JPH0827651B2 - Work route determination device for work vehicles - Google Patents

Work route determination device for work vehicles

Info

Publication number
JPH0827651B2
JPH0827651B2 JP62122330A JP12233087A JPH0827651B2 JP H0827651 B2 JPH0827651 B2 JP H0827651B2 JP 62122330 A JP62122330 A JP 62122330A JP 12233087 A JP12233087 A JP 12233087A JP H0827651 B2 JPH0827651 B2 JP H0827651B2
Authority
JP
Japan
Prior art keywords
work
sub
area
route
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62122330A
Other languages
Japanese (ja)
Other versions
JPS63286911A (en
Inventor
直人 東條
文夫 安富
大造 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP62122330A priority Critical patent/JPH0827651B2/en
Publication of JPS63286911A publication Critical patent/JPS63286911A/en
Publication of JPH0827651B2 publication Critical patent/JPH0827651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 イ) 産業上の利用分野 本発明は作業領域のデータに基づいて自動時に作業車
の作業経路を決定する作業車の作業経路決定装置に関す
る。
TECHNICAL FIELD The present invention relates to a work route determination device for a work vehicle that automatically determines the work route of the work vehicle based on work area data.

ロ) 従来の技術 近年、掃除ロボット等のようにコンセントから給電を
受けながら所定の作業領域内を自走しながら掃除等の作
業を行うものがある。このような作業車は例えば特願昭
61−108070号等に示されている。ところで、このような
作業車の作業方式としてはオペレータが走査経路をプロ
グラムするティーチングによる方式や、作業領域間を自
ら有する外界認識手段を用いてランダムに走行し、作業
が完了する方式が中心であった。
(B) Conventional Technology In recent years, there is a cleaning robot or the like that performs work such as cleaning while self-propelled in a predetermined work area while receiving power from an outlet. Such a working vehicle is, for example,
61-108070. By the way, as a work method of such a work vehicle, a method based on teaching in which an operator programs a scanning path, or a method in which work is completed by randomly traveling by using an external environment recognizing means having the work areas between them is the main. It was

ハ) 発明が解決しようとする問題点 ところで、このようなティーチングによる作業方式で
は作業領域の形状が変化すると、使用者がその度に作業
車に走行経路を教え込まなければならず汎用性が悪い。
一方、ランダム走行による方式では作業を重複して行っ
たり、あるいは作業を行わなかったりして、作業ムラが
生じると云う問題があった。
C) Problems to be solved by the invention By the way, in such a work method by teaching, when the shape of the work area changes, the user has to teach the traveling route to the work vehicle each time, and the versatility is poor. .
On the other hand, in the method of random traveling, there is a problem that work unevenness occurs due to duplicate work or no work.

ニ) 問題点を解決するための手段 本発明は、給電コードが、障害物のある作業領域内に
設けられたコンセントに接続され、該給電コードからの
給電によって自走しながら作業を行う作業車の経路を決
定する作業車の作業経路決定装置において、作業領域内
の障害物及びコンセントの位置情報を作業領域データと
して検出する作業領域検出手段と、作業領域データに応
じて、作業領域を複数のサブ領域に分割する分割手段
と、作業時に、給電コードが障害物の角に引っかかる点
か最も少なくなるように、複数のサブ領域の作業順序を
決定する作業順序決定手段と、各サブ領域内での作業車
の作業経路を決定するサブ経路決定手段と、を備えてい
ることを特徴とする。
D) Means for Solving the Problems The present invention relates to a work vehicle in which a power supply cord is connected to an outlet provided in a work area having an obstacle, and works while self-propelled by power supply from the power supply cord. In the work route determination device for the work vehicle that determines the route of the work area, a work area detection unit that detects the position information of the obstacle and the outlet in the work area as work area data, and a plurality of work areas are created according to the work area data. Dividing means for dividing into sub-regions, work order determining means for determining the work order of a plurality of sub-regions so that the power feeding cord is caught at the corner of the obstacle at the time of work, and the work order deciding means within each sub-region And a sub route determining means for determining a work route of the work vehicle.

(ホ) 作用 本発明によれば、作業領域内の障害物及びコンセント
の位置情報に応じて効率的な作業経路の決定が成され得
る。また、給電コードが障害物の角に引っかかる個所が
最も少なくなる作業順序が決定されるので、作業時の給
電コード長の制御が容易となる。
(E) Operation According to the present invention, an efficient work route can be determined according to the position information of the obstacle and the outlet in the work area. Further, since the work sequence in which the power supply cord is caught at the corner of the obstacle is minimized, the power supply cord length during the work can be easily controlled.

ヘ) 実施例 第1図は本発明作業経路決定装置のブロック図であっ
て、(1)は作業車の作業(例えば清掃作業)すべき作
業領域の形状を、例えば第2図のように障害物(I)
(II)のある作業領域ではP0,P1,P2,P3,P4の座標点及び
コンセントKの座標点を作業領域データとして検出する
作業領域検出手段であって、具体的には作業車の走行距
離や方向を検知する距離検知器や方位検知器、さらには
障害物の検知を行う音波センサ等から成る。(2)は作
業領域データ内の中央に配置された障害物(I)の障害
物データに応じて例えば第3図のように作業領域を複数
の長方形の探索領域(A)(B)…(H)に分割すると
ともに第4図のようなその連結状態(ネットワーク状
態)を作成するネットワーク作成手段、(3)はこのネ
ットワーク生成手段(2)で生成されたネットワークに
基き、連接する探索領域(A)(B)…(H)を第5図
に示すように適当に組合わせたサブ領域(ADF)…によ
る作業領域の分割の分割方法(イ)(ロ)…を選出する
分割方法選出手段であって、サブ領域として、長方形領
域となるものが選ばれる。(4)は上記分割方法選出手
段(3)で選出された分割方法(イ)(ロ)…内、構成
サブ領域の数が最も少いものをピックアップするピック
アップ手段、(5)はこのピックアップ手段(4)でピ
ックアップされた各分割方法において給電コード長の制
御が困難にならないよう各サブ領域の作業順序を決める
作業順序決定手段であって、具体的には作業時、給電コ
ードが障害物(I)の角に引っかかる点(固定点)が最
も少くなるよう作業(清掃)順序が決められる。(6)
は夫々の分割方法において各サブ領域の作業(清掃)終
了点から次のサブ領域の作業(清掃)開始点までの距離
が最小となるよう作業開始点及び作業終了点を決定する
始点、終点決定手段、(7)はこの始点終点決定手段
(6)で決定された各サブ領域の作業開始点、終了点に
基いて各サブ領域毎に作業経路を決定するサブ経路決定
手段であり、作業車のターン数及び走行経路が最小にな
るよう決められる。(8)は、このようにして決まった
各分割方法における作業経路を作業車が走るのに要する
時間を計算し、その時間が最小のものを選び出す作業経
路選択手段を示し、こうして選択された作業経路は実際
に作業車が走行する経路としてセットされる。
F) Embodiment FIG. 1 is a block diagram of a work route determining device of the present invention, in which (1) is a shape of a work area for work (for example, cleaning work) of a work vehicle, for example, as shown in FIG. Thing (I)
In a certain work area of (II), it is a work area detecting means for detecting the coordinate points of P 0 , P 1 , P 2 , P 3 , P 4 and the outlet K as work area data. It is composed of a distance detector and a direction detector that detect the traveling distance and direction of the work vehicle, and a sound wave sensor that detects an obstacle. (2) is a plurality of rectangular search areas (A), (B), ... (A) as shown in FIG. 3 according to the obstacle data of the obstacle (I) arranged at the center in the work area data. H) and a network creating means for creating the connection state (network state) as shown in FIG. 4, and (3) is a search area () which is connected based on the network created by the network creating means (2). A division method selecting means for selecting a division method (a), (b), etc. for dividing a work area by a sub-area (ADF), which is a combination of A, (B), ... (H), as shown in FIG. Then, a rectangular area is selected as the sub area. (4) is a pickup means for picking up the one having the smallest number of sub-regions among the division methods (a), (b) selected by the division method selection means (3), and (5) is the pickup means. It is a work sequence determining means for determining the work sequence of each sub-region so that the control of the power supply cord length in each division method picked up in (4) does not become difficult. Specifically, the power supply cord is an obstacle ( The order of work (cleaning) is determined so that the number of points (fixed points) caught on the corner of I) is minimized. (6)
Determines the work start point and work end point so that the distance from the work (cleaning) end point of each sub-region to the work (cleaning) start point of the next sub-region in each division method will be the minimum. Means, (7) is a sub-route determining means for determining a work route for each sub-region based on the work start point and end point of each sub-region determined by the start-point end-point determining means (6). The number of turns and the route of travel are determined to be the minimum. (8) shows the work route selecting means for calculating the time required for the work vehicle to travel the work route in each of the thus determined division methods and selecting the work route with the minimum time. The route is set as a route on which the work vehicle actually travels.

このような作業経路決定装置が登載された作業車とし
ては前述した特願昭61−108070号のような給電コードで
の給電によって作業が行なわれるものが使われる。こう
した作業車において、作業経路を決定するには、作業領
域検出手段(1)で作業領域の形状を検出することから
始まる。即ち、作業車が作業車自身に内蔵されている蓄
電池を駆動電源として作業領域を周回しながら距離検知
器や方位検知器や音波センサにより、第2図のような長
方形の作業領域において作業領域を示す座標P0,P4、コ
ンセントを示す座標k、障害物(I)(II)を示す座標
P1,P2,P3を検出する。このような作業領域の検出方法は
例えば特願昭61−304432号に示されている。ネットワー
ク作成手段(2)はこうして検出された作業領域データ
の内、作業領域中央に配置された障害物(I)のデータ
に基き、作業領域を第3図のような長方形の複数の探索
領域(A)(B)…(H)に分割し、第4図のようなこ
れ等の探索領域(A)(B)…(H)の連結状態(ネッ
トワーク状態)を保持する。分割方法選出手段(3)は
上記のように生成された探索領域(A)(B)…(H)
に基いて、これ等の探索領域(A)(B)…(H)を適
当に組み合わせて成る長方形のサブ領域(A)(B)…
(H)(AB)(AD)…を形成し、これ等のサブ領域の組
合わせで作業領域を表わす表わし方、即ち作業領域のサ
ブ領域による分割方法を第5図のように選び出す。この
ようにして選び出された分割方法(イ)(ロ)…の内、
構成サブ領域数の最も少い最大分割法がピックアップ手
段(4)でピックアップされる。この実施例のように中
央に障害物が1つある場合は、サブ領域の数が最も少い
最大分割方法は16種類あり、そのときのサブ領域の数は
4つである。然し乍ら、作業能率の点から作業開始をコ
ンセントKのある面のコーナ、即ち、(A)又は(C)
のコーナから開始し、(B)を含むサブ領域を2番目に
作業する必要があり、この制限を上記ピックアップ手段
(4)に加えることで第6図のような11種類の最大分割
方法がピックアップされる。
As a work vehicle on which such a work route determining device is mounted, there is used a work vehicle which performs work by power feeding with a power feeding cord as in Japanese Patent Application No. 61-108070. In such a work vehicle, the work route is determined by detecting the shape of the work region by the work region detecting means (1). That is, while the work vehicle orbits the work area by using the storage battery built in the work vehicle as a driving power source, the work area is set in the rectangular work area as shown in FIG. 2 by the distance detector, the direction detector and the sound wave sensor. Coordinates P 0 and P 4 , coordinates k indicating an outlet, coordinates indicating obstacles (I) and (II)
Detect P 1 , P 2 and P 3 . A method for detecting such a work area is disclosed in, for example, Japanese Patent Application No. 61-304432. The network creating means (2), based on the data of the obstacle (I) arranged in the center of the work area among the work area data detected in this way, defines the work area as a plurality of rectangular search areas as shown in FIG. A), (B), ... (H) are divided, and the connection state (network state) of these search areas (A), (B), ... (H) as shown in FIG. 4 is retained. The division method selection means (3) has the search areas (A) (B) ... (H) generated as described above.
Based on the above, rectangular sub-regions (A) (B) ... Which are formed by appropriately combining these search regions (A) (B) ... (H).
(H) (AB) (AD) ... are formed, and a method of expressing a work area by a combination of these sub areas, that is, a method of dividing the work area by sub areas is selected as shown in FIG. Of the division methods (a) and (b) selected in this way,
The maximum division method with the smallest number of constituent sub-regions is picked up by the pickup means (4). When there is one obstacle in the center as in this embodiment, there are 16 types of maximum division methods with the smallest number of sub-regions, and the number of sub-regions at that time is 4. However, from the viewpoint of work efficiency, the work should be started at the corner of the surface with the outlet K, that is, (A) or (C).
It is necessary to work on the sub-region including (B) second, starting from the corner of the above, and by adding this restriction to the pickup means (4), 11 kinds of maximum division methods as shown in FIG. 6 can be picked up. To be done.

このようにして、ピックアップされた各最大分割方法
において、作業順序決定手段(5)は給電コードが引っ
かかる点が最も少なくなるような順で作業領域内のサブ
領域の作業順序を決める。即ち例えば{(ADF)(BC)
(EH)(G)}と云う最大分割方法において第7図のよ
うなの順で作業を行うと、障害物(I)の3つ
のコーナ(R1,R2,R3)に同時に給電コードが引っかかる
場合があり、給電コードの長さが難かしくなる。これに
対い、第8図のようなの順序で各サブ領域の作
業を行うと最大でも2つのコーナ(R1,R2)にしか引っ
かからず、第7図の場合より給電コード長の制御が容易
になる。従って、第8図のような作業順序が選ばれる。
このような作業順序は作業領域の各最大分割方法におい
て、夫々一意的に決定される。こうして作業順序が決め
られると、始点終点決定手段(6)は各サブ領域の作業
終了点と作業開始点間の移動距離が最小となるよう、各
々のサブ領域の作業開始点(Si)及び作業終了点(Ei)
を決める(i=1,2,3,4)。具体的には、第9図のよう
に第j番目の作業終了点(Ej)と第(j+1)番目の作
業開始点(Sj+1)が離れているもの(j=1,2,3)は省
かれ、第10図のように終了点(Ej)と開始点(Sj+1)が
近接するよう決定される。このような作業開始点、作業
終了点の決定も各最大分割方法毎に行なわれる。
In this way, in each of the picked-up maximum division methods, the work order determination means (5) determines the work order of the sub-regions in the work region in the order that the points at which the power supply cord is caught are the smallest. That is, for example, {(ADF) (BC)
When the work is performed in the order as shown in FIG. 7 in the maximum division method called (EH) (G)}, the power supply cords are simultaneously supplied to the three corners (R 1 , R 2 , R 3 ) of the obstacle (I). It may get caught, and the length of the power supply cord becomes difficult. On the other hand, when the work of each sub-region is performed in the order as shown in Fig. 8, only two corners (R 1 , R 2 ) are caught at the maximum, and the control of the feed cord length can be controlled more than in the case of Fig. 7. It will be easier. Therefore, the work order as shown in FIG. 8 is selected.
Such work order is uniquely determined in each maximum division method of the work area. When the work order is determined in this manner, the start point / end point determining means (6) and the work start point (Si) of each sub area and the work are set so that the movement distance between the work end point and the work start point of each sub area is minimized. End point (Ei)
(I = 1,2,3,4). Specifically, as shown in FIG. 9, the j-th work end point (Ej) and the (j + 1) -th work start point (Sj +1 ) are separated (j = 1,2,3). Is omitted, and the end point (Ej) and the start point (Sj +1 ) are determined to be close to each other as shown in FIG. The work starting point and the work ending point are also determined for each maximum division method.

その後、サブ経路決定手段(7)は各サブ領域の作業
開始点(Si)及び作業終了点(Ei)の情報を得て各サブ
領域における作業方向及び作業巾を決める。第11図、第
12図のように作業開始点(Si)と作業終了点(Ei)が対
角にない場合作業車の作業方向は一意的に決められる。
一方、作業開始点(Si)と作業終了点(Ei)が対角に存
在する場合は第13図のように作業方向は長手方向に採る
ようにする。これは作業車の走行開始から走行停止まで
の速度特性が第14図のように加速及び減速区間を有した
ものになるとともに、方向転換するときには必ず一旦停
止をする必要があり、方向転換が少い方が作業時間が短
かくなるからである。そして作業方向が決まると作業幅
を決める。これは作業車が清掃作業を行うものであれば
吸入口の巾が基準となる。即ち作業巾が吸入口の巾を超
えない範囲で均等な作業巾で作業が行える最大の作業巾
が選ばれる。こうすることにより重複して清掃される部
分はサブ領域全体に分布することになり、作業ムラがな
くなる。
Thereafter, the sub-path determining means (7) obtains the information of the work start point (Si) and the work end point (Ei) of each sub-area and determines the work direction and the work width in each sub-area. FIG. 11, FIG.
When the work start point (Si) and work end point (Ei) are not diagonal as shown in Fig. 12, the work direction of the work vehicle is uniquely determined.
On the other hand, when the work start point (Si) and the work end point (Ei) are diagonally arranged, the work direction should be the longitudinal direction as shown in FIG. This is because the speed characteristic from the start of travel of the work vehicle to the stop of travel has acceleration and deceleration sections as shown in Fig. 14, and it is necessary to stop once when changing the direction, so there is little change in direction. This is because the work time will be shorter if you do not. When the work direction is decided, the work width is decided. This is based on the width of the suction port if the work vehicle carries out cleaning work. That is, the maximum work width that allows work to be performed with a uniform work width within a range in which the work width does not exceed the width of the suction port is selected. By doing so, the portions that are redundantly cleaned will be distributed over the entire sub-region, and the work unevenness will be eliminated.

このようにして、例えば第15図のように、各最大分割
方法に対して作業経路を決定した後、作業経路選択手段
(8)は夫々の作業経路を作業車が走行するのに要する
時間を計算し最も時間の少いものを選び出し実際に作業
車が走行する経路としてセットされる。例えば、作業車
の走行速度、作業車に取り付けられた掃除機の吸引巾、
作業領域、コンセント位置、障害物(I)(II)の位置
を第16図のようにした場合、各分割方法においてかかる
時間は第6図のようになり{(AB)(CEH)(DF)
(G)}と云う分割が最も少い時間になる。このように
して作業経路が決まると、作業車はコンセント位置まで
移動して給電プラグを接続し、外部から給電を受けなが
ら上記経路に沿って、作業(清掃)を行う。
Thus, for example, as shown in FIG. 15, after determining the work route for each maximum division method, the work route selecting means (8) determines the time required for the work vehicle to travel on each work route. It is calculated and the one with the shortest time is selected and set as the route on which the work vehicle actually travels. For example, the traveling speed of the work vehicle, the suction width of the vacuum cleaner attached to the work vehicle,
When the working area, outlet position, and obstacles (I) and (II) are positioned as shown in Fig. 16, the time required for each division method is as shown in Fig. 6. {(AB) (CEH) (DF)
The division called (G)} becomes the shortest time. When the work route is determined in this way, the work vehicle moves to the outlet position, connects the power supply plug, and performs work (cleaning) along the above route while receiving power from the outside.

尚、本願において、各サブ領域内の作業経路の決定に
際して、作業開始点、作業終了点が決められたものに対
して作業経路を決めるものを示したが、一般的に長方形
形状の作業領域で作業開始点のみを定めて、最も作業時
間を短く作業を行うことが考えられる。この作業経路の
決定における流れ図を第17図に示す。即ち、この流れは
最初長方形の作業領域を認識した後、長方形の作業領域
に対し、縦方向に作業を行うのか横方向に作業を行うの
かを決め、その後、作業終了点及び作業巾の決定を行っ
て、作業経路が決定される。
In the present application, when the work route in each sub area is determined, the work route is determined with respect to the work start point and the work end point that have been determined. It is possible to set the work starting point only and to perform the work in the shortest time. FIG. 17 shows a flowchart for determining this work route. That is, this flow first recognizes a rectangular work area, then decides whether to perform the work in the vertical direction or the horizontal direction with respect to the rectangular work area, and then decides the work end point and the work width. The work route is determined.

以下、この作業経路の決定方法について詳述する。こ
こで対象となる作業は掃除とし、移動ロボットは全方向
移動機能を持ち、第14図に示す加減速パターンに従い走
行するものとする。つまり、ロボットは走行距離に応じ
て定速期間(図中t2−t1間)を変化させる。
Hereinafter, the method of determining the work route will be described in detail. Here, the target work is cleaning, the mobile robot has an omnidirectional movement function, and travels according to the acceleration / deceleration pattern shown in FIG. That is, the robot changes the constant speed period (between t 2 and t 1 in the figure) according to the traveling distance.

まずロボットは与えられた長方形状の作業領域データ
に基づき作業方向を決定する。決定方法を第18図、第19
図を用いて説明する。第18図に示された作業領域が与え
られた時、作業車に設けられた作業経路決定装置は作業
領域の各辺の流さ(L,W)及び作業車自身の大きさ(φ
Rの円筒形とする。)から作業時間が短かくなるように
作業方向を決定する。ここで計算を簡略化するために、
L=mR,W=nR(m,nは自然数かつm>nとする。)と
し、図示された長辺L側に平行に移動して作業を行う経
路にて作業を行った時の作業時間を算出する。
First, the robot determines the work direction based on the given rectangular work area data. Figure 18 and 19
This will be described with reference to the drawings. When the work area shown in FIG. 18 is given, the work path determining device provided in the work vehicle is designed to measure the flow (L, W) of each side of the work area and the size of the work vehicle itself (φ
The cylindrical shape of R. ) Determines the work direction so that the work time will be shorter. Here, in order to simplify the calculation,
L = mR, W = nR (m and n are natural numbers and m> n), and the working time when the work is performed by moving in parallel to the long side L side shown in the figure. To calculate.

全走行距離は辺L方向の走行距離(Σ(III)の走行
距離)と辺W方向の走行距離(Σ(IV)の走行距離)と
の和で表わされる。
The total traveling distance is represented by the sum of the traveling distance in the side L direction (the traveling distance of Σ (III)) and the traveling distance in the side W direction (the traveling distance of Σ (IV)).

(Σ(III)の走行距離)=n(m−1)R … (Σ(IV)の走行距離)=(n−1)R … 次に,各々の経路を走行するのに要する時間は、
R=2Vmax2/aとすると (に要する時間)=n(2m−1)・Vmax/a …′ (に要する時間)=3(n−1)・Vmax/a …′ つまり全作業時間は(2mn+2n−3)・Vmax/a…″と
なる。
(Distance traveled by Σ (III)) = n (m-1) R (Distance traveled by Σ (IV)) = (n-1) R Next, the time required to travel each route is
If R = 2Vmax 2 / a, then (time required) = n (2m−1) · Vmax / a ... ′ (time required) = 3 (n−1) · Vmax / a ……… In other words, the total work time is ( 2mn + 2n-3) ・ Vmax / a ... ″.

逆に短辺L側に平行に移動して作業を行う場合は、全
作業時間=(2mn+2m−3)・Vmax/a…″となり、
″>″である。(∵m>n)つまり長辺に沿って作
業を行い、短辺側で作業幅だけ移動する方が作業時間は
短かくなる。また全方向移動機能を持たない作業車に於
いては(に要する時間)にターンに要する時間が加わ
る。つまり全作業時間は″及び″においてはπ=3
と近似した時、 =(2mn+10n−11)・Vmax/a =(2mn+10m−11)・Vmax/a となり、との差異は″と″の差異以上のも
のがある。ここで第19図(a)(b)においてL=8R,W
=4R,Vmax=30cm/s,a=15cm/s2とした時の作業時間は (a):138(S)(全方向移動機能あり) (b):154(S)(全方向移動機能あり) (a):186(S)(全方向移動機能なし) (b):266(S)(全方向移動機能なし) となる。2辺L,W(L>W)の比(L/W)が大きい程、作
業時間の差は大きくなる。(尚、第 図巾Sは作業開始
地点、Eは終了地点を表す。)上記方法により作業方向
が決定された後、作業終了地点と作業幅を決定する。第
20図(a),(b)は同じ作業領域に対して作業方向は
同じとし、作業幅が異なる2種類の作業経路である。両
図とも作業開始地点Sに対して、作業終了地点Eが定ま
っている時、(a)の作業幅決定方式は作業幅として考
えられる最大値Rで作業を行い、最後だけ作業幅をL
1(<R)とする方法で(b)の決定方式は、作業幅L2
(L2<R)と均等に決定する方式である。(a)の場合
は、第21図(a)に示す如く、Vの領域は2度、VIの領
域は3度作業が行われ、作業場所により作業のムラがあ
るが(b)場合、2度作業を行う領域(第21図(b)中
V)が作業領域全体にわっているため、平均化された作
業が行えているため、ムラがないと思われる。そこで作
業は第21図(b)のように均等な作業幅にて行うものと
する。
On the contrary, when performing work by moving in parallel to the short side L, the total work time = (2mn + 2m-3) Vmax / a ... ″,
">". (∵m> n) That is, the work time is shorter when the work is performed along the long side and the work width is moved on the short side. In the case of a work vehicle having no omnidirectional movement function, the time required for a turn is added to (the time required). That is, the total working time is π = 3 in "and"
When it is approximated as follows, = (2mn + 10n-11) · Vmax / a = (2mn + 10m-11) · Vmax / a, and the difference between and is more than the difference between “and”. Here, in FIGS. 19A and 19B, L = 8R, W
= 4R, Vmax = 30cm / s, a = 15cm / s 2 The working time is (a): 138 (S) (with omnidirectional movement function) (b): 154 (S) (with omnidirectional movement function) Yes) (a): 186 (S) (without omnidirectional movement function) (b): 266 (S) (without omnidirectional movement function) The larger the ratio (L / W) of the two sides L, W (L> W), the larger the difference in working time. (The width S in the figure represents the work start point and E represents the end point.) After the work direction is determined by the above method, the work end point and the work width are determined. First
FIGS. 20 (a) and (b) show two types of work routes having the same work area and the same work direction and different work widths. In both figures, when the work end point E is determined with respect to the work start point S, the work width determination method of (a) performs the work at the maximum value R that can be considered as the work width, and only sets the work width to L at the end.
1 (<R) is used as the determination method of (b), working width L 2
(L 2 <R). In the case of (a), as shown in FIG. 21 (a), the work of the V area is performed twice and the work of the VI area is performed three times, and there is unevenness in the work depending on the work place. The area (V in FIG. 21 (b)) in which the work is performed every time extends over the entire work area, and the work is averaged, so it is considered that there is no unevenness. Therefore, the work shall be performed with a uniform work width as shown in FIG. 21 (b).

ト) 発明の効果 以上述べた通り本発明によれば、作業領域内に障害物
及びコンセントの位置情報に応じて効率的な作業経路の
決定が成されるとともに、給電コードが障害物の角に引
っかかる箇所が最も少なくなる作業順序が決定されるの
で、作業時の給電コード長の制御が容易となる。
G) Effect of the Invention As described above, according to the present invention, an efficient work route is determined according to the position information of the obstacle and the outlet in the work area, and the power supply cord is placed at the corner of the obstacle. Since the work order in which the number of caught parts is minimized is determined, it becomes easy to control the length of the power supply cord during work.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明作業経路決定装置のブロック図、第2図
は作業領域の形態を示す模式図、第3図は作業領域をサ
ブ領域に分割したときの模式図、第4図は各サブ領域の
結合状態を示す模式図、第5図は作業領域の分割方法を
示す表図、第6図は選択された最大分割方法を示す表
図、第7図、第8図はサブ領域の作業順序を示す模式
図、第9図、第10図は各作業領域の作業開始点、作業終
了点の決め方を示す模式図、第11図乃至第13図はサブ領
域内での作業車の作業経路を示す模式図、第14図は作業
車の走行特性を示す特性図、第15図は作業領域全体にお
ける作業車の作業経路の一例を示す模式図、第16図は作
業車の性能特性と作業領域の形態を表わす表図、第17図
は長方形状の作業領域の作業経路を決定するときの流れ
図、第18図、第19図(a)(b)、第20図(a)(b)
は長方形形状の作業領域の作業経路を示す模式図、第21
図(a)(b)は重複して作業をする箇所を示す作業領
域の模式図である。 (1)……作業領域検出手段、(2)……ネットワーク
作成手段、(3)……分割方法選出手段、(4)……ピ
ックアップ手段、(5)……作業順序決定手段、(6)
……始点、終点決定手段、(7)……サブ経路決定手
段、(8)……作業経路選択手段。
FIG. 1 is a block diagram of the work route determination device of the present invention, FIG. 2 is a schematic diagram showing the form of a work area, FIG. 3 is a schematic view when the work area is divided into sub areas, and FIG. 5 is a schematic diagram showing the combined state of regions, FIG. 5 is a table diagram showing a method of dividing a work region, FIG. 6 is a table diagram showing a selected maximum division method, and FIGS. 7 and 8 are work of sub-regions. Schematic diagrams showing the order, FIGS. 9 and 10 are schematic diagrams showing how to determine the work start point and work end point of each work area, and FIGS. 11 to 13 are work routes of the work vehicle in the sub areas. Fig. 14 is a schematic diagram showing the running characteristics of the work vehicle, Fig. 15 is a schematic diagram showing an example of the work route of the work vehicle in the entire work area, and Fig. 16 is the performance characteristics and work of the work vehicle. FIG. 17 is a table showing the form of the area, FIG. 17 is a flow chart for determining the work route of the rectangular work area, FIG. 18, FIG. 19 (a) ( ), Figure 20 (a) (b)
Is a schematic view showing a work path of a rectangular work area, No. 21
(A) and (b) are schematic views of a work area showing a portion where work is repeated. (1) ... Work area detection means, (2) ... Network creation means, (3) ... Division method selection means, (4) ... Pickup means, (5) ... Work order determination means, (6)
...... Start point / end point determining means, (7) ...... Sub route determining means, (8) …… Work route selecting means.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−121406(JP,A) 特開 昭62−32516(JP,A) 特開 昭62−19907(JP,A) 特開 昭62−19908(JP,A) 特開 昭62−19909(JP,A) 特開 昭60−79470(JP,A) ─────────────────────────────────────────────────── --- Continued from the front page (56) Reference JP-A-59-121406 (JP, A) JP-A-62-32516 (JP, A) JP-A-62-19907 (JP, A) JP-A-62- 19908 (JP, A) JP 62-19909 (JP, A) JP 60-79470 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】給電コードが、障害物のある作業領域内に
設けられたコンセントに接続され、該給電コードからの
給電によって自走しながら作業を行う作業車の経路を決
定する作業車の作業経路決定装置において、 作業領域内の障害物及びコンセントの位置情報を作業領
域データとして検出する作業領域検出手段と、 作業領域データに応じて、作業領域を複数のサブ領域に
分割する分割手段と、 作業時に、給電コードが障害物の角に引っかかる点が最
も少なくなるように、複数のサブ領域の作業順序を決定
する作業順序決定手段と、 各サブ領域内での作業車の作業経路を決定するサブ経路
決定手段と、を備えていることを特徴とする作業車の作
業経路決定装置。
1. Work of a work vehicle in which a power supply cord is connected to an outlet provided in a work area having an obstacle, and the route of the work vehicle is determined by the power supply from the power supply cord while the vehicle is self-propelled. In the route determination device, a work area detecting unit that detects position information of obstacles and outlets in the work area as work area data, and a dividing unit that divides the work area into a plurality of sub areas according to the work area data, At the time of work, work order determining means for determining the work order of the plurality of sub-regions and work routes of the work vehicle within each sub-region are determined so that the points where the power supply cord is caught on the corners of the obstacle are minimized. A work route determination device for a work vehicle, comprising: a sub route determination means.
JP62122330A 1987-05-19 1987-05-19 Work route determination device for work vehicles Expired - Fee Related JPH0827651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62122330A JPH0827651B2 (en) 1987-05-19 1987-05-19 Work route determination device for work vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62122330A JPH0827651B2 (en) 1987-05-19 1987-05-19 Work route determination device for work vehicles

Publications (2)

Publication Number Publication Date
JPS63286911A JPS63286911A (en) 1988-11-24
JPH0827651B2 true JPH0827651B2 (en) 1996-03-21

Family

ID=14833299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62122330A Expired - Fee Related JPH0827651B2 (en) 1987-05-19 1987-05-19 Work route determination device for work vehicles

Country Status (1)

Country Link
JP (1) JPH0827651B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786516B2 (en) * 1990-05-02 1998-08-13 株式会社クボタ Work vehicle traveling method
KR930000081B1 (en) * 1990-12-07 1993-01-08 주식회사 금성사 Cleansing method of electric vacuum cleaner
US6142252A (en) * 1996-07-11 2000-11-07 Minolta Co., Ltd. Autonomous vehicle that runs while recognizing work area configuration, and method of selecting route
JP2021114103A (en) * 2020-01-17 2021-08-05 パナソニックIpマネジメント株式会社 Map processing device, map processing method, and mobile robot
CN115250720A (en) * 2022-07-12 2022-11-01 松灵机器人(深圳)有限公司 Mowing method, mowing device, mowing robot and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121406A (en) * 1982-12-27 1984-07-13 Honda Motor Co Ltd Controller of mobile robot
JPS6079470A (en) * 1983-10-07 1985-05-07 Hitachi Ltd Automatic generating method of connecting path in space layout plan
JPS6219908A (en) * 1985-07-17 1987-01-28 Fanuc Ltd Area processing method
JPS6219907A (en) * 1985-07-17 1987-01-28 Fanuc Ltd Area processing method
JPS6219909A (en) * 1985-07-17 1987-01-28 Fanuc Ltd Area processing method
JPS6232516A (en) * 1985-08-06 1987-02-12 Shinko Electric Co Ltd Optimum route searching method for moving robot

Also Published As

Publication number Publication date
JPS63286911A (en) 1988-11-24

Similar Documents

Publication Publication Date Title
JP7374547B2 (en) Exploration methods, devices, mobile robots and storage media
US11013385B2 (en) Automatic cleaning device and cleaning method
CN106527423B (en) Cleaning robot and control method thereof
EP1593012B1 (en) An autonomous machine
US4962453A (en) Autonomous vehicle for working on a surface and method of controlling same
US7085624B2 (en) Autonomous machine
EP3360454B1 (en) Electrical vacuum cleaner
EP0490736B1 (en) Method for automatically controlling a travelling and cleaning operation of vacuum cleaners
JP2007213236A (en) Method for planning route of autonomously traveling robot and autonomously traveling robot
JPH0546239A (en) Autonomously travelling robot
CN110652256B (en) Mobile robot and control method
JP2004326692A (en) Autonomous travelling robot
JP6569342B2 (en) Mobile robot
CN110650667B (en) Electric vacuum cleaner
KR940007727B1 (en) Automatic driver of vacuum cleaner
JP2669822B2 (en) Work route determination device for work vehicles
JPH0827651B2 (en) Work route determination device for work vehicles
JPH07111649B2 (en) Work route determination device for work vehicles
JP2785305B2 (en) Self-propelled vacuum cleaner
JP2004049778A (en) Self-propelled vacuum cleaner, and its program
JP2006172108A (en) Self-propelled vacuum cleaner
JPS63286909A (en) Working route determining device for working vehicle
KR950005403B1 (en) Run control method of the automatic run floor cleaner using neural net work
JP7349624B2 (en) Autonomous vacuum cleaner, autonomous vacuum cleaner control method, and program
JP3036863B2 (en) Traveling robot

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees