JP3556695B2 - Exhaust gas purification catalyst - Google Patents
Exhaust gas purification catalyst Download PDFInfo
- Publication number
- JP3556695B2 JP3556695B2 JP07544394A JP7544394A JP3556695B2 JP 3556695 B2 JP3556695 B2 JP 3556695B2 JP 07544394 A JP07544394 A JP 07544394A JP 7544394 A JP7544394 A JP 7544394A JP 3556695 B2 JP3556695 B2 JP 3556695B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- palladium
- exhaust gas
- tio
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 75
- 238000000746 purification Methods 0.000 title description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 70
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 53
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 36
- 239000002131 composite material Substances 0.000 claims description 34
- 229910052763 palladium Inorganic materials 0.000 claims description 31
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 28
- 229910052697 platinum Inorganic materials 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 6
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 6
- 239000000084 colloidal system Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 4
- 239000007858 starting material Substances 0.000 claims description 4
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 24
- 239000007789 gas Substances 0.000 description 18
- 229910052717 sulfur Inorganic materials 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 11
- 239000011593 sulfur Substances 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 239000004480 active ingredient Substances 0.000 description 8
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 150000003464 sulfur compounds Chemical class 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000011206 ternary composite Substances 0.000 description 6
- 241000264877 Hippospongia communis Species 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910020203 CeO Inorganic materials 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910015999 BaAl Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910002056 binary alloy Inorganic materials 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000019635 sulfation Effects 0.000 description 2
- 238000005670 sulfation reaction Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 150000000703 Cerium Chemical class 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000011218 binary composite Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- JRTYPQGPARWINR-UHFFFAOYSA-N palladium platinum Chemical compound [Pd].[Pt] JRTYPQGPARWINR-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、排ガス浄化用触媒に係り、特に自動車や産業施設等から排出される一酸化炭素、炭化水素等の可燃性有害および悪臭成分を含有する排ガスの燃焼浄化に用いる触媒に関する。
【0002】
【従来の技術】
自動車排ガス中の一酸化炭素、未燃焼炭化水素類の浄化、各種産業施設等から排出される排ガス中のCO,炭化水素、有機酸、アルコール、エステル、アルデヒド等の可燃性有害および悪臭成分を完全酸化(=燃焼)により浄化するための触媒は近年益々需要が増大している。一般に、排ガス浄化用触媒には高比表面積を有するアルミナ、シリカなどの無機質担体に白金、パラジウム、ロジウム等の貴金属を触媒活性成分として分散担持させた燃焼触媒が使用されていた。
【0003】
しかしながら、このような触媒は多量の反応熱を生じる酸化反応や、高温雰囲気に長時間曝されるような使用条件下においては、担体の熱的劣化により、ひいては活性成分金属のシンタリングにより活性が著しく低下する。この熱劣化を抑制するために、ランタン、バリウムなどの高融点酸化物をアルミナに添加し複合酸化物を形成せしめ、これを担体とする触媒が提案され、実用に供されている(特開昭60―22929,61―28453)。これら担体ではLaAlO3,BaAl2O4が生成しており、これが熱によるアルミナ粒子のシンタリングによる成長を阻止し、その結果、活性成分金属のシンタリングを抑止するとされている。
【0004】
【発明が解決しようとする課題】
上記複合酸化物を担体とする触媒は高温での使用には耐久性を示すが、熱水蒸気に長時間曝されると(炭化水素などの含水素燃料は燃焼時に水蒸気を発生する)、担体の水和・脱水が繰返されたり、またLaAlO3,BaAl2O4が微水溶性であるため、担体粒子の凝集が生じたり、担体の表面組成が変化したりすることにより活性点が凝集し、活性が低下するという問題があった。
さらに、上記複合酸化物を担体とする触媒は排ガス中に硫黄化合物が存在する場合にも活性が低下するという問題もあった。この触媒劣化の原因の一つとして、アルミナ担体の硫酸塩化があげられる。硫酸塩化により担体の多孔性や表面性質が変わるため活性点構造の変化、崩壊が生じ、活性低下をきたすものと考えられた。
【0005】
そのため耐硫黄性担体として、TiO2―SiO2及びTiO2を用いた触媒が提案されている(特公昭60―6695,61―47568)。しかしながら、このTiO2―SiO2及びTiO2担持貴金属触媒は高温耐熱性が低く、高々500℃までの温度範囲で有効に作用するとされている。したがって一般に排ガス浄化用燃焼温度範囲である600―900℃で使用すると触媒は劣化し、活性が低下する。これは担体が約500℃を境に結晶化や結晶転移を生じ、高温では比表面積が著しく低下するとともに、活性成分のシンタリングが進行するためと考えられている。
【0006】
一方、TiO2―SiO2にP2O5を添加した複合酸化物担体も知られている(特公昭60―6695)が、耐熱性はTiO2―SiO2と同等と考えられている。さらに、これら担体を用いた触媒に対する熱水蒸気の影響は何ら明示されていない。
また、活性成分のPtはPdよりCO,炭化水素等可燃成分に対し酸化活性が高く、耐硫黄性も高いが、耐熱性はPdより劣るという問題もある。
本発明の目的は、高温での使用に耐久性が高く、また排ガス中の硫黄酸化物や水蒸気による活性低下の少い排ガス浄化用触媒を提供することにある。
【0007】
【課題を解決するための手段】
上記目的は本願で特許請求する次の構成により達成される。
1.触媒担体成分に触媒活性成分を担持した排ガス浄化用触媒において,シリカ(SiO2)、チタニヤ(TiO2)およびセリア(CeO2)の三成分より形成される複合酸化物を担体成分とし、この担体に触媒活性成分として1wt%以上のパラジウム(Pd)あるいはパラジウムと白金(Pt)を分散担持させたことを特徴とする排ガス浄化用触媒。
【0008】
2.上記1において、上記複合酸化物の組成が、SiO2として10〜50wt%、TiO2として30〜80wt%、CeO2として10〜50wt%であることを特徴とする排ガス浄化用触媒。
【0009】
3.上記1および2において、SiO2およびTiO2の出発原料が酸化物コロイド溶液であり、CeO2の出発原料が硝酸セリウムもしくは酢酸セリウムであることを特徴とする排ガス浄化用触媒。
【0010】
4.上記1において、触媒活性成分であるパラジウムあるいはパラジウムと白金の担持量が金属として担体重量に対して1.0〜10wt%であることを特徴とする排ガス浄化用触媒。
【0011】
【作用】
本発明では、シリカ(SiO2)、チタニヤ(TiO2)及びセリア(CeO2)から形成される三元系複合酸化物(以下、これをSiO2―TiO2―CeO2と略記)を担体とすることにより高温、熱水蒸気及び硫黄化合物による触媒性能の低下を著しく軽減し、またPdとPtとから形成される二元系金属を活性成分とすることによりPtの耐熱性を向上しようとするものである。
従来技術の有する上記欠点のうち、熱水蒸気処理(高温水蒸気曝露)による担体の変質は担体成分の溶解・移動により生ずるものがあるので、不溶性の化合物(TiO2、SiO2、CeO2等)を構成成分とすることで防止できる。また、高温処理や水熱処理による担体の表面構造の変化(細孔崩壊)に起因する活性点の凝集を抑制するためには、担体のシンタリングを抑止するような、熱安定性の高い化合物(CeO2)を担体構成成分として用いることで対応可能である。さらに、硫黄化合物による担体の変質には耐酸性が高く、硫黄原子との反応性が低い金属酸化物(TiO2、SiO2、CeO2等)を担体成分とすることで防止できる。
【0012】
これら担体としての金属酸化物はそれぞれ単独では比表面積が小さいものがほとんどであるから単独では触媒担体として不適なものが多いが、複数の金属酸化物を複合化することにより比表面積を大きくすることが可能である。一般に、二元または三元系複合酸化物は二種または三種の金属塩溶液の混合から混合酸化物(水酸化物)を共沈せしめ、それを乾燥、焼成することにより調製するが、各成分原料が均一に混合しないと均一な複合酸化物とならず、その結果、高比表面積化や熱劣化の改善につながらない要因となる。これを防止するため、原料成分の均一混合は各成分のコロイド溶液を用いることで達成できる。
【0013】
一方、活性成分のPtは低温活性及び耐硫黄性に優れるが、耐熱性が低い。これに対してPdはPtより低温活性は劣るが、耐熱性がある。このことに着目し、両者を適正な割合で存在させることにより、耐熱性に優れ、耐硫黄性も低温活性も高い触媒とすることが可能となる。
【0014】
【実施例】
本発明における触媒担体であるSiO2―TiO2―CeO2が特に有効な理由はまだ明確ではないが、該三元系複合酸化物の構造及び酸性度等が関与して、担体の耐熱性が高くなったり、水、水蒸気及び硫黄化合物との相互作用が小さくなるものと考えられる。本発明になる好適な処理条件である800―1000℃の温度で調製した三元系複合酸化物は結晶度が低く、例えば、1000℃で調製した三元系複合酸化物中に若干のCeO2及びルチル型TiO2を認める以外に、特定の化合物を検知しえなかった。このことはSiO2,TiO2,CeO2が単独で存在するのではなく、大部分三元系の複合酸化物として存在し、これを担体としてパラジウム−白金を担持し触媒とした場合の活性は、非常に高いものとなる。したがって該三種の酸化物は複合化して大部分非晶質であるかあるいは微結晶の状態にあって高比表面積を維持することができ、これが高活性を発現する理由と考えられる。該複合酸化物を調製する際の原料としてシリカ、チタニアの各コロイド溶液が選ばれる理由は、酸化物コロイド粒子の大きさが通常数百Åであることから、両者が超微粒子の状態で非常に均一に混合できるからである。また、セリア原料として水溶性セリウム塩が選ばれる理由は、セリウム水溶液の場合、セリウムがイオンとして存在するのでコロイド溶液内に十分に拡散し均一に混合しうるからである。水溶性塩としては硝酸塩及び酢酸塩が溶解度が高く、分解温度が低いので好ましい。均一に混合した超微粒子、イオンは熱により化合しやすいので、焼成により複合酸化物を生成しやすい。
【0015】
酸化物コロイド溶液は市販されており、その濃度は、通常10−30wt%であり、これを用いても良い。この濃度範囲外のコロイド溶液も調製できるが、安定性を欠き、長時間の保存に耐えられないので触媒製造の実用面からの問題がある。
また該複合酸化物は100%複合化したり、100%非晶質である必要はない。CeO2とTiO2との反応により、チタン酸セリウムがTiO2粒子表面に薄膜として生成し(微量なのでX線回析では検知し得ない)、TiO2粒子の成長やシンタリングを抑制するとともに、SiO2,CeO2粒子がTiO2粒子間隙に介在し、さらにシンタリング抑制の効果をさらに増大していることが考えられる。また、SiO2粒子のシンタリングをCeO2がその粒子間に介在することにより抑制する効果を発現していることも考えられる。
【0016】
本発明者等は多数の実験の結果、本発明に用いられる担体はSiO2が10−50wt%,TiO2が80−30wt%,CeO2が10−50wt%の範囲で構成されるものが前記特有の効果を発現するのに好適であることを見い出した。これ以外の範囲でも使用可能であるが、上記範囲のものに比し、耐熱性及び耐熱水蒸気性が低くなり、また比表面積も小さくなり、触媒活性が低くなる。
触媒活性成分の金属として、パラジウムを用いるのは排ガス中の主可燃分がメタンの場合好適であり、また耐熱性が優れているので、排ガスの高温処理が可能となるからである。パラジウム及び白金の二元系金属を用いる場合は炭化水素及びCOの両可燃成分を効率的に燃焼することが可能となる。パラジウムのみでは排ガス中に硫黄化合物が含まれる場合、硫黄化合物により触媒は被毒されるが、硫黄化合物による被毒が小さい白金との二元系金属にすることにより触媒の耐硫黄性が向上する。さらに白金のみでは耐熱性が低いことの欠点を上記二元系金属にすることによって克服できる効果がある。この二元系の混合比率は重量比でPd/Pt=3/2〜3/1が好ましい。3/2より小さいと耐熱性向上効果が少なくなり、3/1より大きいと耐硫黄性向上効果が少なくなる。
【0017】
触媒活性成分の担持量は担体重量に対して、1.0〜10wt%であることが好ましい。1.0wt%未満では効果が少なかった。10wt%を越えると触媒が高価なものとなり、経済的に不利であり、またそれに見合った効果の増大も期待できなかった。活性成分がパラジウムのみである場合は耐硫黄性が低くなるが、耐熱性及び耐熱水蒸気性は二元系金属の場合と同等の性能を示した。
本発明の触媒は、粒状、球状、円柱状、ハニカム状等の形状に成形して使用されて有効であるが、特に耐熱性三次元構造体に本発明の触媒を担持せしめたものが機械的強度に優れ、また経済的に有利であることは明白である。
【0018】
以下、本発明を具体的実施例および比較例により説明する。
実施例1
コ―ジ―ライト製ハニカム(体積1l)に対して、TiO2が50wt%、SiO2が20wt%、CeO2が30wt%から成る複合酸化物担体を100g担持した。その調製法は次のようにする。TiO2及びSiO2成分を所定量含有したコロイド混合水溶液にCeO2成分を所定量含有するように硝酸セリウム水溶液を加え均一に混合する。この混合溶液を200セル/in2のコージェライト製ハニカムにディップコートし、110℃で2時間乾燥後、900℃で2時間焼成する。このハニカム体に担体量の5wt%相当のパラジウムを含有した硝酸パラジウム水溶液を吸い切り含浸法により担持させ、110℃で2時間乾燥後、600℃で2時間焼成して、ハニカム形状の一体型触媒を得た。
【0019】
本触媒の性能評価を常圧固定層流通管式反応装置を用いて行った。反応管に20mm×20mm×20mmの大きさに切出したハニカム型触媒を充填し、以下の条件でプロパン燃焼反応及びCO燃焼反応を行なわせ、各々の燃焼率を求め、初期活性とした。
空間速度:30000h−1, 触媒層入口温度:350℃
プロパン濃度:1000ppm, CO濃度:600ppm(SO2200ppm含有) ともに空気ベース
初期活性測定後、本触媒を800℃で200時間空気中加熱処理したものと、600℃で200時間、40%の水蒸気を含む空気を流通させ、水蒸気処理を行ったものを作製した。 それらの各々を上記条件により再びプロパン燃焼活性を測定した。 また、CO燃焼活性は連続して行い、200時間後の活性を比較した。 結果を他の実施例触媒の結果とあわせ、表1に示した。
【0020】
実施例2
実施例1において担持したパラジウムに代えて、3wt%相当のパラジウムを含有した硝酸パラジウムと2wt%相当の白金を含有したジニトロジアンミン白金の混合水溶液を用いて、実施例1と同様に調製した触媒を得た。
【0021】
実施例3
実施例2において担持したパラジウムと白金に代えて、3wt%相当のパラジウムを含有した硝酸パラジウムと1.5wt%相当の白金を含有したジニトロジアンミン白金の混合水溶液を用いて、実施例2と同様に調製した触媒を得た。
【0022】
実施例4
実施例2において担持したパラジウムと白金に代えて、3wt%相当のパラジウムを含有した硝酸パラジウムと1.0wt%相当の白金を含有したジニトロジアンミン白金の混合水溶液を用いて、実施例2と同様に調製した触媒を得た。
【0023】
実施例5
実施例3において用いた複合酸化物担体に代えて、TiO2が50wt%、SiO2が40wt%、CeO2が10wt%から成る複合酸化物担体を用いて、実施例3と同様に調製した触媒を得た。
【0024】
実施例6
実施例3において用いた複合酸化物担体に代えて、TiO2が30wt%、SiO2が20wt%、CeO2が50wt%から成る複合酸化物担体を用いて、実施例3と同様に調製した触媒を得た。
【0025】
実施例7
実施例3において用いた複合酸化物担体に代えて、TiO2が80wt%、SiO2が10wt%、CeO2が10wt%から成る複合酸化物担体を用いて、実施例3と同様に調製した触媒を得た。
【0026】
実施例8
実施例3において用いた複合酸化物担体に代えて、TiO2が40wt%、SiO2が50wt%、CeO2が10wt%から成る複合酸化物担体を用いて、実施例3と同様に調製した触媒を得た。
【0027】
実施例9
実施例1において担持したパラジウムに代えて、1wt%相当のパラジウムを含有した硝酸パラジウム水溶液を用いて、実施例1と同様に調製した触媒を得た。
【0028】
実施例10
実施例1において担持したパラジウムに代えて、0.7wt%相当のパラジウムを含有した硝酸パラジウムと0.3wt%相当の白金を含有したジニトロジアンミン白金の混合水溶液を用いて、実施例1と同様に調製した触媒を得た。
【0029】
比較例1
実施例3において用いた複合酸化物担体に代えて、TiO2が60wt%、SiO2が40wt%から成る複合酸化物担体を用いて、実施例3と同様に調製した触媒を得た。 本触媒で実施例15と同様の測定を行った結果を他の比較例触媒の結果とともに表2に示した。
【0030】
比較例2
実施例3において用いた複合酸化物担体に代えて、TiO2が60wt%、CeO2が40wt%から成る複合酸化物担体を用いて、実施例3と同様に調製した触媒を得た。
【0031】
比較例3
実施例3において用いた複合酸化物担体に代えて、SiO2が60wt%、CeO2が40wt%から成る複合酸化物担体を用いて、実施例3と同様に調製した触媒を得た。
【0032】
比較例4
実施例3において用いた複合酸化物担体に代えて、TiO2が60wt%、SiO2が35wt%、CeO2が5wt%から成る複合酸化物担体を用いて、実施例3と同様に調製した触媒を得た。
【0033】
実施例11
実施例3において用いた複合酸化物担体に代えて、TiO2が20wt%、SiO2が50wt%、CeO2が30wt%から成る複合酸化物担体を用いて、実施例3と同様に調製した触媒を得た。
【0034】
実施例12
実施例3において用いた複合酸化物担体に代えて、TiO2が65wt%、SiO2が5wt%、CeO2が30wt%から成る複合酸化物担体を用いて、実施例3と同様に調製した触媒を得た。
【0035】
比較例5
実施例1において担持したパラジウムに代えて、3wt%相当の白金を含有したジニトロジアンミン白金水溶液を用いて、実施例1と同様に調製した触媒を得た。
【0036】
実施例13
実施例2において担持したパラジウムと白金に代えて、0.8wt%相当のパラジウムを含有した硝酸パラジウムと0.2wt%相当の白金を含有したジニトロジアンミン白金の混合水溶液を用いて、実施例2と同様に調製した触媒を得た。
【0037】
実施例14
実施例2において担持したパラジウムと白金に代えて、0.5wt%相当のパラジウムを含有した硝酸パラジウムと0.5wt%相当の白金を含有したジニトロジアンミン白金の混合水溶液を用いて、実施例2と同様に調製した触媒を得た。
【0038】
表1において、実施例1〜8の触媒はいずれの触媒も800℃耐熱性及び耐熱水蒸気性が高く、優れた触媒であることが分かる。実施例9,10,13,14の活性成分担持量が1wt%の触媒は初期活性が他より低くなるが、耐熱性及び耐熱水蒸気性は良好である。実施例1,9,10,を比較すると分かるように、活性成分をPdとPtの二元系にすると、耐硫黄性が著しく増大する。しかしながら、活性成分担持量が1wt%でもPd/Pt比が1では耐熱性が低下する(実施例14)。
【0039】
またPd/Pt比が4(実施例13)では耐硫黄性が低下する。
CeO2が無いか、添加量が少ない触媒(比較例1,4)は耐熱性及び耐熱水蒸気性が劣り、とくに、耐熱水蒸気性が著しく劣ることが分かる。このことはCeO2成分の添加が極めて重要な役割を担っていることを意味する。また担体はチタニア―セリア,シリカ―セリアのみでは耐熱性も耐熱水蒸気性も極めて低い(比較例2,3)。さらに、TiO2が30wt%より少ないもの(実施例11)、SiO2が10wt%より少ないもの(実施例12)は耐熱性が低下している。活性成分としてPtのみの触媒(比較例5)は耐熱性が劣る。Ptの担持量を増加すれば耐熱性は向上するが、通常、Ptの価格はPdの数倍であるから、Ptのみをこれ以上増加するのは触媒の価格をいたずらに上昇し好ましくない。実施例9の触媒のPd担持量を9wt%とすれば、実施例1の触媒以上の耐硫黄性及び耐熱性を有する触媒となることは明白である。
【0040】
【0041】
【0042】
【発明の効果】
以上のように本発明によれば、熱的安定性が高く、熱水蒸気による性能低下の極めて少ない、また耐硫黄性の高い排ガス浄化用触媒を得ることができる。[0001]
[Industrial applications]
The present invention relates to a catalyst for purifying exhaust gas, and more particularly to a catalyst used for purifying exhaust gas containing harmful and odorous components such as carbon monoxide and hydrocarbons discharged from automobiles and industrial facilities.
[0002]
[Prior art]
Purification of carbon monoxide and unburned hydrocarbons in automobile exhaust gas, complete combustible harmful and odorous components such as CO, hydrocarbons, organic acids, alcohols, esters and aldehydes in exhaust gas discharged from various industrial facilities In recent years, demand for a catalyst for purifying by oxidation (= combustion) has been increasing. In general, a combustion catalyst in which a noble metal such as platinum, palladium, and rhodium is dispersed and supported as a catalytically active component on an inorganic carrier such as alumina or silica having a high specific surface area has been used as an exhaust gas purifying catalyst.
[0003]
However, such catalysts have an activity due to thermal degradation of the support and, consequently, sintering of the active ingredient metal under use conditions such as an oxidation reaction that generates a large amount of heat of reaction or prolonged exposure to a high-temperature atmosphere. It decreases significantly. In order to suppress this thermal degradation, a high-melting point oxide such as lanthanum or barium is added to alumina to form a composite oxide, and a catalyst using the composite oxide as a carrier has been proposed and put into practical use (Japanese Patent Laid-Open No. 60-22929, 61-28453). It is said that LaAlO 3 and BaAl 2 O 4 are generated in these carriers, which inhibit the growth of alumina particles by sintering due to heat and, as a result, sintering of the active ingredient metal.
[0004]
[Problems to be solved by the invention]
The catalyst using the above-mentioned composite oxide as a carrier exhibits durability when used at high temperatures, but when exposed to hot steam for a long time (hydrogen-containing fuels such as hydrocarbons generate steam during combustion), Since hydration and dehydration are repeated, and LaAlO 3 and BaAl 2 O 4 are slightly water-soluble, aggregation of carrier particles occurs and the active site aggregates due to a change in the surface composition of the carrier, There was a problem that the activity was reduced.
Further, the catalyst using the above-mentioned composite oxide as a carrier has a problem that its activity is reduced even when a sulfur compound is present in exhaust gas. One of the causes of the catalyst deterioration is sulfation of the alumina carrier. It was considered that the porosity and surface properties of the carrier were changed by the sulfation, resulting in a change and collapse of the active site structure, resulting in a decrease in activity.
[0005]
Therefore, a catalyst using TiO 2 —SiO 2 and TiO 2 as a sulfur-resistant carrier has been proposed (Japanese Patent Publication No. 60-6695, 61-47568). However, the TiO 2 —SiO 2 and TiO 2 -supported noble metal catalysts have low high-temperature heat resistance and are said to work effectively in a temperature range of at most 500 ° C. Therefore, in general, when the catalyst is used in the combustion temperature range for exhaust gas purification of 600 to 900 ° C., the catalyst is deteriorated and the activity is reduced. It is considered that this is because the carrier undergoes crystallization or crystal transition at about 500 ° C., and at a high temperature, the specific surface area is remarkably reduced, and sintering of the active ingredient proceeds.
[0006]
On the other hand, a composite oxide carrier obtained by adding P 2 O 5 to TiO 2 —SiO 2 is also known (Japanese Patent Publication No. 60-6995), but it is considered that the heat resistance is equivalent to that of TiO 2 —SiO 2 . Furthermore, the effect of hot steam on catalysts using these supports is not specified at all.
Further, Pt as an active component has a higher oxidizing activity and a higher sulfur resistance against combustible components such as CO and hydrocarbons than Pd, but also has a problem in that heat resistance is inferior to Pd.
SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas purifying catalyst which has high durability for use at high temperatures and has a small activity decrease due to sulfur oxides and water vapor in exhaust gas.
[0007]
[Means for Solving the Problems]
The above object is achieved by the following constitutions claimed in the present application.
1. In an exhaust gas purifying catalyst in which a catalytically active component is supported on a catalyst carrier component, a composite oxide formed from three components of silica (SiO 2 ), titania (TiO 2 ) and ceria (CeO 2 ) is used as a carrier component, An exhaust gas purifying catalyst characterized in that 1% by weight or more of palladium (Pd) or palladium and platinum (Pt) are dispersed and supported as a catalytically active component.
[0008]
2. 1. The exhaust gas purifying catalyst according to 1, wherein the composition of the composite oxide is 10 to 50 wt% as SiO 2 , 30 to 80 wt% as TiO 2 , and 10 to 50 wt% as CeO 2 .
[0009]
3. 1. The exhaust gas purifying catalyst according to 1 or 2 above, wherein the starting material of SiO 2 and TiO 2 is an oxide colloid solution, and the starting material of CeO 2 is cerium nitrate or cerium acetate.
[0010]
4. 2. The exhaust gas purifying catalyst according to the above item 1, wherein the amount of palladium or palladium and platinum, which is a catalytically active component, is 1.0 to 10 wt% as a metal relative to the weight of the carrier.
[0011]
[Action]
In the present invention, a ternary composite oxide (hereinafter abbreviated as SiO 2 —TiO 2 —CeO 2 ) formed of silica (SiO 2 ), titania (TiO 2 ) and ceria (CeO 2 ) is used as a carrier. To significantly reduce the deterioration of catalytic performance due to high temperature, hot steam and sulfur compounds, and to improve the heat resistance of Pt by using a binary metal formed from Pd and Pt as an active component. It is.
Among the above-mentioned drawbacks of the prior art, some of the carriers are altered by hot steam treatment (exposure to high-temperature steam) due to the dissolution and movement of the carrier components. Therefore, insoluble compounds (TiO 2 , SiO 2 , CeO 2, etc.) are used. It can be prevented by using it as a constituent. In addition, in order to suppress aggregation of active sites due to a change in the surface structure of the carrier (pore collapse) due to high-temperature treatment or hydrothermal treatment, a compound having high thermal stability that suppresses sintering of the carrier ( This can be achieved by using CeO 2 ) as a carrier component. Further, deterioration of the carrier due to a sulfur compound can be prevented by using a metal oxide (TiO 2 , SiO 2 , CeO 2 or the like) having high acid resistance and low reactivity with a sulfur atom as a carrier component.
[0012]
Most of these metal oxides alone as carriers have a small specific surface area, so they are often unsuitable as catalyst carriers by themselves.However, it is necessary to increase the specific surface area by combining multiple metal oxides. Is possible. Generally, a binary or ternary composite oxide is prepared by coprecipitating a mixed oxide (hydroxide) from a mixture of two or three types of metal salt solutions, drying and calcining the mixed oxide. If the raw materials are not mixed uniformly, a uniform composite oxide will not be obtained, and as a result, this will not lead to an increase in specific surface area or improvement in thermal degradation. In order to prevent this, uniform mixing of the raw material components can be achieved by using a colloid solution of each component.
[0013]
On the other hand, Pt as an active ingredient has excellent low-temperature activity and sulfur resistance, but has low heat resistance. On the other hand, Pd has lower temperature activity than Pt, but has heat resistance. By paying attention to this fact, by allowing both to be present in an appropriate ratio, a catalyst having excellent heat resistance, high sulfur resistance and high low-temperature activity can be obtained.
[0014]
【Example】
The reason why SiO 2 —TiO 2 —CeO 2, which is a catalyst carrier in the present invention, is particularly effective is not clear yet, but the heat resistance of the carrier is affected by the structure and acidity of the ternary composite oxide. It is believed that they would be higher or less interact with water, water vapor and sulfur compounds. The ternary composite oxide prepared at a temperature of 800-1000 ° C., which is a preferred processing condition according to the present invention, has a low crystallinity. For example, some CeO 2 is contained in the ternary composite oxide prepared at 1000 ° C. and in addition admit rutile TiO 2, could not have detected the specific compound. This means that SiO 2 , TiO 2 , and CeO 2 do not exist alone, but mostly exist as a ternary composite oxide, and the activity when a palladium-platinum is supported as a carrier and used as a catalyst is as follows. , Very expensive. Therefore, these three kinds of oxides are complexed and are mostly amorphous or in the state of microcrystals and can maintain a high specific surface area, which is considered to be the reason for exhibiting high activity. The reason that each colloidal solution of silica and titania is selected as a raw material when preparing the composite oxide is that the size of the oxide colloidal particles is usually several hundreds of millimeters, so that both are very fine particles. This is because they can be mixed uniformly. The reason why the water-soluble cerium salt is selected as the ceria raw material is that, in the case of a cerium aqueous solution, cerium is present as ions, so that it can be sufficiently diffused into the colloid solution and uniformly mixed. As water-soluble salts, nitrates and acetates are preferred because of their high solubility and low decomposition temperature. Since ultrafine particles and ions uniformly mixed are apt to be combined by heat, a composite oxide is easily generated by firing.
[0015]
The colloidal oxide solution is commercially available, and its concentration is usually 10 to 30% by weight, and may be used. Although a colloid solution having a concentration outside this range can be prepared, it lacks stability and cannot withstand long-term storage, so there is a problem from the practical viewpoint of catalyst production.
The composite oxide does not need to be 100% complex or 100% amorphous. Due to the reaction between CeO 2 and TiO 2 , cerium titanate is formed as a thin film on the surface of the TiO 2 particles (it cannot be detected by X-ray diffraction because it is so small) that the growth and sintering of the TiO 2 particles are suppressed, It is considered that the SiO 2 and CeO 2 particles are interposed in the TiO 2 particle gap, and the effect of suppressing sintering is further increased. It is also conceivable that CeO 2 has an effect of suppressing sintering of SiO 2 particles by intervening between the particles.
[0016]
As a result of a number of experiments, the present inventors have found that the carrier used in the present invention is composed of 10 to 50 wt% of SiO 2 , 80 to 30 wt% of TiO 2, and 10 to 50 wt% of CeO 2. It has been found that it is suitable for exhibiting a specific effect. Although it can be used in other ranges, the heat resistance and heat-resistant steam resistance are lower, the specific surface area is smaller, and the catalytic activity is lower than those in the above range.
The use of palladium as the metal of the catalytically active component is preferred when the main combustible component in the exhaust gas is methane, and because it has excellent heat resistance, the exhaust gas can be treated at a high temperature. When a binary metal of palladium and platinum is used, both combustible components of hydrocarbon and CO can be efficiently burned. When sulfur compounds are contained in the exhaust gas with only palladium, the catalyst is poisoned by the sulfur compounds, but the sulfur resistance of the catalyst is improved by using a binary metal with platinum that is less poisoned by the sulfur compounds. . Further, there is an effect that the disadvantage that the heat resistance is low only with platinum can be overcome by using the above-mentioned binary metal. The mixing ratio of this binary system is preferably Pd / Pt = 3/2 to 3/1 by weight. If it is smaller than 3/2, the effect of improving heat resistance is reduced, and if it is larger than 3/1, the effect of improving sulfur resistance is reduced.
[0017]
The loading amount of the catalytically active component is preferably 1.0 to 10% by weight based on the weight of the carrier. Less than 1.0 wt% had little effect. If it exceeds 10% by weight, the catalyst becomes expensive, which is economically disadvantageous, and a corresponding increase in the effect cannot be expected. When the active ingredient was only palladium, the sulfur resistance was low, but the heat resistance and the heat-resistant steam resistance showed the same performance as that of the binary metal.
The catalyst of the present invention is effective when used in the form of granules, spheres, columns, honeycombs, etc., and particularly, those obtained by supporting the catalyst of the present invention on a heat-resistant three-dimensional structure are mechanical. Obviously, it is excellent in strength and economically advantageous.
[0018]
Hereinafter, the present invention will be described with reference to specific examples and comparative examples.
Example 1
100 g of a composite oxide carrier composed of 50 wt% of TiO 2 , 20 wt% of SiO 2 and 30 wt% of CeO 2 was supported on a cordierite honeycomb (volume: 1 liter). The preparation method is as follows. An aqueous cerium nitrate solution is added to the aqueous colloid mixture containing predetermined amounts of the TiO 2 and SiO 2 components so as to contain the predetermined amount of the CeO 2 component, and mixed uniformly. This mixed solution is dip-coated on a cordierite honeycomb of 200 cells / in 2 , dried at 110 ° C. for 2 hours, and baked at 900 ° C. for 2 hours. An aqueous solution of palladium nitrate containing 5 wt% of palladium corresponding to the amount of the carrier was supported on the honeycomb body by a suction impregnation method, dried at 110 ° C. for 2 hours, and calcined at 600 ° C. for 2 hours to obtain a honeycomb-shaped integrated catalyst. Got.
[0019]
The performance of this catalyst was evaluated using an atmospheric pressure fixed bed flow tube reactor. A reaction tube was filled with a honeycomb-shaped catalyst cut into a size of 20 mm × 20 mm × 20 mm, and a propane combustion reaction and a CO combustion reaction were carried out under the following conditions.
Space velocity: 30000 h −1 , catalyst layer inlet temperature: 350 ° C.
Propane concentration: 1000 ppm, CO concentration: 600 ppm (containing 200 ppm of SO 2 ) After measuring the air-based initial activity, the catalyst was heat-treated at 800 ° C. for 200 hours in air, and 40% steam at 600 ° C. for 200 hours. Air containing was circulated to produce a product subjected to steam treatment. Each of them was again measured for propane combustion activity under the above conditions. The CO burning activity was continuously performed, and the activity after 200 hours was compared. The results are shown in Table 1 together with the results of the catalysts of the other examples.
[0020]
Example 2
Using a mixed aqueous solution of palladium nitrate containing 3 wt% of palladium and dinitrodiammine platinum containing 2 wt% of platinum instead of the supported palladium in Example 1, a catalyst prepared in the same manner as in Example 1 was used. Obtained.
[0021]
Example 3
In the same manner as in Example 2, a mixed aqueous solution of palladium nitrate containing 3 wt% of palladium and dinitrodiammine platinum containing 1.5 wt% of platinum was used instead of the supported palladium and platinum in Example 2. The prepared catalyst was obtained.
[0022]
Example 4
In the same manner as in Example 2, a mixed aqueous solution of palladium nitrate containing 3 wt% of palladium and dinitrodiammine platinum containing 1.0 wt% of platinum was used instead of the supported palladium and platinum in Example 2. The prepared catalyst was obtained.
[0023]
Example 5
A catalyst prepared in the same manner as in Example 3 except that the composite oxide carrier used in Example 3 was replaced with a composite oxide carrier consisting of 50 wt% of TiO 2 , 40 wt% of SiO 2 , and 10 wt% of CeO 2 Got.
[0024]
Example 6
A catalyst prepared in the same manner as in Example 3 except that the composite oxide carrier used in Example 3 was replaced with a composite oxide carrier composed of 30 wt% of TiO 2 , 20 wt% of SiO 2 , and 50 wt% of CeO 2 Got.
[0025]
Example 7
Instead of the composite oxide support used in Example 3, TiO 2 is 80 wt%, SiO 2 is 10 wt%, catalyst CeO 2 by using a composite oxide support consisting of 10 wt%, were prepared in the same manner as in Example 3 Got.
[0026]
Example 8
A catalyst prepared in the same manner as in Example 3 except that the composite oxide carrier used in Example 3 was replaced with a composite oxide carrier consisting of 40 wt% of TiO 2 , 50 wt% of SiO 2 , and 10 wt% of CeO 2 Got.
[0027]
Example 9
A catalyst prepared in the same manner as in Example 1 was obtained using an aqueous solution of palladium nitrate containing 1% by weight of palladium instead of the palladium supported in Example 1.
[0028]
Example 10
In the same manner as in Example 1, a mixed aqueous solution of palladium nitrate containing 0.7% by weight of palladium and dinitrodiammine platinum containing 0.3% by weight of platinum was used instead of the supported palladium in Example 1. The prepared catalyst was obtained.
[0029]
Comparative Example 1
A catalyst prepared in the same manner as in Example 3 was obtained using a composite oxide carrier composed of 60 wt% of TiO 2 and 40 wt% of SiO 2 instead of the composite oxide carrier used in Example 3. The results of the same measurement as in Example 15 performed on this catalyst are shown in Table 2 together with the results of the other comparative catalysts.
[0030]
Comparative Example 2
A catalyst prepared in the same manner as in Example 3 was obtained using a composite oxide carrier composed of 60 wt% of TiO 2 and 40 wt% of CeO 2 instead of the composite oxide carrier used in Example 3.
[0031]
Comparative Example 3
A catalyst prepared in the same manner as in Example 3 was obtained using a composite oxide carrier composed of 60 wt% of SiO 2 and 40 wt% of CeO 2 instead of the composite oxide carrier used in Example 3.
[0032]
Comparative Example 4
Catalyst prepared in the same manner as in Example 3 except that the composite oxide carrier used in Example 3 was replaced with a composite oxide carrier composed of 60 wt% of TiO 2 , 35 wt% of SiO 2 , and 5 wt% of CeO 2 Got.
[0033]
Example 11
A catalyst prepared in the same manner as in Example 3 except that the composite oxide carrier used in Example 3 was replaced with a composite oxide carrier composed of 20 wt% of TiO 2 , 50 wt% of SiO 2 , and 30 wt% of CeO 2 Got.
[0034]
Example 12
A catalyst prepared in the same manner as in Example 3 except that the composite oxide carrier used in Example 3 was replaced with a composite oxide carrier consisting of 65 wt% of TiO 2 , 5 wt% of SiO 2 and 30 wt% of CeO 2 Got.
[0035]
Comparative Example 5
A catalyst prepared in the same manner as in Example 1 was obtained using a dinitrodiammine platinum aqueous solution containing 3 wt% of platinum instead of the supported palladium in Example 1.
[0036]
Example 13
Instead of the supported palladium and platinum in Example 2, a mixed aqueous solution of palladium nitrate containing 0.8 wt% of palladium and dinitrodiammine platinum containing 0.2 wt% of platinum was used. A similarly prepared catalyst was obtained.
[0037]
Example 14
Instead of the supported palladium and platinum in Example 2, a mixed aqueous solution of palladium nitrate containing 0.5 wt% of palladium and dinitrodiammine platinum containing 0.5 wt% of platinum was used. A similarly prepared catalyst was obtained.
[0038]
In Table 1, it can be seen that all of the catalysts of Examples 1 to 8 have excellent heat resistance at 800 ° C. and heat resistance to steam, and are excellent catalysts. The catalysts of Examples 9, 10, 13, and 14 having an active ingredient loading of 1 wt% have lower initial activity than others, but have good heat resistance and heat resistant steam resistance. As can be seen by comparing Examples 1, 9, and 10, when the active ingredient is a binary system of Pd and Pt, the sulfur resistance is significantly increased. However, even when the active ingredient carrying amount is 1 wt%, the heat resistance is reduced when the Pd / Pt ratio is 1 (Example 14).
[0039]
When the Pd / Pt ratio is 4 (Example 13), the sulfur resistance decreases.
It can be seen that the catalysts without CeO 2 or with a small amount of addition (Comparative Examples 1 and 4) are inferior in heat resistance and heat-resistant steam resistance, and particularly inferior in heat-resistant steam resistance. This means that the addition of the CeO 2 component plays a very important role. When the carrier is titania-ceria or silica-ceria alone, the heat resistance and the heat-resistant steam resistance are extremely low (Comparative Examples 2 and 3). Further, those having less than 30 wt% of TiO 2 (Example 11) and those having less than 10 wt% of SiO 2 (Example 12) have reduced heat resistance. A catalyst containing only Pt as an active component (Comparative Example 5) has poor heat resistance. The heat resistance is improved by increasing the supported amount of Pt, but the price of Pt is usually several times that of Pd. Therefore, increasing Pt only further increases the cost of the catalyst undesirably. If the amount of Pd carried on the catalyst of Example 9 is 9 wt%, it is apparent that the catalyst has sulfur resistance and heat resistance higher than those of the catalyst of Example 1.
[0040]
[0041]
[0042]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an exhaust gas purifying catalyst that has high thermal stability, has extremely low performance degradation due to hot steam, and has high sulfur resistance.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07544394A JP3556695B2 (en) | 1994-03-23 | 1994-03-23 | Exhaust gas purification catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07544394A JP3556695B2 (en) | 1994-03-23 | 1994-03-23 | Exhaust gas purification catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07256105A JPH07256105A (en) | 1995-10-09 |
JP3556695B2 true JP3556695B2 (en) | 2004-08-18 |
Family
ID=13576405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07544394A Expired - Fee Related JP3556695B2 (en) | 1994-03-23 | 1994-03-23 | Exhaust gas purification catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3556695B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2765492B1 (en) * | 1997-07-03 | 1999-09-17 | Rhodia Chimie Sa | GAS TREATMENT PROCESS FOR THE REDUCTION OF NITROGEN OXIDE EMISSIONS USING A CATALYTIC COMPOSITION WITH A SUPPORT BASED ON SILICA AND TITANIUM OXIDE |
ES2299221T3 (en) | 1997-12-26 | 2008-05-16 | Toyota Jidosha Kabushiki Kaisha | PROCEDURE TO PRODUCE A CATALYST TO PURIFY EXHAUST GASES. |
KR100723392B1 (en) * | 2006-02-02 | 2007-05-30 | 삼성에스디아이 주식회사 | Composite oxide support, catalyst for low temperature water gas shift reaction and method of preparing the same |
KR100888018B1 (en) * | 2007-10-31 | 2009-03-09 | 에스케이에너지 주식회사 | A catalyst for treating exhaust gas of diesel lng dual fuel vehicles |
WO2014202149A1 (en) * | 2013-06-21 | 2014-12-24 | Rhodia Operations | Composite oxide based on cerium oxide, silicon oxide and titanium oxide |
CN106466606A (en) * | 2015-08-19 | 2017-03-01 | 中国科学院广州能源研究所 | A kind of organic waste gas catalytic combustion catalyst of vapour resistant and sulfur poisoning and preparation method thereof |
CN106179304A (en) * | 2016-07-28 | 2016-12-07 | 南昌航空大学 | A kind of CeO possessing photo catalytic reduction performance2tiO2the preparation method of nano composite material |
EP3953024A4 (en) * | 2019-04-11 | 2022-12-28 | BASF Corporation | Selective ammonia oxidation catalyst |
CN115518637A (en) * | 2022-11-02 | 2022-12-27 | 中国科学院长春应用化学研究所 | Preparation method of precious metal composite catalyst and application of catalytic oxidation of formaldehyde at room temperature |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52122293A (en) * | 1976-04-08 | 1977-10-14 | Nippon Shokubai Kagaku Kogyo Co Ltd | Catalyst for purifying nox |
JPH01218685A (en) * | 1988-02-26 | 1989-08-31 | Nippon Shokubai Kagaku Kogyo Co Ltd | Process for treating waste water |
-
1994
- 1994-03-23 JP JP07544394A patent/JP3556695B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07256105A (en) | 1995-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7641875B1 (en) | Mixed-phase ceramic oxide three-way catalyst formulations and methods for preparing the catalysts | |
JP4950365B2 (en) | Mixed phase ceramic oxide ternary alloy catalyst formulation and method for producing the catalyst | |
JP5910833B2 (en) | Exhaust gas purification catalyst | |
JP6907890B2 (en) | Exhaust gas purification catalyst | |
JPS63162043A (en) | Catalyst for cleaning exhaust gas | |
JPH01281144A (en) | Catalyst for purifying exhaust gas | |
JPS63116741A (en) | Catalyst for purifying exhaust gas | |
JP2003126694A (en) | Catalyst for cleaning exhaust gas | |
WO2012093599A1 (en) | Exhaust gas purifying catalyst | |
WO2001019510A1 (en) | Auxiliary catalyst for purifying exhaust gas | |
JP5674092B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP3556695B2 (en) | Exhaust gas purification catalyst | |
JP4352300B2 (en) | Composite oxide, method for producing the same, and co-catalyst for exhaust gas purification | |
JP5003954B2 (en) | Exhaust gas purification oxidation catalyst, production method thereof, and exhaust gas purification method using exhaust gas purification oxidation catalyst | |
JPH08131830A (en) | Catalyst for purification of exhaust gas | |
JP3799466B2 (en) | Exhaust gas purification catalyst | |
JP2006521203A (en) | Catalyst for low temperature oxidation of methane | |
JP5794908B2 (en) | Exhaust gas purification catalyst and exhaust gas purification catalyst structure | |
JP5120360B2 (en) | Oxygen storage / release material and exhaust gas purifying catalyst provided with the same | |
JP3855262B2 (en) | Exhaust gas purification catalyst | |
JPS63116742A (en) | Catalyst for purifying exhaust gas | |
JP3757715B2 (en) | Exhaust gas purification catalyst | |
JP6401740B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP5019019B2 (en) | Exhaust gas purification catalyst carrier, exhaust gas purification catalyst and exhaust gas purification method using the same | |
JP3145383B2 (en) | High temperature combustion catalyst and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040506 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040513 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |