vehicle and the travel route are minimized. F) Embodiment FIG. 1 is a block diagram of the work route determination device of the present invention, and (1) shows the shape of a work area where work (for example, cleaning work) of a work vehicle is to be performed, as shown in FIG. Thing (I)
In a certain work area (II), work area detection means for detecting coordinate points of P 0 , P 1 , P 2 , P 3 , and P 4 and a coordinate point of the outlet K as work area data. It is composed of a distance detector and a direction detector that detect the traveling distance and direction of the work vehicle, and a sound wave sensor that detects an obstacle. (2)
Represents the work area into a plurality of rectangular search areas (A), (B), ... (H) according to the obstacle data of the obstacle (I) arranged in the center of the work area data, as shown in FIG. The network creating means for dividing and creating the connection state (network state) as shown in FIG. 4, (3) is based on the network created by the network creating means (2), and is connected to the search area (A) ( B) ... (H) is the fifth
As shown in the figure, it is a division method selecting means for selecting a division method (a), (b), etc. for dividing a work area by appropriately combining sub areas (ADF). Things are selected. (4) is a pickup means for picking up the one having the smallest number of constituent sub-regions among the division methods (a), (b) selected by the division method selection means (3), and (5) is this pickup means. Work area determining means for determining the order of work vehicles in each sub area so that control of the power supply cord length in each of the division methods picked up in (4) is not difficult. Specifically, the power supply cord is an obstacle when working. Point (fixed point) that gets caught in the corner of (I)
The work (cleaning) order is determined so that
(6) is a start point for determining the work start point and the work end point so that the distance from the work (cleaning) end point of each sub-region to the work (cleaning) start point of the next sub-region in each division direction is minimized. The end point determining means (7) is a sub route determining means for determining a work route for each sub area based on the work starting point and end point of each sub area determined by the start point end point determining means (6). , The number of turns of the work vehicle and the travel route are determined to be the minimum. (8) shows the work route selecting means for calculating the time required for the work vehicle to travel the work route in each of the thus determined division methods and selecting the work route with the minimum time. The route is set as a route on which the work vehicle actually travels. As a work vehicle on which such a work route determination device is mounted, there is used a work vehicle which is operated by power supply using a power supply cord as disclosed in Japanese Patent Application No. 61-108070. In such a work vehicle, the work route is determined by detecting the shape of the work region by the work region detecting means (1). That is, while the work vehicle orbits the work area by using the storage battery built in the work vehicle as a driving power source, the work area is set in the rectangular work area as shown in FIG. 2 by the distance detector, the direction detector and the sound wave sensor. Coordinates P 0 and P 4 indicating, coordinates k indicating the outlet, coordinates indicating obstacles (I) and (II)
Detecting the P 1, P 2, P 3 . A method for detecting such a work area is disclosed in, for example, Japanese Patent Application No. 61-304432. The network creating means (2), based on the data of the obstacle (I) arranged in the center of the work area among the work area data detected in this way, defines the work area as a plurality of rectangular search areas as shown in FIG. A), (B), ... (H) are divided, and the connection state (network state) of these search areas (A), (B), ... (H) as shown in FIG. 4 is retained. Division method selection means (3)
Is the search area (A) (B) ... Generated as described above.
Based on (H), these search areas (A) (B) ...
Forming rectangular sub-regions (A) (B) ... (H) (AB) (AD) ... by appropriately combining (H), and expressing the working area by combining these sub-regions That is, a method of dividing the work area by sub-areas is selected as shown in FIG. Division method selected in this way (b)
(B) ... The maximum division method having the smallest number of constituent sub-regions is picked up by the pickup means (4). When there is one obstacle in the center as in this embodiment, there are 16 types of maximum division methods with the smallest number of sub-regions, and the number of sub-regions at that time is four. However, from the viewpoint of work efficiency, the work should be started at the corner of the surface with the outlet K, that is,
Starting from the corner of (A) or (C), it is necessary to work on the sub-region including (B) secondly, and by adding this restriction to the pickup means (4) as shown in FIG.
Eleven maximum division methods are picked up. In this way, in each of the picked-up maximum division methods, the work order determination means (5) determines the work order of the sub areas in the work area in the order in which the points at which the feeding cord is caught are the smallest. That is, for example, {(ADF) (BC) (E
When the work is performed in the order as shown in Fig. 7 in the maximum division method called (H) (G)}, the power supply cord is caught at the three corners (R 1 , R 2 , R 3 ) of the obstacle (I) at the same time. In some cases, it becomes difficult to control the length of the power supply cord. On the other hand, when the work of each sub-region is performed in the order as shown in Fig. 8, only two corners (R 1 , R 2 ) are caught at the maximum, making it easier to control the feed cord length than in the case of Fig. 7. become. Therefore, the work order as shown in FIG. 8 is selected. Such work order is uniquely determined in each maximum division method of the work area. When the work order is determined in this way, the start point end point determining means (6) sets the work start point (Si) and the work of each sub-region so that the movement distance between the work end point and the work start point of each sub-region is minimized. Determine the end point (Ei) (i = 1,2,3,4). Specifically, as shown in FIG. 9, the j-th work end point (Ej) and the (j + 1) -th work start point (Sj + 1 ) are separated (j = 1, 2,
3) is omitted, and the end point (Ej) and the start point (S
j +1 ) are determined to be close. The work starting point and the work ending point are also determined for each maximum division method. Thereafter, the sub-path determining means (7) obtains the information of the work start point (Si) and the work end point (Ei) of each sub-area and determines the work direction and the work width in each sub-area. FIG. 11, FIG.
When the work start point (Si) and the work end point (Ei) are not diagonal as shown in FIG. 12, the work direction of the work vehicle is uniquely determined.
On the other hand, when the work start point (Si) and the work end point (Ei) exist diagonally, the work direction is taken in the longitudinal direction as shown in FIG. This is because the speed characteristic from the start of travel of the work vehicle to the stop of travel has acceleration and deceleration sections as shown in Fig. 14, and it is necessary to stop once when changing the direction, so there is little change in direction. This is because the work time will be shorter if you do not. When the working direction is determined, the working width is determined. This is based on the width of the suction port if the work vehicle carries out cleaning work. That is, the maximum working width that allows the work to be performed with a uniform working width within a range where the working width does not exceed the width of the suction port is selected. By doing so, the portions that are redundantly cleaned will be distributed over the entire sub-region, and the work unevenness will be eliminated. In this way, for example, as shown in FIG. 15, after determining the work route for each maximum division method, the work route selection means (8) determines the time required for the work vehicle to travel on each work route. It is calculated and the one with the shortest time is selected and set as the route on which the work vehicle actually travels. For example, the traveling speed of the work vehicle, the suction width of the vacuum cleaner attached to the work vehicle,
When the working area, outlet position, and obstacles (I) and (II) are positioned as shown in Fig. 16, the time required for each division method is as shown in Fig. 6. {(AB) (CEH) (DF)
The division called (G)} becomes the shortest time. When the work route is determined in this way, the work vehicle moves to the outlet position, connects the power supply plug, and performs work (cleaning) along the above route while receiving power from the outside. In the present application, when determining a work route in each sub-region, the work start point and the work end point are determined, but the work route is determined. However, in general, a work region having a rectangular shape is used. It is possible to set the work starting point only and to perform the work in the shortest time. FIG. 17 shows a flowchart for determining this work route. That is, this flow first recognizes a rectangular work area, then decides whether to perform the work in the vertical direction or the horizontal direction with respect to the rectangular work area, and then decides the work end point and the work width. The work route is determined. Hereinafter, the method of determining the work route will be described in detail. Here, the target work is cleaning, and the mobile robot has an omnidirectional movement function and runs according to a deceleration pattern as shown in FIG. That is, the robot changes the low speed period (between t 2 and t 1 in the figure) according to the traveling distance. First, the robot determines the work direction based on the given rectangular work area data. Figure 18 and 19
This will be described with reference to the drawings. When the work area shown in FIG. 18 is given, the work route determination device provided in the work vehicle uses the length (L, W) of each side of the work area and the size of the work vehicle itself (φ
The cylindrical shape of R. ) Determines the work direction so that the work time is shortened. Here, to simplify the calculation, L
= MR, W = nR (m and n are natural numbers and m> n),
The work time when the work is performed on the path for performing the work by moving parallel to the long side L shown in the figure is calculated. The total traveling distance is represented by the sum of the traveling distance in the side L direction (the traveling distance of Σ (III)) and the traveling distance in the side W direction (the traveling distance of Σ (IV)). (Σ (III) mileage) = n (m-1) R ... (Σ (IV) mileage) = (n-1) R ... Next, the time required to travel each route is
When R = 2Vmax 2 / a (time required) = n (2m-1) .Vmax / a ... '(time required) = 3 (n-1) .Vmax / a ...' In other words, the total work time is ( 2mn + 2n-3) ・ Vmax / a… ″
Becomes On the other hand, when the work is performed while moving in parallel to the short side L side, the total work time = (2mn + 2m−3) · Vmax / a.
">". (∵m> n) The work time is shorter when the work is performed along the long side and moves by the work width on the short side. In the case of a work vehicle having no omnidirectional movement function, the time required for a turn is added to (the time required). The total work vehicle time is π for ″ and ″.
When it is approximated as 3, it becomes = (2mn + 10n-11) .Vmax / a = (2mn + 10m-11) .Vmax / a, and there is more than the difference between "and". Here, in FIGS. 19A and 19B, L = 8R, W
= 4R, Vmax = 30cm / s, a = 15cm / s 2 working time is (a): 138 (S) (b): 154 (S) (with omnidirectional movement function) (a): 186 (S) (b): 266 (S) (No omnidirectional movement function). The larger the ratio (L / W) of the two sides L, W (L> W), the larger the difference in working time. (The width S in the figure represents the work start point and E represents the end point.) After the work direction is determined by the above method, the work end point and the work width are determined. No.
FIGS. 20 (a) and (b) show two types of work routes having the same work area and the same work direction and different work widths. In both figures, when the work end point E is determined with respect to the work start point S, the work width determination method of (a) performs the work at the maximum value R that can be considered as the work width, and only sets the work width to L at the end.
1 (<R) is used as the determination method of (b), working width L 2
(L 2 <R). In the case of (a), as shown in FIG. 21 (a), the work in the V area is performed twice and the work in the VI area is performed three times. Area where the work is performed (Fig. 21 (b)
Since the middle V) covers the entire work area, an averaged work can be performed, so it seems that there is no unevenness. Therefore, it is assumed that the work is performed with a uniform work width as shown in Fig. 21 (b). G) Effects of the Invention As described above, according to the present invention, an efficient work route is determined in accordance with the position information of the obstacle and the outlet in the work area, and the power supply cord is positioned at the corner of the obstacle. Since the work order in which the places to be caught is minimized is determined, it is easy to control the power supply cord length during the work. Also, based on the work start point and work end point of each sub-area determined so that the distance from the work end point of each sub-area to the work start point of the next sub-area is minimized, Since the work route is determined, the number of turns and the travel route of the work vehicle are minimized, and the work of the work vehicle can be performed more efficiently.

【図面の簡単な説明】 第1図は本発明作業経路決定装置のブロック図、第2図
は作業領域の形態を示す模式図、第3図は作業領域をサ
ブ領域に分割したときの模式図、第4図は各サブ領域の
結合状態を示す模式図、第5図は作業領域の分割方法を
示す表図、第6図は選択された最大分割方法を示す表
図、第7図、第8図はサブ領域の作業順序を示す模式
図、第9図、第10図は各作業領域の作業開始点、作業終
了点の決め方を示す模式図、第11図乃至第13図はサブ領
域内での作業車の作業経路を示す模式図、第14図は作業
車の走行特性を示す特性図、第15図は作業領域全体にお
ける作業車の作業経路の一例を示す模式図、第16図は作
業車の性能特性と作業領域の形態を表わす表図、第17図
は長方形状の作業領域の作業経路を決定するときの流れ
図、第18図、第19図(a)(b)、第20図(a)(b)
は長方形形状の作業領域の作業経路を示す模式図、第21
図(a)(b)は重複して作業をする箇所を示す作業領
域の模式図である。 (1)…作業領域検出手段、(2)…ネットワーク作成
手段、(3)…分割方法選出手段、(4)…ピックアッ
プ手段、(5)…作業順序決定手段、(6)…始点、終
点決定手段、(7)…サブ経路決定手段、(8)…作業
経路選択手段。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a work route determination device of the present invention, FIG. 2 is a schematic diagram showing the form of a work area, and FIG. 3 is a schematic diagram when the work area is divided into sub areas. , FIG. 4 is a schematic diagram showing a connection state of each sub-region, FIG. 5 is a table showing a method of dividing a work area, FIG. 6 is a table showing a selected maximum dividing method, FIG. Fig. 8 is a schematic diagram showing the work order of the sub-regions, Fig. 9 and Fig. 10 are schematic diagrams showing how to determine the work start point and work end point of each work region, and Figs. 11 to 13 are within the sub-region FIG. 14 is a schematic diagram showing the work route of the work vehicle in FIG. 14, FIG. 14 is a characteristic diagram showing the traveling characteristics of the work vehicle, FIG. 15 is a schematic diagram showing an example of the work route of the work vehicle in the entire work area, and FIG. Table showing the performance characteristics of the work vehicle and the form of the work area, FIG. 17 is a flowchart when determining the work path of the rectangular work area, 18 diagrams, Fig. 19 (a) (b), Figure 20 (a) (b)
Is a schematic view showing a work path of a rectangular work area, No. 21
(A) and (b) are schematic views of a work area showing a portion where work is repeated. (1) ... Work area detection means, (2) ... Network creation means, (3) ... Division method selection means, (4) ... Pickup means, (5) ... Work sequence determination means, (6) ... Start point, end point determination Means, (7) ... Sub route determination means, (8) ... Work route selection means.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−121406(JP,A) 特開 昭62−32516(JP,A) 特開 昭62−19907(JP,A) 特開 昭62−19908(JP,A) 特開 昭62−19909(JP,A) 特開 昭60−79470(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-59-121406 (JP, A)                 JP 62-32516 (JP, A)                 JP 62-19907 (JP, A)                 JP 62-19908 (JP, A)                 JP 62-19909 (JP, A)                 JP-A-60-79470 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.給電コードが、障害物のある作業領域内に設けられ
たコンセントに接続され、該給電コードからの給電によ
って自走しながら作業を行う作業車の経路を決定する作
業車の作業経路決定装置において、 作業領域内の障害物及びコンセントの位置情報を作業領
域データとして検出する作業領域検出手段と、 作業領域データに応じて、作業領域を複数のサブ領域に
分割する分割手段と、 作業時に、給電コードが障害物の角に引っかかる点が最
も少なくなるように、複数のサブ領域の作業順序を決定
する作業順序決定手段と、 各サブ領域間の移動距離が最小となるような各サブ領域
の作業開始点及び作業終了点を決定する始点終点決定手
段と、 作業開始点及び作業終了点に基づいて各サブ領域内での
作業車の作業経路を決定するサブ経路決定手段と、を備
えていることを特徴とする作業車の作業経路決定装置。
(57) [Claims] A power supply cord is connected to an outlet provided in a work area with an obstacle, and in a work route determination device for a work vehicle that determines a route of a work vehicle that performs work while self-propelled by power supply from the power supply cord, Work area detection means for detecting position information of obstacles and outlets in the work area as work area data, dividing means for dividing the work area into a plurality of sub areas according to the work area data, and a power supply cord at the time of work Work order deciding means for deciding the work order of a plurality of sub-regions so that the number of points that are caught on the corner of the obstacle is minimized, and work start of each sub-region that minimizes the movement distance between each sub-region Point and end point determining means for determining a point and a work end point, and sub route determining means for determining a work route of the work vehicle in each sub area based on the work start point and the work end point , Work vehicle of the working path determining apparatus characterized in that it comprises.
JP62122329A 1987-05-19 1987-05-19 Work route determination device for work vehicles Expired - Fee Related JP2669822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62122329A JP2669822B2 (en) 1987-05-19 1987-05-19 Work route determination device for work vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62122329A JP2669822B2 (en) 1987-05-19 1987-05-19 Work route determination device for work vehicles

Publications (2)

Publication Number Publication Date
JPS63286910A JPS63286910A (en) 1988-11-24
JP2669822B2 true JP2669822B2 (en) 1997-10-29

Family

ID=14833275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62122329A Expired - Fee Related JP2669822B2 (en) 1987-05-19 1987-05-19 Work route determination device for work vehicles

Country Status (1)

Country Link
JP (1) JP2669822B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102599862A (en) * 2012-03-26 2012-07-25 刘瑜 Dilemma identifying and solving method for automatic dust collector
JP2018196513A (en) * 2017-05-23 2018-12-13 東芝ライフスタイル株式会社 Vacuum cleaner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962775B2 (en) * 2017-10-24 2021-11-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co., Ltd Information processing equipment, aerial photography route generation method, program, and recording medium
JP7228380B2 (en) * 2018-12-17 2023-02-24 東芝ライフスタイル株式会社 autonomous vacuum cleaner
JP2023516818A (en) * 2020-05-11 2023-04-20 追▲べき▼創新科技(蘇州)有限公司 Cleaning route acquisition method, device, and storage medium for cleaning equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121406A (en) * 1982-12-27 1984-07-13 Honda Motor Co Ltd Controller of mobile robot
JPS6079470A (en) * 1983-10-07 1985-05-07 Hitachi Ltd Automatic generating method of connecting path in space layout plan
JPS6219907A (en) * 1985-07-17 1987-01-28 Fanuc Ltd Area processing method
JPS6219909A (en) * 1985-07-17 1987-01-28 Fanuc Ltd Area processing method
JPS6219908A (en) * 1985-07-17 1987-01-28 Fanuc Ltd Area processing method
JPS6232516A (en) * 1985-08-06 1987-02-12 Shinko Electric Co Ltd Optimum route searching method for moving robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102599862A (en) * 2012-03-26 2012-07-25 刘瑜 Dilemma identifying and solving method for automatic dust collector
CN102599862B (en) * 2012-03-26 2013-12-18 慈溪迈思特电子科技有限公司 Dilemma identifying and solving method for automatic dust collector
JP2018196513A (en) * 2017-05-23 2018-12-13 東芝ライフスタイル株式会社 Vacuum cleaner

Also Published As

Publication number Publication date
JPS63286910A (en) 1988-11-24

Similar Documents

Publication Publication Date Title
US11013385B2 (en) Automatic cleaning device and cleaning method
KR930000081B1 (en) Cleansing method of electric vacuum cleaner
EP0382693B1 (en) Autonomous vehicle for working on a surface and method of controlling same
JPH0546239A (en) Autonomously travelling robot
KR20060078162A (en) Method and apparatus for moving minimum movement cost path using grid map
JP2004326692A (en) Autonomous travelling robot
CN110650667B (en) Electric vacuum cleaner
JP2669822B2 (en) Work route determination device for work vehicles
JPH0546246A (en) Cleaning robot and its travelling method
JPH0614857A (en) Automtic cleaning method for cleaner
JPH05150827A (en) Guide system for unattended vehicle
CN113031584A (en) Autonomous travel system, autonomous travel method, and autonomous travel program
JPH0827651B2 (en) Work route determination device for work vehicles
JPH07111649B2 (en) Work route determination device for work vehicles
JP2004194984A (en) Self-propelled cleaner
JP2785305B2 (en) Self-propelled vacuum cleaner
CN116149314A (en) Robot full-coverage operation method and device and robot
JPH05207955A (en) Free-running cleaner
JPS63286909A (en) Working route determining device for working vehicle
JP2006172108A (en) Self-propelled vacuum cleaner
JP2004049778A (en) Self-propelled vacuum cleaner, and its program
JP3036863B2 (en) Traveling robot
JPH01106113A (en) Cleaning robot device
JPH0135361B2 (en)
JP7349624B2 (en) Autonomous vacuum cleaner, autonomous vacuum cleaner control method, and program

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees