KR100888018B1 - A catalyst for treating exhaust gas of diesel lng dual fuel vehicles - Google Patents
A catalyst for treating exhaust gas of diesel lng dual fuel vehicles Download PDFInfo
- Publication number
- KR100888018B1 KR100888018B1 KR1020070110162A KR20070110162A KR100888018B1 KR 100888018 B1 KR100888018 B1 KR 100888018B1 KR 1020070110162 A KR1020070110162 A KR 1020070110162A KR 20070110162 A KR20070110162 A KR 20070110162A KR 100888018 B1 KR100888018 B1 KR 100888018B1
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- exhaust gas
- palladium
- vehicle
- platinum
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7022—Aliphatic hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/018—Natural gas engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0242—Coating followed by impregnation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Toxicology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Catalysts (AREA)
Abstract
Description
본 발명은 디젤 LNG 혼소 차량 배기가스 정화용 촉매에 관한 것으로 구체적으로는 배기가스 중 메탄을 효율적으로 제거하고 황에 대한 피독 억제 효과가 우수한 배기가스 정화촉매에 관한 것이다.The present invention relates to a catalyst for purifying exhaust gas for diesel LNG mixed-vehicle vehicles, and more particularly, to an exhaust gas purifying catalyst having an effective removal of methane from exhaust gas and an excellent anti-toxic effect on sulfur.
천연가스 자동차는 연료 공급방식에 따라 CNG와 LNG로 구분할 수 있으며 CNG는 고압용기에 약 200기압으로 압축된 가스를 저장하여 사용하며 LNG는 -130℃ 내외의 초저온 연료를 자동차 연료로 공급한다. 국내외적으로 CNG가 천연가스 연료의 대부분을 차지하는 이유는 LNG의 적용이 CNG에 비해 어렵고 또한 LNG를 공급할 수 있는 인프라가 부족하기 때문으로 판단된다. 국내의 경우 CNGV(CNG vehicle)의 보급이 시장에서 좋은 반응을 보이고 있으며 성숙단계에 있다고 판단되지만 LNGV(LNG vehicle)는 이제 개발단계를 거쳐 시험 운행하는 단계이다.Natural gas vehicles can be divided into CNG and LNG according to the fuel supply method. CNG stores and uses compressed gas at about 200 atm in a high-pressure container. LNG supplies ultra-low temperature fuel around -130 ℃ as automotive fuel. The reason why CNG accounts for most of natural gas fuel at home and abroad is that LNG is more difficult to apply than CNG and there is insufficient infrastructure to supply LNG. In Korea, the supply of CNGV (CNG vehicle) is showing good response in the market and it is considered to be mature stage, but LNGV (LNG vehicle) is now undergoing development and testing.
한편, 연소 점화방법에 따라서 천연가스엔진은 전소(dedicate)방식과 혼소(dual fuel)방식으로 나눌 수 있으며 전소방식의 경우 전기방식에 의한 점화방식 으로 가솔린 기관의 연소방식이며 혼소방식은 디젤연료를 점화원으로 이용하는 방식이다. 기존 경유차량을 천연가스엔진으로 개조하는 경우 혼소방식을 적용하면 점화계통의 변경 없이 천연가스 공급시스템만을 장착함으로서 비교적 간단히 연료전환이 가능한 특징이 있다.On the other hand, depending on the combustion ignition method, natural gas engines can be divided into dedicate and dual fuel types. In the case of burned-up methods, the ignition method by electric method is the combustion method of gasoline engines, and the fusion method is diesel fuel. It is used as an ignition source. In case of converting existing diesel vehicle to natural gas engine, if mixed gas is applied, only natural gas supply system is installed without changing ignition system, so it is relatively simple to convert fuel.
천연가스 차량은 배기가스의 주성분이 메탄이다. 메탄은 잠재적인 온실가스 물질로서 수명이 매우 길고 이산화탄소보다 그 효과가 매우 크다. 천연가스 자동차 배출 메탄가스의 환경적 영향으로 인해 이에 대한 배출규제가 향후 실시될 것으로 예상되며, 현재 배출되는 메탄가스의 60%를 저온 후단 처리장치 등으로 처리해야만 유럽에서 시행되고 있는 가장 강력한 규제를 맞출 수가 있다.Natural gas vehicles have methane as their main component. Methane is a potential greenhouse gas substance with a very long lifespan and a greater effect than carbon dioxide. Natural gas vehicle emissions Due to the environmental impact of methane gas, emission regulations are expected to be enforced in the future, and 60% of the current methane gas must be treated with a low temperature post-treatment device to implement the strongest regulations in Europe. I can hit it.
현재 메탄을 산화시키기 위한 촉매로서 팔라듐이 활성성분으로 담지된 촉매를 사용하고 있다. 그러나 팔라듐은 황(S)이 존재하는 경우 촉매활성이 현저히 저하되는 문제점이 있다.Currently, a catalyst in which palladium is supported as an active ingredient is used as a catalyst for oxidizing methane. However, palladium has a problem that the catalytic activity is significantly lowered when sulfur (S) is present.
한편, LNG에는 황이 함유되지 않으나 디젤에는 황이 함유되어 있으므로 디젤-LNG 혼소차량의 경우 배기가스 내 메탄을 산화시키기 위한 촉매 활성 물질은 디젤에 함유된 황(S)에 의해 피독되므로 디젤-LNG 혼소 차량에 적합한 메탄 제거 촉매의 개발이 필요한 실정이다. On the other hand, LNG does not contain sulfur, but diesel contains sulfur. In the case of diesel-LNG mixed vehicles, the catalytically active material for oxidizing methane in the exhaust gas is poisoned by sulfur (S) contained in diesel. There is a need for the development of a suitable methane removal catalyst.
본 발명은 디젤-LNG 혼소 차량의 배기가스 중 메탄을 효율적으로 제거할 수 있는 디젤-LNG 혼소 차량 배기가스 정화용 촉매를 제공하는데 목적이 있다.An object of the present invention is to provide a catalyst for purifying a diesel-LNG mixed vehicle exhaust gas which can efficiently remove methane from the exhaust gas of a diesel-LNG mixed vehicle.
또한, 본 발명의 또 다른 목적은 메탄의 제거효율이 높고, 황에 의한 피독 현상을 억제하는 디젤-LNG 혼소 차량 배기가스 정화용 촉매를 제공하는 것이다.In addition, another object of the present invention is to provide a catalyst for purifying a diesel-LNG mixed vehicle exhaust gas which has high methane removal efficiency and suppresses poisoning by sulfur.
본 발명자들은 상술한 바 목적을 달성하기 위하여 연구를 거듭한 결과 팔라듐 촉매 성분 외에 백금을 담지하되 팔라듐과 백금의 중량비를 조절하여 황에 의한 피독 현상을 억제할 수 있는 것을 발견하고 본 발명을 완성하기에 이르렀다.The present inventors have carried out research to achieve the above object, and found that it is possible to support the platinum in addition to the palladium catalyst component to suppress the poisoning phenomenon by sulfur by adjusting the weight ratio of palladium and platinum to complete the present invention. Reached.
통상 디젤연료는 국내 유황함유량이 50ppm 이하로 관리되고 있다. 따라서 디젤-LNG 혼소차량에 있어 혼소비율에 의존적이기는 하나 디젤 LNG 혼소 차량의 배기가스 내에 존재하는 유황의 농도는 10ppm 이하, 0.1 내지 10ppm, 보다 구체적으로는 0.1 내지 5ppm 정도가 된다. 본 발명에서는 상기와 같이 디젤 LNG 혼소 차량 배기가스 조건에서 우수한 메탄 산화활성을 가지도록 팔라듐(Pd) 및 백금(Pt)의 담지량의 비를 조절하였으며 그 결과 팔라듐 : 백금 성분이 1 : 0.1 ~ 0.5 중량비로 담지되는 경우 디젤 LNG 혼소 차량의 배기가스에 함유되는 황에 대한 피독 억제 효과가 우수하고 메탄 산화활성이 높은 것을 발견하였다.Diesel fuel is usually managed at 50ppm or less in Korea. Therefore, the concentration of sulfur present in the exhaust gas of the diesel LNG mixed vehicle is 10 ppm or less, 0.1 to 10 ppm, more specifically 0.1 to 5 ppm, depending on the mixing ratio of the diesel-LNG mixed vehicle. In the present invention, as described above, the loading ratio of palladium (Pd) and platinum (Pt) was adjusted to have excellent methane oxidation activity under the conditions of diesel LNG mixed vehicle exhaust gas, and as a result, palladium: platinum component is 1: 0.1 to 0.5 by weight ratio. It was found that the poisoning effect on sulfur contained in the exhaust gas of diesel LNG mixed-vehicle vehicle was excellent and the methane oxidation activity was high.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 디젤 LNG 혼소차량 배기가스 정화용 촉매에 있어서, 촉매 활성 성분으로서 팔라듐(Pd) : 백금(Pt)이 1 : 0.1 ~ 0.5의 중량비로 담지된 디젤 LNG 혼소차량 배기가스 정화용 촉매에 관한 것이다. 보다 바람직하게는 세라믹 지지체에 산성 처리된 담체 및 촉매 활성 성분으로서 팔라듐(Pd) : 백금(Pt)이 1 : 0.1 ~ 0.5의 중량비로 담지된 디젤 LNG 혼소차량 배기가스 정화용 촉매에 관한 것이다.The present invention relates to a catalyst for diesel LNG mixed vehicle exhaust gas purification, in which a catalyst active component is supported by palladium (Pd): platinum (Pt) in a weight ratio of 1: 0.1 to 0.5. More preferably, the present invention relates to a catalyst for purifying exhaust gas for diesel LNG mixed vehicle, in which palladium (Pd): platinum (Pt) is supported at a weight ratio of 1: 0.1 to 0.5 as an acid treated carrier and a catalytically active component on a ceramic support.
상기 팔라듐(Pd):백금(Pt)의 중량 비율은 1 : 0.1~0.5 인 것이 바람직하고, 1 : 0.1~0.3 인 것이 보다 바람직하다. It is preferable that it is 1: 0.1-0.5, and, as for the weight ratio of the said palladium (Pd): platinum (Pt), it is more preferable that it is 1: 0.1-0.3.
메탄을 산화하는 촉매 활성은 팔라듐이 백금에 비하여 우수하나, 팔라듐은 황에 의해 쉽게 피독되어 촉매 활성이 상실되는 특성이 있어 황에 대한 피독 억제 효과를 가지기 위해서는 팔라듐 외에 조촉매가 도입되어야 한다. 메탄 산화 활성이 유지되면서 황에 대한 피독 억제 효과를 가지는 조촉매로서 백금이 우수한 효과를 가지나 백금은 팔라듐에 비해 메탄 산화활성이 낮으므로 황에 대한 피독 억제 효과와 동시에 우수한 메탄 산화활성을 가지기 위한 백금 및 팔라듐의 비율이 중요하다. 또한 디젤 LNG 혼소 차량에서 배기가스 내 황의 함유량에 대해 피독 억제 효과 및 우수한 메탄 산화활성을 가질 수 있도록 하기 위해 연구를 거듭한 결과 팔라듐 : 백금의 비율을 1 : 0.1~0.5 중량비로, 보다 바람직하게는 1 : 0.1~0.3 중량비로 하는 경우 디젤 LNG 혼소 차량의 배기가스 조건에서 황에 대한 피독 억제 효과를 가지며 우수한 메탄 산화 활성을 가지는 것을 확인하였다. 상기 백금의 함량이 팔라듐에 대하여 0.1 중량비 미만으로 낮은 경우에는 황에 대한 피독 억제 효과가 현 저히 저하되고, 상기 백금의 함량이 팔라듐에 대하여 0.5중량비로 많은 경우에는 촉매 활성이 저하된다. 따라서, 상기 범위로 조절하여야만 디젤 LNG 혼소 차량에서 황에 대한 피독 억제 효과 및 높은 메탄 산화활성을 가질 수 있다.The catalytic activity of oxidizing methane is superior to that of palladium, but palladium is easily poisoned by sulfur and loses catalytic activity. Therefore, in order to have a poisoning inhibitory effect on sulfur, a promoter must be introduced in addition to palladium. Platinum has a superior effect as a cocatalyst having a poisoning inhibitory effect on sulfur while maintaining methane oxidation activity, but platinum has a lower methane oxidation activity than palladium, and thus platinum has a poisoning inhibitory effect on sulfur and excellent methane oxidation activity. And the proportion of palladium is important. In addition, as a result of researches to have a poisoning inhibitory effect and excellent methane oxidation activity for the sulfur content of the exhaust gas in diesel LNG mixed-vehicle vehicle, the ratio of palladium to platinum is 1: 0.1 to 0.5 by weight, more preferably When the ratio is 1: 0.1 to 0.3 by weight, it was confirmed that it has an anti-toxic effect on sulfur and excellent methane oxidation activity under exhaust gas conditions of diesel LNG mixed vehicle. When the content of platinum is lower than 0.1 weight ratio with respect to palladium, the poisoning inhibitory effect on sulfur is remarkably reduced, and when the content of platinum is 0.5 weight ratio with respect to palladium, catalytic activity is lowered. Therefore, it should be adjusted to the above range in the diesel LNG mixed vehicle can have a poisoning inhibitory effect on sulfur and high methane oxidation activity.
본 발명에 따른 배기가스 정화용 촉매는 세라믹 지지체에 담체 및 촉매활성물질로서 팔라듐 및 백금 성분이 담지된 것이다. 상기 세라믹 지지체로는 코디어라이트와 같은 내열성 세라믹 재료로 이루어진 하니콤 모노리스 형태인 것을 사용할 수 있다. 상기 담체로는 알루미나, 지르코니아, 실리카, 세리아 등을 단독 또는 혼합하여 사용할 수 있다. 알루미나를 사용하는 것이 촉매 활성 측면에서 유리하여 보다 바람직하다. 상기 담체는 황산 등의 산으로 산성 처리하여 사용할 수도 있다.The catalyst for purifying exhaust gases according to the present invention is a palladium and platinum component supported as a carrier and a catalytically active material on a ceramic support. The ceramic support may be a honeycomb monolith type made of a heat resistant ceramic material such as cordierite. As the carrier, alumina, zirconia, silica, ceria, or the like may be used alone or in combination. The use of alumina is more preferred in view of catalytic activity. The carrier may be used by acidic treatment with an acid such as sulfuric acid.
세라믹 지지체에 담지된 담체의 양은 0.5 내지 4g/in3 인 것이 바람직하다. 이는 상기 담체의 함량이 0.5 g/in3 미만일 경우 촉매의 성능이 현저히 감소하며 4g/in3을 초과하면 촉매 성능이 더 이상 증가하지 않게 됨과 동시에 제조가 용이하지 않게 된다. The amount of the carrier supported on the ceramic support is preferably 0.5 to 4 g / in 3 . When the content of the carrier is less than 0.5 g / in 3 , the performance of the catalyst is remarkably reduced, and when the content of the carrier exceeds 4 g / in 3 , the catalyst performance no longer increases and at the same time, the production is not easy.
또한 본 발명에서 촉매에 담지되는 촉매활성물질의 함량은 담체 및 촉매활성물질을 합한 중량에 대하여 0.1 내지 20중량% 범위이고 보다 바람직하게는 1 내지 15중량%이다. 상기 함량이 0.1 중량% 미만일 경우 촉매의 성능이 현저히 감소되고, 20중량%를 초과하는 경우 더 이상의 촉매 활성이 증가하지 않아 경제적인 면에서 불리할 수 있기 때문이다.In addition, the content of the catalytically active material supported on the catalyst in the present invention is in the range of 0.1 to 20% by weight, more preferably 1 to 15% by weight, based on the total weight of the carrier and the catalytically active material. If the content is less than 0.1 wt%, the performance of the catalyst is significantly reduced, and if it exceeds 20 wt%, no further catalyst activity is increased, which may be economically disadvantageous.
본 발명에 따른 촉매 활성물질은 담체를 먼저 지지체에 와시코팅한 후 담체 가 코팅된 지지체에 촉매 활성 물질을 담지할 수도 있고, 촉매활성물질을 담체에 담지하여 촉매활성물질이 담지된 담체를 제조한 후 이를 지지체에 와시코팅할 수도 있다.In the catalyst active material according to the present invention, the carrier may first be coated on a support, and then the catalyst active material may be supported on the support coated with the carrier. The catalyst active material may be supported on the support to prepare a carrier on which the catalyst active material is supported. It may then be washcoated onto the support.
본 발명에 따른 디젤 LNG 혼소차량 배기가스 정화용 촉매는 하기의 단계를 포함하는 제조방법으로 제조할 수 있다.Diesel LNG mixed-vehicle vehicle exhaust gas purification catalyst according to the present invention can be prepared by a manufacturing method comprising the following steps.
세라믹 지지체에 알루미나를 와시코팅하고 건조 및 소성하여 담체가 코팅된 지지체를 제조하는 단계; 및Washing the alumina on the ceramic support, drying and calcining to prepare a support coated with a support; And
담체가 코팅된 지지체를 팔라듐(Pd) 및 백금(Pt)를 함유하는 촉매액에 담지한 후 건조 및 소성하는 단계.The support is coated with a carrier in a catalyst solution containing palladium (Pd) and platinum (Pt), followed by drying and baking.
상기 촉매액 제조에 사용되는 팔라듐 전구체로는 팔라듐나이트레이트, 팔라듐클로라이드, 테트라민팔라듐디클로라이드 등이 사용될 수 있으며, 백금 전구체로는 테트라민플라티늄나이트레이트(Pt(NH3)4(NO3)2) 또는 헥사클로로플라티닉산(H2PtCl6) 등을 사용할 수 있으나, 상기 테트라민플라티늄나이트레이트(Pt(NH3)4(NO3)2)에 비해 헥사클로로플라티닉산(H2PtCl6)을 사용하는 것이 촉매활성이 현저히 우수하여 더욱 바람직하다.Palladium precursors used in the preparation of the catalyst solution may be used, such as palladium nitrate, palladium chloride, tetraminpalladium dichloride, and as platinum precursor, tetraminplatinum nitride (Pt (NH 3 ) 4 (NO 3 ) 2 ). ) Or hexachloroplatinic acid (H 2 PtCl 6 ) may be used, but compared to the tetraminplatinum nitride (Pt (NH 3 ) 4 (NO 3 ) 2 ), hexachloroplatinic acid (H 2 PtCl 6). ) Is more preferable because it is remarkably excellent in catalytic activity.
담체를 지지체에 와시코팅하는 방법, 건조 및 소성 방법은 본 발명이 속하는 기술분야에서 사용되는 통상적인 방법에 의하여 이루어질 수 있다.The method of washing the carrier to the support, the drying and the firing method may be accomplished by conventional methods used in the art.
본 발명에 따른 디젤 LNG 혼소차량 배기가스 정화용 촉매는 우수한 메탄 산화 활성을 나타낼 뿐만아니라 황에 의한 피독 억제 효과가 우수한 장점이 있다.The catalyst for purification of diesel LNG mixed vehicle exhaust gas according to the present invention not only shows excellent methane oxidation activity, but also has an excellent anti-toxic effect by sulfur.
아래에 실시예를 통하여 본 발명을 더 구체적으로 설명한다. 단, 하기 실시예는 본 발명의 예시에 불과한 것으로서 본 발명의 특허 청구 범위가 이에 따라 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following Examples. However, the following examples are merely examples of the present invention, and the claims of the present invention are not limited thereto.
[실시예 1 내지 7] Pd 및 Pt 성분이 담지된 촉매의 제조 [Examples 1 to 7] Preparation of Catalyst Supported with Pd and Pt Components
초산 및 증류수 혼합액(1 : 3.5 중량비)에 감마 알루미나 파우더[SASOL, 독일, 표면적 : 210m2/gr, 기공부피:0.5cc/gr, 비중:0.8g/cc] 를 혼합한 다음, 습식 볼밀을 이용하여 12시간 분쇄하여 균일한 알루미나 슬러리를 제조하였다. 슬러리 내 감마 알루미나 파우더의 함량은 50중량%이었으며 습식 볼밀을 통해 분쇄한 알루미나 평균 입자크기가 3 마이크로미터가 되도록 하였다. A mixture of acetic acid and distilled water (1: 3.5 weight ratio) was mixed with gamma alumina powder [SASOL, Germany, surface area: 210m 2 / gr, pore volume: 0.5cc / gr, specific gravity: 0.8g / cc], followed by a wet ball mill. 12 hours to grind to prepare a uniform alumina slurry. The content of gamma alumina powder in the slurry was 50% by weight, and the average particle size of alumina ground through a wet ball mill was 3 micrometers.
상기 제조한 알루미나 슬러리에 코디어라이트 허니컴 모노리스(1in3, 400 cpsi)룰 와시코팅(washcoat)하여 알루미나의 담지량이 2 g/in3이 되도록 코팅한 다음, 120℃에서 2시간 건조한 후, 550℃에서 3시간 소성하여 알루미나가 코팅된 허니컴 모노리스를 제조하였다. Cordierite honeycomb monolith (1in 3 , 400 cpsi) wasolated on the alumina slurry prepared above, coated with alumina so that the loading amount of alumina was 2 g / in 3 , and then dried at 120 ° C. for 2 hours, followed by 550 ° C. The honeycomb monolith coated with an alumina was prepared by baking at 3 hours.
팔라듐 전구체로는 Pd(NO3)2 수용액(10중량%), 백금 전구체로는 H2PtCl6를 사용하여 하기 표 1과 같은 함량을 가지도록 증류수에 용해하여 촉매액을 각각 80g 제조한 후 앞에서 제조한 알루미나가 코팅된 허니컴 모노리스를 각각의 촉매액에 1분 동안 함침한 다음, 에어-블로잉(Air-blowing) 처리를 하여 잉여의 용액을 제거하였으며, 이후 상압 하에 120℃에서 2시간 건조하고 600℃에서 4시간 동안 소성하여 Pd 및 Pt이 담지된 촉매를 제조하였다.Pd (NO 3 ) 2 aqueous solution (10% by weight) as a palladium precursor, H 2 PtCl 6 as a platinum precursor was dissolved in distilled water to have a content as shown in Table 1 below to prepare 80g of catalyst solution, respectively The honeycomb monolith coated with the prepared alumina was impregnated with each catalyst solution for 1 minute, and then subjected to air-blowing to remove the excess solution, followed by drying at 120 ° C. for 2 hours at 600 ° C. Firing at 4 ° C. for 4 hours yielded a catalyst carrying Pd and Pt.
[실시예 8]Example 8
백금 전구체로 테트라민플라티늄나이트레이트(Pt(NH3)4(NO3)2)를 사용한 것을 제외하고는 실시예 7과 동일하게 촉매를 제조하였다.A catalyst was prepared in the same manner as in Example 7, except that tetraminplatinum nitride (Pt (NH 3 ) 4 (NO 3 ) 2 ) was used as the platinum precursor.
[표 1] TABLE 1
[시험예 1] 촉매 활성 평가 Test Example 1 Evaluation of Catalyst Activity
상기 실시예 1 내지 4에서 제조된 허니컴 모노리스 촉매를 촉매 반응기 내에 고정한 후 메탄(CH4) 산화실험을 진행하였다.After fixing the honeycomb monolith catalyst prepared in Examples 1 to 4 in the catalytic reactor, methane (CH 4 ) oxidation experiment was performed.
하기 표 2와 같은 조성의 모델가스를 MFC(mass flow controller)를 이용하여 유량을 조절하여 혼합한 뒤, 상기 촉매 반응기에 주입하였다. 모델가스의 유량은 13.6 l/min이고, 이때의 공간속도는 GHSV 50,000hr-1이다. 반응기 내부의 상단과 하단에 열전쌍(thermocouple)을 넣어 온도를 제어 및 측정하였으며 반응온도 범위는 150~600℃이며, 5℃/min으로 승온하여 촉매활성을 확인하였다. 반응 전 후의 NO, CO, CH4 반응가스들의 농도는 가스 분석기를 통해 확인하였다.The model gas having the composition shown in Table 2 was mixed by controlling the flow rate using an MFC (mass flow controller), and then injected into the catalytic reactor. The flow rate of the model gas is 13.6 l / min, and the space velocity is GHSV 50,000hr -1 . Thermocouples were placed at the top and bottom of the reactor to control and measure the temperature. The reaction temperature range was 150-600 ° C., and the temperature was raised to 5 ° C./min to confirm catalytic activity. The concentrations of NO, CO, and CH 4 reactant gases before and after the reaction were confirmed through a gas analyzer.
[표 2]TABLE 2
도 1은 팔라듐 및 백금의 비율을 조절하면서 메탄산화 활성을 평가한 결과이다. 도 1의 결과를 참조하면 팔라듐:코발트 중량비가 1:0.2인 실시예 4의 촉매가 가장 우수한 촉매활성을 나타내었다.1 is a result of evaluating methanation activity while adjusting the ratio of palladium and platinum. Referring to the results of FIG. 1, the catalyst of Example 4 having a palladium: cobalt weight ratio of 1: 0.2 showed the best catalytic activity.
[시험예 2] 황에 내한 내성 평가 Test Example 2 Evaluation of Resistance to Sulfur Resistance
실시예 5 내지 실시예 8의 촉매에 대하여 하기 표 3에 나타낸 모델가스를 주입하면서 500도에서 메탄 전환율을 시간에 따라 평가하였으며 그 결과를 도 2에 나타내었다.Injecting the model gas shown in Table 3 for the catalysts of Examples 5 to 8, the methane conversion rate was evaluated at 500 degrees with time, and the results are shown in FIG. 2.
[표 3]TABLE 3
도 2의 결과를 참고하면 Pd:Pt=1:0.5(중량비)인 경우에 비해 Pd:Pt=1:0.2(중량비)조건에서 메탄 전환율이 높게 나타났으며 담지량을 증가시킬수록 메탄 전환율이 높게 나타났다. 백금 전구체에 따른 촉매 활성 측면에서는 테트라민플라티늄나이트레이트(Pt(NH3)4(NO3)2)에 비해 헥사클로로플라티닉산(H2PtCl6)을 사용하는 것이 촉매활성이 현저히 우수하여 더욱 바람직하였다.Referring to the results of FIG. 2, the methane conversion was higher in the condition of Pd: Pt = 1: 0.2 (weight ratio) than in the case of Pd: Pt = 1: 0.5 (weight ratio), and the methane conversion was higher as the loading amount was increased. . In terms of catalytic activity according to the platinum precursor, the use of hexachloroplatinic acid (H 2 PtCl 6 ) is more excellent than that of tetraminplatinum nitride (Pt (NH 3 ) 4 (NO 3 ) 2 ). Preferred.
도 1은 팔라듐 및 백금이 촉매 활성 성분으로 담지된 메탄 산화 촉매의 활성 평가 결과이고,1 is a result of activity evaluation of a methane oxidation catalyst in which palladium and platinum are supported as catalytic active components,
도 2는 황에 대한 촉매 내성 평가 결과이다.2 is a result of evaluation of catalyst resistance to sulfur.
Claims (6)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070110162A KR100888018B1 (en) | 2007-10-31 | 2007-10-31 | A catalyst for treating exhaust gas of diesel lng dual fuel vehicles |
PCT/KR2008/006410 WO2009057961A2 (en) | 2007-10-31 | 2008-10-30 | A catalyst for treating exhaust gas of diesel lng dual fuel vehicles |
MYPI2010001716A MY157530A (en) | 2007-10-31 | 2008-10-30 | A catalyst for treating exhaust gas of diesel lng dual fuel vehicles |
CN200880114450A CN101842155A (en) | 2007-10-31 | 2008-10-30 | A catalyst for treating exhaust gas of diesel lng dual fuel vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070110162A KR100888018B1 (en) | 2007-10-31 | 2007-10-31 | A catalyst for treating exhaust gas of diesel lng dual fuel vehicles |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100888018B1 true KR100888018B1 (en) | 2009-03-09 |
Family
ID=40591660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070110162A KR100888018B1 (en) | 2007-10-31 | 2007-10-31 | A catalyst for treating exhaust gas of diesel lng dual fuel vehicles |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR100888018B1 (en) |
CN (1) | CN101842155A (en) |
MY (1) | MY157530A (en) |
WO (1) | WO2009057961A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9463428B2 (en) | 2011-12-21 | 2016-10-11 | 3M Innovative Properties Company | Palladium-based catalyst and support systems |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107405602B (en) | 2015-03-05 | 2020-08-21 | 国际壳牌研究有限公司 | Methane oxidation catalyst, method of making and method of using the same |
JP6501115B2 (en) * | 2015-05-15 | 2019-04-17 | 株式会社 Acr | Dual fuel oxidation catalyst, dual fuel SCR exhaust gas treatment mechanism, dual fuel diesel internal combustion engine, and control method therefor |
EP3507009B1 (en) | 2016-08-31 | 2021-09-22 | Shell Internationale Research Maatschappij B.V. | Process to prepare a methane oxidation catalyst |
SG11201901348XA (en) | 2016-08-31 | 2019-03-28 | Shell Int Research | Methane oxidation catalyst, process to prepare the same and method of using the same |
CN113042038A (en) * | 2021-03-24 | 2021-06-29 | 中国科学院生态环境研究中心 | Palladium-platinum catalyst, preparation method and application thereof |
WO2023174986A1 (en) * | 2022-03-17 | 2023-09-21 | Shell Internationale Research Maatschappij B.V. | Dual fuel engine system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0788371A (en) * | 1993-09-24 | 1995-04-04 | Toyota Motor Corp | Catalyst for purifying exhaust gas and method therefor |
JPH07251073A (en) * | 1994-03-16 | 1995-10-03 | Toyota Motor Corp | Exhaust gas purifying catalyst |
JPH07256105A (en) * | 1994-03-23 | 1995-10-09 | Babcock Hitachi Kk | Catalyst for purification of exhaust gas |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4087897B2 (en) * | 1991-11-26 | 2008-05-21 | バスフ・カタリスツ・エルエルシー | Improved oxidation catalyst and method of use |
-
2007
- 2007-10-31 KR KR1020070110162A patent/KR100888018B1/en active IP Right Grant
-
2008
- 2008-10-30 WO PCT/KR2008/006410 patent/WO2009057961A2/en active Application Filing
- 2008-10-30 CN CN200880114450A patent/CN101842155A/en active Pending
- 2008-10-30 MY MYPI2010001716A patent/MY157530A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0788371A (en) * | 1993-09-24 | 1995-04-04 | Toyota Motor Corp | Catalyst for purifying exhaust gas and method therefor |
JPH07251073A (en) * | 1994-03-16 | 1995-10-03 | Toyota Motor Corp | Exhaust gas purifying catalyst |
JPH07256105A (en) * | 1994-03-23 | 1995-10-09 | Babcock Hitachi Kk | Catalyst for purification of exhaust gas |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9463428B2 (en) | 2011-12-21 | 2016-10-11 | 3M Innovative Properties Company | Palladium-based catalyst and support systems |
Also Published As
Publication number | Publication date |
---|---|
MY157530A (en) | 2016-06-15 |
WO2009057961A2 (en) | 2009-05-07 |
CN101842155A (en) | 2010-09-22 |
WO2009057961A3 (en) | 2009-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2479341C2 (en) | Device for decreasing diesel engine exhaust toxicity | |
KR100888018B1 (en) | A catalyst for treating exhaust gas of diesel lng dual fuel vehicles | |
KR101975627B1 (en) | Diesel oxidation catalysts, systems and methods of treatment | |
JP2018528847A (en) | Nitrous oxide removal catalyst for exhaust system | |
JP2007534467A (en) | Noble metal catalyst stabilized with iron oxide for removing pollutants from exhaust gas from lean burn engine | |
JP4644634B2 (en) | Denitration catalyst composition, monolithic structure type denitration catalyst, and denitration method using the same | |
KR100908049B1 (en) | Catalyst for Purifying Natural Gas Automobile Exhaust | |
CN101352682B (en) | Method for preparing front-located oxidation catalyst for diesel car | |
WO1998047605A1 (en) | Exhaust gas purification method and exhaust gas purification catalyst | |
US9981251B2 (en) | Exhaust gas treatment system | |
CN108472630A (en) | Oxidation catalyst for compressed natural gas combustion system exhaust | |
KR100752372B1 (en) | A catalyst containing zeolite for reducing h2s from the exhaust gas | |
JP4448820B2 (en) | Denitration catalyst composition, monolithic structure type denitration catalyst, and denitration method using the same | |
EP1779927B1 (en) | Exhaust gas treating catalyst and use thereof for treating exhaust gases from diesel engines | |
JP4704964B2 (en) | NOx purification system and NOx purification method | |
JP2007181752A (en) | Denitration catalyst composition, integral structure type denitration catalyst and denitrification method using it | |
JP4371600B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP3800200B2 (en) | Exhaust gas purification method and exhaust gas purification catalyst | |
JP3805079B2 (en) | Diesel engine exhaust gas purification catalyst and purification method | |
JP4106762B2 (en) | Exhaust gas purification catalyst device and purification method | |
KR100680324B1 (en) | Catalytic composition for NOx reduction in automobile exhaust gas | |
KR20050087218A (en) | Method for preparing a catalyst for diesel engine off gas purification and the catalyst prepared from the method | |
JPH10235156A (en) | Exhaust gas purifying catalyst bed, exhaust gas purifying catalyst coated structure and exhaust gas purifying method using the same | |
JPH11557A (en) | Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these | |
JPH07232036A (en) | Material and method for purifying exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121122 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20131212 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20141215 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20151230 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170102 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20171227 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20181218 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20191226 Year of fee payment: 12 |