JP3557924B2 - Motor control device and motor control method - Google Patents

Motor control device and motor control method Download PDF

Info

Publication number
JP3557924B2
JP3557924B2 JP35132898A JP35132898A JP3557924B2 JP 3557924 B2 JP3557924 B2 JP 3557924B2 JP 35132898 A JP35132898 A JP 35132898A JP 35132898 A JP35132898 A JP 35132898A JP 3557924 B2 JP3557924 B2 JP 3557924B2
Authority
JP
Japan
Prior art keywords
motor
temperature
output
rotation speed
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35132898A
Other languages
Japanese (ja)
Other versions
JP2000184502A (en
Inventor
和晃 新郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP35132898A priority Critical patent/JP3557924B2/en
Publication of JP2000184502A publication Critical patent/JP2000184502A/en
Application granted granted Critical
Publication of JP3557924B2 publication Critical patent/JP3557924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電動機制御装置及び方法、特に、電動機の出力制限に関する。
【0002】
【従来の技術】
従来より、電気自動車などに用いられる電動機の出力を電動機の温度に基づいて制限する技術が知られている。
【0003】
例えば、特開平4−325804号公報には、電動機の温度を検出し、電動機温度が上昇した場合に加熱防止のため供給電流量を制限することで出力を低下させる技術が開示されている。なお、電動機の温度としては、例えばステータの温度が用いられる。
【0004】
【発明が解決しようとする課題】
電動機を低〜中回転域で運転している場合にはステータの温度はロータの温度とほとんど同一であり、ステータの温度をもって電動機の温度としても問題は生じないが、電動機を高回転域で連続して運転した場合、永久磁石に生じる渦電流により自己発熱し、永久磁石の温度がステータの温度以上となる(ステータの温度は回転数によらずほぼ一定であるが、ロータは回転数の増大に伴って温度上昇する)。したがって、ロータに永久磁石を用いる同期式電動機の場合、高回転域でロータが加熱して永久磁石の磁界強度に影響が生じることを防止するためには、電動機の出力制限量を大きくする必要がある。
【0005】
しかしながら、高回転域でロータが加熱しないように電動機の出力制限量を一義的に決定してしまうと、低〜中回転域においても必要以上に出力制限が行われてしまい(低〜中回転域では既述したようにステータとロータの温度はほぼ同一であり、したがってステータの温度よりも高い温度を基準として出力制限を行うと、出力制限が過多となる)、電気自動車に用いた場合には低速でのトルク不足により登坂性能が低下するなどの問題が生じ得る。
【0006】
本発明は、上記従来技術の有する課題に鑑みなされたものであり、その目的は、電動機の回転数によらず最適な出力制限を行うことで、電動機の保護を図るとともに電動機性能を向上させることができる装置及び方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、発明は、ロータに永久磁石を有する電動機の温度に応じて電動機の出力を制限する電動機制御装置において、前記電動機の回転数を検出する検出手段と、前記温度及び前記回転数に応じて前記電動機の出力を制限する制御手段とを有することを特徴とする。
【0008】
また、発明は、ロータに永久磁石を有する電動機の温度に応じて電動機の出力を制限する電動機制御方法において、前記電動機の回転数が増大するほど前記電動機の出力制限量を増大させることを特徴とする。
【0009】
回転数に応じて電動機の出力制限量を変化させる、すなわち低回転域では出力制限量を少なく、高回転域ではロータの温度上昇を考慮して出力制限量を多くすることで、電動機の温度保護と電動機性能(特に低回転域における性能)の向上をともに達成することができる。
【0010】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態について、電気自動車(ハイブリッド車を含む)を例にとり説明する。
【0011】
図1には、本実施形態の構成ブロック図が示されている。交流電動機(モータ)10はステータ10a及びロータ10bを含んで構成される、ステータ10aには電力制御回路18から三相交流が供給され、回転磁界を発生させる。なお、電力制御回路18はインバータを含み、図示しないバッテリからの直流電力を交流電力に変換してステータ10aの巻線に供給する。供給すべき電力は後述するコンピュータ16で決定される。ロータ10bの外周には永久磁石が配置され、回転磁界との磁気的相互作用により同期回転する。ロータ10bには駆動軸が接続され、この駆動軸の回転、すなわち電動機10の回転数Nmは回転数センサ12で検出される。また、電動機10の温度としてステータ巻線に温度センサ14が設けられ、ステータ10aの温度を電動機10の温度Tmとして検出する。なお、電動機10の回転数が低い場合(〜2000rpm程度)の場合にはステータ10aの温度はロータ10bの温度とほぼ等しく電動機10の温度としても問題ないが、電動機10の回転数が高い場合(およそ4000rpm以上)にはステータ10aの温度よりもロータ10bの温度が高くなるので、高回転域では電動機10の温度は検出値よりも高くなる。検出された電動機温度Tm及び回転数Nmは、コンピュータ16に供給される。
【0012】
コンピュータ16は、アクセル20からのアクセル開度信号に基づいて必要なトルク指令値を算出して電力制御回路18に出力するが、トルク指令値を算出する際に、従来のように電動機10の温度Tmのみに基づいて算出するのではなく、電動機10の温度Tmと電動機10の回転数Nmとに基づいて算出する。すなわち、電動機10の加熱を防止すべく、電動機10の温度が上昇した場合には本来のトルク指令値(アクセル開度から定まるトルク指令値)に対して制限をかけるとともに、電動機10の回転数が上昇した場合にも、本来のトルク指令値に対して制限をかける。これにより、電動機10の温度保護を図ると同時に、低〜中回転域においても必要な量だけ出力制限でき、低速でも必要十分な出力を得ることができる。
【0013】
図2には、コンピュータ16でトルク指令値を算出する際に用いられる出力制限率A(%)が示されている。なお、本来のトルク指令値をT、電力制御回路18に供給するトルク指令値をTmとすると、Tm=A/100*Tの関係にある。
【0014】
図において、横軸は電動機10の温度、縦軸は出力制限率である。また、図中実線100は電動機10の回転数Nmが2000rpm以下の場合の出力制限率を示し、実線200は電動機10の回転数Nmが4000rpm以上の場合の出力制限率を示している。実線100では、電動機10の温度が140度までは出力制限率は100%であり、トルク指令値Tm=Tとなる。電動機10の温度が140度を超えると、出力制限率Aは100%から連続的に減少し、160度で0%となる。したがって、電動機10の温度が140度を超えるとトルク指令値Tmは徐々に低下し、160度ではトルク指令値が0となり、電動機10を加熱から防止できる。
【0015】
一方、実線200では、電動機10の温度が130度までは出力制限率は100%であり、130度を超えると100%から連続的に減少し、150度で0%となる。したがって、実線100と同様に電動機10を加熱から防止できるとともに、実線100の場合に比べてより低い温度から出力制限を行っているので、電動機10の回転数の増大に伴うロータ10bの温度上昇(ひいては温度上昇によるロータ10bの永久磁石の消磁)を確実に防止できる。また、言い換えるならば、実線100に示すように回転数が低い場合には電動機10がより高い温度に達しない限り出力制限は行わず、同一温度(例えば140度)において低回転数の場合には高回転数の場合に比べて出力制限量も小さいので(定義から明らかなように、出力制限率Aが低下するほど、出力制限量は大きくなる)、低回転においても十分なトルクが得られることになる。従来技術においては、電動機10の温度のみに基づいた出力制限が行われており、回転数によらず一義的に実線200のような出力制限が行われており、本実施形態のように回転数に応じて出力制限量を変化させる利点は図2から明らかであろう。
【0016】
なお、図2においては電動機10の回転数Nmが2000rpm以下と4000rpm以上の場合についてのみ示したが、2000rpmから4000rpmの間の回転数の場合には、同図の矢印に示すように回転数の増大に応じて順次実線100から実線200へと移動するような出力制限率Aを規定すればよい。また、コンピュータ16がトルク指令値Tmを算出するに際しては、予め出力制限率Aをマップ(電動機10の温度と回転数を変数とした2次元マップ)としてメモリに記憶しておき、検出された電動機10の温度Tmと回転数Nmに応じて対応する出力制限率Aをマップから読み出せばよい。マップの一例を以下に示す。
【0017】
【表1】

Figure 0003557924
この表において、行は電動機10の回転数(0、2000rpm、4000rpm、6000rpm)、列は電動機10の温度(0、130度、140度、150度、160度、170度)を表す。なお、回転数及び温度がこれらの間の値である場合には、線形補間して出力制限率を求めればよい。
【0018】
このように、本実施形態では、電動機の温度と回転数に基づいてトルク指令値を決定しているので、電動機の温度保護を図るとともに、特に低回転域においても必要なトルクを得ることができる。
【0019】
なお、本実施形態では図2に示すように電動機10の出力制限率Aを線形に変化させているが、非線形的に変化させてもよい。
【0020】
また、本実施形態では、Tm=A/100*Tによりトルク指令値を算出しているが、温度に依存する出力制限率Bと回転数に依存する出力制限率Cとを用いて、Tm=B/100*C/100*Tによりトルク指令値を算出してもよい。この場合、Bは温度が増大するほど低下(出力制限量は増大)し、Cは回転数が増大するほど低下(出力制限量は増大)する。
【0021】
【発明の効果】
以上説明したように、本発明によれば、電動機の回転数によらず最適な出力制限を行うことで、電動機の温度保護及び電動機性能の向上を図ることができる。
【図面の簡単な説明】
【図1】実施形態の構成図である。
【図2】実施形態の出力制限率のグラフ図である。
【符号の説明】
10 電動機、12 回転数センサ、14 温度センサ、16 コンピュータ、18 電力制御回路、20 アクセル。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a motor control device and method, and more particularly, to limiting the output of a motor.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is known a technique for limiting the output of a motor used in an electric vehicle or the like based on the temperature of the motor.
[0003]
For example, Japanese Patent Application Laid-Open No. 4-325804 discloses a technique of detecting the temperature of an electric motor and, when the temperature of the electric motor rises, limiting the amount of supply current to prevent heating to reduce the output. The temperature of the motor is, for example, the temperature of the stator.
[0004]
[Problems to be solved by the invention]
When the motor is operated in the low to medium rotation range, the temperature of the stator is almost the same as the temperature of the rotor.There is no problem with the temperature of the motor using the stator temperature, but the motor is continuously operated in the high rotation range. In operation, self-heating occurs due to eddy currents generated in the permanent magnet, and the temperature of the permanent magnet becomes higher than the temperature of the stator. (The temperature of the stator is almost constant regardless of the number of revolutions, but the number of revolutions of the rotor increases. The temperature rises with the increase). Therefore, in the case of a synchronous motor using a permanent magnet for the rotor, it is necessary to increase the output limit of the motor in order to prevent the rotor from heating in a high rotation range and affecting the magnetic field strength of the permanent magnet. is there.
[0005]
However, if the output limiting amount of the motor is uniquely determined so that the rotor is not heated in the high rotation range, the output is limited more than necessary in the low to middle rotation range (low to middle rotation range). As described above, the temperatures of the stator and the rotor are almost the same. Therefore, if the output is limited based on a temperature higher than the temperature of the stator, the output is excessively limited.) Insufficient torque at low speed may cause problems such as a decrease in climbing performance.
[0006]
The present invention has been made in view of the above-mentioned problems of the related art, and has as its object to protect an electric motor and improve electric motor performance by performing optimal output restriction regardless of the number of rotations of the electric motor. It is an object of the present invention to provide an apparatus and a method that can perform the above.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a motor control device that limits the output of a motor in accordance with the temperature of a motor having a permanent magnet on a rotor , wherein a detecting unit that detects a rotation speed of the motor, Control means for limiting the output of the electric motor according to the rotation speed.
[0008]
Also, the present invention provides a motor control method for limiting the output of a motor according to the temperature of a motor having a permanent magnet in a rotor , wherein the output limiting amount of the motor is increased as the rotation speed of the motor increases. And
[0009]
By changing the output limit of the motor according to the number of rotations, that is, by reducing the output limit in the low rotation range and increasing the output limit in consideration of the rise in rotor temperature in the high rotation range, the temperature of the motor is protected. It is possible to achieve both improvement of the motor performance (particularly performance in a low rotation speed range).
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking an electric vehicle (including a hybrid vehicle) as an example.
[0011]
FIG. 1 shows a configuration block diagram of the present embodiment. The AC motor (motor) 10 includes a stator 10a and a rotor 10b. The stator 10a is supplied with three-phase AC from a power control circuit 18 to generate a rotating magnetic field. The power control circuit 18 includes an inverter, converts DC power from a battery (not shown) into AC power, and supplies the AC power to the winding of the stator 10a. The power to be supplied is determined by a computer 16 described later. A permanent magnet is arranged on the outer periphery of the rotor 10b, and rotates synchronously by magnetic interaction with a rotating magnetic field. A drive shaft is connected to the rotor 10 b, and the rotation of the drive shaft, that is, the rotation speed Nm of the electric motor 10 is detected by a rotation speed sensor 12. A temperature sensor 14 is provided on the stator winding as the temperature of the electric motor 10, and detects the temperature of the stator 10 a as the temperature Tm of the electric motor 10. In the case where the rotation speed of the electric motor 10 is low (about 2,000 rpm), the temperature of the stator 10a is almost equal to the temperature of the rotor 10b, and there is no problem with the temperature of the electric motor 10, but when the rotation speed of the electric motor 10 is high ( (About 4000 rpm or more), the temperature of the rotor 10b becomes higher than the temperature of the stator 10a, so that the temperature of the electric motor 10 becomes higher than the detected value in a high rotation range. The detected motor temperature Tm and rotation speed Nm are supplied to the computer 16.
[0012]
The computer 16 calculates a required torque command value based on the accelerator opening signal from the accelerator 20 and outputs the calculated torque command value to the power control circuit 18. When calculating the torque command value, the computer 16 calculates the temperature of the electric motor 10 as in the related art. The calculation is not based only on Tm, but based on the temperature Tm of the electric motor 10 and the rotation speed Nm of the electric motor 10. That is, when the temperature of the electric motor 10 rises, the original torque command value (torque command value determined from the accelerator opening) is limited in order to prevent the heating of the electric motor 10, and the rotation speed of the electric motor 10 is reduced. Even when it rises, the original torque command value is limited. As a result, at the same time as protecting the temperature of the electric motor 10, the output can be limited by a required amount even in a low to middle rotation range, and a sufficient output can be obtained even at a low speed.
[0013]
FIG. 2 shows an output limiting ratio A (%) used when the computer 16 calculates the torque command value. Here, assuming that the original torque command value is T and the torque command value supplied to the power control circuit 18 is Tm, the relationship is Tm = A / 100 * T.
[0014]
In the figure, the horizontal axis represents the temperature of the electric motor 10, and the vertical axis represents the output limiting ratio. In the figure, a solid line 100 indicates an output limiting ratio when the rotation speed Nm of the electric motor 10 is 2000 rpm or less, and a solid line 200 indicates an output restriction ratio when the rotation speed Nm of the electric motor 10 is 4000 rpm or more. In the solid line 100, the output limiting ratio is 100% until the temperature of the electric motor 10 reaches 140 degrees, and the torque command value Tm = T. When the temperature of the electric motor 10 exceeds 140 degrees, the output limiting ratio A continuously decreases from 100% and becomes 0% at 160 degrees. Therefore, when the temperature of the motor 10 exceeds 140 degrees, the torque command value Tm gradually decreases, and at 160 degrees, the torque command value becomes 0, and the motor 10 can be prevented from being heated.
[0015]
On the other hand, in the solid line 200, the output limiting ratio is 100% up to a temperature of the electric motor 10 of 130 degrees, and continuously decreases from 100% when the temperature exceeds 130 degrees, and becomes 0% at 150 degrees. Therefore, similarly to the solid line 100, the motor 10 can be prevented from being heated, and the output is limited from a lower temperature than that of the solid line 100. Therefore, the temperature rise of the rotor 10b due to the increase in the rotation speed of the motor 10 ( As a result, the permanent magnet of the rotor 10b due to the temperature rise can be reliably prevented. In other words, as shown by the solid line 100, when the rotation speed is low, the output is not limited unless the motor 10 reaches a higher temperature, and when the rotation speed is low at the same temperature (for example, 140 degrees), Since the output limiting amount is smaller than that at the high rotation speed (as is clear from the definition, the lower the output limiting ratio A, the larger the output limiting amount), sufficient torque can be obtained even at a low rotation speed. become. In the prior art, the output is limited based only on the temperature of the electric motor 10, and the output is limited as indicated by the solid line 200 regardless of the rotational speed. The advantage of changing the output limiting amount according to the above will be apparent from FIG.
[0016]
Note that FIG. 2 shows only the case where the rotation speed Nm of the electric motor 10 is 2000 rpm or less and 4000 rpm or more. However, when the rotation speed is between 2000 rpm and 4000 rpm, the rotation speed What is necessary is just to define the output limiting ratio A that moves from the solid line 100 to the solid line 200 in accordance with the increase. When the computer 16 calculates the torque command value Tm, the output limiting ratio A is stored in advance in a memory as a map (a two-dimensional map using the temperature and the rotation speed of the electric motor 10 as variables), and the detected electric motor The output limiting ratio A corresponding to the temperature Tm and the rotation speed Nm of 10 may be read from the map. An example of the map is shown below.
[0017]
[Table 1]
Figure 0003557924
In this table, the rows represent the rotation speeds of the motor 10 (0, 2000 rpm, 4000 rpm, 6000 rpm), and the columns represent the temperatures of the motor 10 (0, 130, 140, 150, 160, and 170 degrees). If the rotational speed and the temperature are between these values, the output limiting ratio may be obtained by linear interpolation.
[0018]
As described above, in the present embodiment, the torque command value is determined based on the temperature and the number of rotations of the electric motor, so that the temperature of the electric motor can be protected and a necessary torque can be obtained even in a low rotation region. .
[0019]
In this embodiment, the output limiting ratio A of the electric motor 10 is changed linearly as shown in FIG. 2, but may be changed non-linearly.
[0020]
Further, in the present embodiment, the torque command value is calculated by Tm = A / 100 * T, but Tm = A / 100 * T is used. The torque command value may be calculated from B / 100 * C / 100 * T. In this case, B decreases as the temperature increases (the output restriction amount increases), and C decreases as the rotation speed increases (the output restriction amount increases).
[0021]
【The invention's effect】
As described above, according to the present invention, by performing the optimum output restriction irrespective of the rotation speed of the motor, it is possible to protect the temperature of the motor and improve the motor performance.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment.
FIG. 2 is a graph showing an output limiting ratio according to the embodiment.
[Explanation of symbols]
10 electric motor, 12 rotation speed sensor, 14 temperature sensor, 16 computer, 18 power control circuit, 20 accelerator.

Claims (2)

ロータに永久磁石を有する電動機の温度に応じて電動機の出力を制限する電動機制御装置において、
前記電動機の回転数を検出する検出手段と、
前記電動機のステータ温度及び前記回転数に応じ、前記ステータ温度が上昇するほど、かつ、前記回転数が増大するほどその制限量が多くなるように前記電動機の出力を制限するものであり、同一ステータ温度であっても前記回転数が大きい場合には小さい場合に比べてその制限量を多くする制御手段と、
を有することを特徴とする電動機制御装置。
In a motor control device that limits the output of the motor according to the temperature of the motor having a permanent magnet in the rotor,
Detecting means for detecting the number of rotations of the electric motor,
In accordance with the stator temperature and the rotation speed of the motor, the output of the motor is limited so that the limit amount increases as the stator temperature increases and as the rotation speed increases. Control means for increasing the limit amount when the rotation speed is large even when the rotation speed is large compared to when the rotation speed is small ;
An electric motor control device comprising:
ロータに永久磁石を有する電動機の温度に応じて電動機の出力を制限する電動機制御方法において、
前記電動機のステータ温度が上昇するほど、かつ、前記回転数が増大するほどその制限量が多くなるように前記電動機の出力制限量を増大させるものであり、同一ステータ温度であっても前記回転数が大きい場合には小さい場合に比べてその出力制限量を増大させる
ことを特徴とする電動機制御方法。
In a motor control method for limiting the output of the motor according to the temperature of the motor having a permanent magnet in the rotor,
As the stator temperature of the electric motor increases, and as the rotation speed increases, the output restriction amount of the motor is increased so that the restriction amount increases. The motor control method characterized by increasing the output restriction amount when is larger than when it is small .
JP35132898A 1998-12-10 1998-12-10 Motor control device and motor control method Expired - Lifetime JP3557924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35132898A JP3557924B2 (en) 1998-12-10 1998-12-10 Motor control device and motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35132898A JP3557924B2 (en) 1998-12-10 1998-12-10 Motor control device and motor control method

Publications (2)

Publication Number Publication Date
JP2000184502A JP2000184502A (en) 2000-06-30
JP3557924B2 true JP3557924B2 (en) 2004-08-25

Family

ID=18416562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35132898A Expired - Lifetime JP3557924B2 (en) 1998-12-10 1998-12-10 Motor control device and motor control method

Country Status (1)

Country Link
JP (1) JP3557924B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1407787T3 (en) * 2001-06-20 2009-06-02 Dainippon Sumitomo Pharma Co Process for promoting nucleic acid transfer
JP2004364453A (en) * 2003-06-06 2004-12-24 Aisin Aw Co Ltd Drive control device and method for motor vehicle, and its program
JP4717503B2 (en) * 2005-05-09 2011-07-06 本田技研工業株式会社 Brake device for vehicle
JP4211788B2 (en) 2006-01-11 2009-01-21 トヨタ自動車株式会社 Electric motor control device and electric vehicle equipped with the same
JP4742969B2 (en) 2006-04-24 2011-08-10 トヨタ自動車株式会社 Electric motor control device and electric vehicle equipped with the same
JP4853321B2 (en) 2007-02-21 2012-01-11 トヨタ自動車株式会社 Rotating electric machine drive control device and vehicle
EP3855100A1 (en) * 2007-10-10 2021-07-28 Prime Datum, Inc. Integrated fan drive system for cooling tower and method of operating wet cooling tower
JP5696743B2 (en) * 2013-06-07 2015-04-08 トヨタ自動車株式会社 Rotating electrical machine control system
GB2532104B (en) 2013-06-13 2016-10-05 Dyson Technology Ltd Controlling the power consumption of a brushless motor
JP6187330B2 (en) * 2014-03-07 2017-08-30 トヨタ自動車株式会社 Hybrid car
US11772480B2 (en) * 2019-10-15 2023-10-03 Drivetech Co., Ltd. Transaxle-integrated cooling circulation system

Also Published As

Publication number Publication date
JP2000184502A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
JP4466600B2 (en) Electric drive control device and electric drive control method
JP4007345B2 (en) Electric drive control device, electric drive control method, and program
JP4007344B2 (en) Electric drive control device, electric drive control method, and program
JP3557924B2 (en) Motor control device and motor control method
JP2007259538A (en) Electric drive controller and electric drive control method
JP4466599B2 (en) Electric drive control device and electric drive control method
JP4462207B2 (en) Electric drive control device and electric drive control method
JPH07212915A (en) Control method for electric vehicle drive motor
JP2006304462A (en) Motor drive system and control method for permanent magnet motor
JP2010239790A (en) Rotary electric machine controller
JP4896562B2 (en) Electric drive control device and electric drive control method
JP2005045927A (en) Motor drive system and electric automobile
JP2004187339A (en) Controller for motor to be mounted on car and motor system for vehicle
JP4839119B2 (en) Electric drive control device and electric drive control method
CN109955729B (en) Vehicle control device and vehicle control method
JP2005057817A (en) Motor drive controller, motor drive controlling method, and its program
JP3933108B2 (en) Electric drive control device, electric drive control method and program thereof
JP2008187862A (en) Motor control device, and motor control method
JP5194608B2 (en) Rotating electrical machine control device
JP4380650B2 (en) Electric drive control device and electric drive control method
JP2007259650A (en) Apparatus and method for electric drive control
JP4613861B2 (en) Electric drive control device and electric drive control method
JP4539239B2 (en) Electric drive control device, electric drive control method, and program
JP2003164185A (en) Three-phase ac motor control device
JP2007274863A (en) Electric drive controller and control method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

EXPY Cancellation because of completion of term