JP3555631B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP3555631B2
JP3555631B2 JP15166495A JP15166495A JP3555631B2 JP 3555631 B2 JP3555631 B2 JP 3555631B2 JP 15166495 A JP15166495 A JP 15166495A JP 15166495 A JP15166495 A JP 15166495A JP 3555631 B2 JP3555631 B2 JP 3555631B2
Authority
JP
Japan
Prior art keywords
dithionite
wastewater
residual
solution
peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15166495A
Other languages
Japanese (ja)
Other versions
JPH091161A (en
Inventor
哲夫 腰塚
征夫 石内
亜希子 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP15166495A priority Critical patent/JP3555631B2/en
Publication of JPH091161A publication Critical patent/JPH091161A/en
Application granted granted Critical
Publication of JP3555631B2 publication Critical patent/JP3555631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、亜二チオン酸塩を含有する廃水を処理する方法に関するものである。更に詳しくは、漂白廃液等の廃水中に残存する亜二チオン酸塩の処理方法における改良に関する方法である。
【0002】
【従来の技術】
亜二チオン酸塩は製紙工業分野では主に機械パルプの漂白に単段漂白または過酸化水素漂白との組み合わせによる2段漂白に用いられる他、繊維工業分野ではメリヤス、タオル、綿布、綿糸の過酸化水素漂白と組み合わせて繊維の高白色度化、風合い改善等の効果を得るために用いられる。また、染料を溶解したり、繊維を染色後余分な染料を除去するために用いられる。
【0003】
廃水中に残存する亜二チオン酸塩はそれ自身が廃水のCOD値を上昇させて環境汚染の原因となるので、これらの漂白廃液は、通常、無機もしくは有機の凝集剤による凝集沈澱処理、好気性菌による活性汚泥処理またはこれ等の組み合わせによって処理した後、放流する。
【0004】
しかし、活性汚泥処理の場合、廃水中に残存亜二チオン酸塩が存在すると、亜二チオン酸塩が還元剤として働くために、活性汚泥処理槽中の溶存酸素が亜二チオン酸塩と反応して失われて活性汚泥処理槽の雰囲気が嫌気性となってしまう。その結果、活性汚泥中の好気性菌は活性を失うか死滅してしまい、活性汚泥処理装置の能力が大幅に低下してしまうかまたは全く処理できないというトラブルが発生する。
【0005】
このトラブルの解決策として、廃水を中間貯槽に貯めて空気(酸素)を曝気し残存亜二チオン酸塩を処理する方法が一般的に実施されている。しかし、空気(酸素)と亜二チオン酸塩の反応が遅い事から、大きな中間貯槽が必要であるとの問題点がある。また、空気(酸素)を曝気する方法では、残存亜二チオン酸塩を完全に処理するのは困難で、どうしても亜二チオン酸塩が残存する傾向があり、また、硫黄を含む沈殿物が副生して残存亜二チオン酸塩の濃度の測定が困難になることがある。
【0006】
【発明が解決しようとする課題】
従来の空気曝気により残存亜二チオン酸塩を処理していた方法は、処理するために長時間が必要であること、従って大きな貯槽が必要であること、微量の残存亜二チオン酸塩の処理が完全にできないこと等の問題点があった。
本発明の目的は、廃水中の残存亜二チオン酸塩を短時間で完全に処理する事である。
【0007】
【課題を解決するための手段】
本発明者等は、残存亜二チオン酸塩を短時間で完全に処理する方法について検討した結果、廃水のpHをアルカリ性とし、次いで過酸化物を添加する事により、完全に残存亜二チオン酸塩を処理できる事を見い出し本発明を完成した。
【0008】
即ち、本発明は、廃水中の亜二チオン酸塩を処理する方法において、廃水液性をアルカリ性にし、次いで過酸化物を添加する事を特徴とする残存亜二チオン酸塩の処理方法である。
【0009】
次に、本発明を具体的に説明する。残存亜二チオン酸塩を含んだ廃水には、亜二チオン酸塩漂白を実施している製紙工業の排水、繊維の染色・漂白排水、食品排水などが含まれる。本発明においては、残存亜二チオン酸塩を含んだ廃水中には亜硫酸もしくはその塩、チオ硫酸もしくはその塩または硫化水素などの亜二チオン酸塩以外の還元性硫黄化合物が含まれていても処理可能である。
【0010】
本発明では、まず、亜二チオン酸塩を含んだ廃水にアルカリ剤を添加し、pHを9〜13、好ましく10〜11に調整する。添加するアルカリ剤としては、ナトリウム、カリウム等のアルカリ金属の水酸化物、炭酸塩またはケイ酸塩、カルシウム、マグネシウム、バリウム等のアルカリ土類金属の水酸化物または炭酸塩またはケイ酸塩等であり、単独またはそれらの組み合わせが使用される。アルカリ剤としては、水酸化ナトリウム、炭酸ナトリウムが好適に使用される。アルカリ剤と廃水との混合のためには、攪拌混合槽の他、スタティックミキサー、インラインミキサー等の混合装置が使用される。
【0011】
次に、pHが調整された廃水に過酸化物が添加される。過酸化物としては、過酸化水素、過炭酸ナトリウムなどの過酸化水素と無機塩類との付加物、過ほう酸ナトリウム、過酸化ナトリウムなどの無機の過酸化物、過蟻酸、過酢酸などの有機の過酸化物が挙げられるが、好ましくは過酸化水素が使用される。残存亜二チオン酸塩の濃度は酸化還元電位計(ORP計と略する)によって測定され、亜二チオン酸塩の濃度が 10ppm以下、好ましくは 5ppm 以下になった点を以て過酸化物の添加を終了する。亜二チオン酸塩の濃度を測定する方法としては、ORP計以外に比色による方法、溶液の電動度による方法等でもよい。過酸化物と廃水との混合のためには、攪拌混合槽の他、スタティックミキサー、インラインミキサー等の混合装置が使用される。
【0012】
ここで、亜二チオン酸塩含んだ廃水のpHが9未満の場合は、過酸化物との反応が遅く処理に時間がかかり、また空気中の酸素との反応により硫黄を含む沈殿物が副生し、亜二チオン酸塩の濃度の測定が困難になり、過酸化物の添加量が多量になるおそれがあり、処理後の廃液中に過酸化物が残存し、本処理後に活性汚泥処理を行う場合に多量の残存過酸化物により菌が死滅したり、分解酵素により汚泥が浮いたりして好ましくない。
【0013】
本発明により残存亜二チオン酸塩が処理された廃水は、好ましくは中和した後、活性汚泥処理槽に送られる。中和には、塩酸、硫酸、硝酸、リン酸等の無機酸、ギ酸、酢酸、シュウ酸等の有機の酸が使用される。使用する酸としては、無機酸の水溶液が好ましく、特に硫酸が好適に使用される。pHの測定には一般的にはpH計が使用されるが、pHが測定できる装置であればいずれの方法でもよい。中和剤と廃水との混合のためには、攪拌混合槽の他、スタティックミキサー、インラインミキサー等の混合装置が使用される。
本発明は、回分式でも実施できるが連続式で実施することが好ましい。
【0014】
本発明によれば、亜二チオン酸塩は過酸化物により速やかに処理され、かつ、沈殿物を副生することなく、亜二チオン酸塩の濃度の測定も容易で過酸化物の添加量の制御を正確に行なう事ができる。
【0015】
【実施例】
次に実施例により本発明を具体的に説明する。pHの測定には電気化学計器(株)製PHL−20型pH計を使用した。酸化還元電位の測定には、YOKOGAWA製PH82型ORP計及び電極として9220YLを使用した。亜二チオン酸塩量の分析はJIS K1443 法によった。
なお、本発明は以下の実施例によって限定されるものではない。
【0016】
実施例1
脱イオン水に10重量%水酸化ナトリウム1.5ml を添加した溶液に亜二チオン酸ナトリウム 0.306grを溶解した。得られた溶液のpHは12.1であった。この溶液にORP計を差し込み、1重量%のH溶液を滴下して亜二チオン酸塩の処理を行った。H溶液の滴下は、酸化還元電位勾配の急になるところを以て終点とした。この終点までに滴下した1重量% Hは18.1ml(100%H換算181mg)であり、終点のpHは10.2であり、残存亜二チオン酸塩は測定されなかった。
【0017】
比較例1
脱イオン水に亜二チオン酸ナトリウム 0.306grを溶解した。得られた溶液のpHは7.8 であった。この溶液にORP計を差し込み、空気を60L/hrの速度で吹き込んで亜二チオン酸塩の処理を行った。
その結果、酸化還元電位勾配の急になるところは明確には分からなかった。空気を3hr 吹き込んだ時点で残存亜二チオン酸塩の残存量を分析した結果、0.0251gr(残存率8.2%) であった。この時の溶液のpHは2.8 であり、また、溶液は白濁していた。
【0018】
比較例2
脱イオン水に亜二チオン酸ナトリウム 0.306grを溶解した。得られた溶液のpHは7.8 であった。この溶液にORP計を差し込み、1重量%のH溶液を滴下して亜二チオン酸塩の酸化を行った。
その結果、酸化還元電位勾配の急になるところは明確には分からなかった。この時の溶液のpHは2.6 であり、また、溶液は白濁していた。
【0019】
比較例1のように、従来の空気曝気による方法では、残存亜二チオン酸塩の処理に長時間を要し、また残存亜二チオン酸塩又は亜二チオン酸塩の分解によって生じた還元物質を完全に酸化する事が困難である。
比較例2のアルカリ剤を添加していない系での過酸化水素による方法では、過酸化水素を滴下する終点を求める事が難しい。
【0020】
実施例2
脱イオン水に亜二チオン酸ナトリウム 0.153grを溶解した溶液を3つ作り、それぞれの溶液に1重量%水酸化ナトリウム1.5ml 、3ml 、10mlを添加した。得られた溶液のpHはそれぞれ9.1 、10.1、11.6であった。それぞれの溶液にORP計を差し込み、0.5 重量%のH溶液を滴下して亜二チオン酸塩の処理を行った。H溶液の滴下は、酸化還元電位勾配の急になるところを以て終点とした。この終点までに滴下した1重量% Hは、それぞれ17.9ml(100%H換算89.5mg) 、18.0ml(100%H換算90.0mg) 、18.1ml(100%H換算90.5mg) であり、残存亜二チオン酸塩は測定されなかった。
【0021】
比較例3
脱イオン水に1重量%水酸化ナトリウムを0.5ml を添加した溶液に亜二チオン酸ナトリウム 0.153grを溶解した。得られた溶液のpHは8.5 であった。この溶液にORP計を差し込み、0.5 重量%のH溶液を滴下して亜二チオン酸塩の処理を行った。
その結果、酸化還元電位勾配の急になるところは明確には分からなかった。この時の溶液は白濁していた。
【0022】
実施例2に示すように、本発明においては、残存亜二チオン酸塩を処理する前の溶液のpHは9以上が必要であり、比較例3に示すように、残存亜二チオン酸塩を処理する前の溶液のpHが9未満では、過酸化水素を滴下する終点を求める事が難しい。
【0023】
実施例3
過酸化水素による漂白を受けた綿繊維を、亜二チオン酸ナトリウムによる漂白を行った。亜二チオン酸ナトリウムによる漂白廃水中には残存亜二チオン酸塩が0.13gr/lおよび還元性硫黄化合物が含まれていた。この漂白廃水300ml に10重量%水酸化ナトリウム1.5ml を添加してpHを12.1とした。この溶液にORP計を差し込み、1重量%のH溶液を滴下して亜二チオン酸塩の処理を行った。H溶液の滴下は、酸化還元電位勾配の急になるところを以て終点とした。この終点までに滴下した1重量% Hは2.4ml(100%H換算24mg) であった。また終点のpHは11.5であり、残存亜二チオン酸塩は測定されなかった。
【0024】
比較例4
実施例3で用いた漂白廃水300ml にORP計を差し込み、空気を60L/hr吹き込んで亜二チオン酸塩の処理を行った。
その結果、酸化還元電位勾配の急になるところは明確には分からなかった。空気を3hr吹き込んだ時点で残存亜二チオン酸塩の残存量を分析した結果、0.0177gr(残存率13.6% )であった。この時の溶液pHは4.3 であった。
【0025】
比較例5
比較例4の残存亜二チオン酸塩を除去した廃水(COD 417ppm)を希硫酸でpH7.4 に中和後、活性汚泥処理を実施したところCOD 187ppmまで低下し、COD低減率は55.2% であった。
【0026】
実施例4
実施例3の残存亜二チオン酸塩を除去した廃水(COD 382ppm)を希硫酸でpH7.4 に中和後、活性汚泥処理を実施したところCOD 68ppm まで低下し、COD低減率は82.2% であった。
以上のように、残存亜二チオン酸塩を除去する事により、活性汚泥におけるCOD低減率が大幅に改善された。
【0027】
【発明の効果】
本発明によれば、処理時間が短く、処理を連続にでき、微量の亜二チオン酸塩でも完全に処理する事ができる等の効果が得られる。
本発明を活性汚泥処理の前段に組み合わせれば、残存亜二チオン酸塩に起因する活性汚泥処理トラブルが全く無くなり、活性汚泥処理が安定する事から、安定した水質の廃水を放流できる。
[0001]
[Industrial applications]
The present invention relates to a method for treating wastewater containing dithionite. More specifically, it relates to an improvement in a method for treating dithionite remaining in wastewater such as bleaching wastewater.
[0002]
[Prior art]
In the paper industry, dithionite is mainly used for single-stage bleaching or two-stage bleaching in combination with hydrogen peroxide bleaching for mechanical pulp. Used in combination with hydrogen oxide bleaching to obtain effects such as higher fiber whiteness and improved texture. It is also used for dissolving the dye or removing excess dye after dyeing the fiber.
[0003]
Since the dithionite remaining in the wastewater itself raises the COD value of the wastewater and causes environmental pollution, these bleaching effluents are usually subjected to coagulation sedimentation treatment with an inorganic or organic coagulant. After being treated by activated sludge treatment with aerial bacteria or a combination thereof, it is discharged.
[0004]
However, in the case of activated sludge treatment, if residual dithionite is present in the wastewater, the dissolved oxygen in the activated sludge treatment tank reacts with the dithionite because the dithionite acts as a reducing agent. Then, the atmosphere of the activated sludge treatment tank becomes anaerobic. As a result, the aerobic bacteria in the activated sludge lose their activity or die, causing a problem that the capacity of the activated sludge treatment apparatus is greatly reduced or the activated sludge cannot be treated at all.
[0005]
As a solution to this trouble, a method of storing wastewater in an intermediate storage tank and aerating air (oxygen) to treat residual dithionite is generally practiced. However, since the reaction between air (oxygen) and dithionite is slow, there is a problem that a large intermediate storage tank is required. Further, in the method of aerating air (oxygen), it is difficult to completely treat the remaining dithionite, and the dithionite tends to remain inevitably. It may be difficult to measure the concentration of residual dithionite.
[0006]
[Problems to be solved by the invention]
The conventional method of treating residual dithionite by air aeration requires a long time for treatment, and therefore requires a large storage tank, and treatment of a trace amount of residual dithionite. However, there was a problem that it could not be performed completely.
An object of the present invention is to completely treat residual dithionite in wastewater in a short time.
[0007]
[Means for Solving the Problems]
The present inventors have studied a method for completely treating residual dithionite in a short period of time. As a result, the pH of the wastewater is made alkaline, and then peroxide is added to completely remove residual dithionite. They found that they could treat salt and completed the present invention.
[0008]
That is, the present invention relates to a method for treating dithionite in wastewater, in which the liquidity of the wastewater is made alkaline, and then a peroxide is added. .
[0009]
Next, the present invention will be described specifically. Wastewater containing residual dithionite includes wastewater from the paper industry where dithionite bleaching is performed, textile dyeing / bleaching wastewater, food wastewater, and the like. In the present invention, even if the wastewater containing residual dithionite contains a reducing sulfur compound other than dithionite such as sulfurous acid or a salt thereof, thiosulfuric acid or a salt thereof, or hydrogen sulfide. Can be processed.
[0010]
In the present invention, first, an alkaline agent is added to wastewater containing dithionite to adjust the pH to 9 to 13, preferably 10 to 11. Examples of the alkali agent to be added include hydroxides, carbonates or silicates of alkali metals such as sodium and potassium, and hydroxides or carbonates or silicates of alkaline earth metals such as calcium, magnesium and barium. Yes, alone or in combination. Sodium hydroxide and sodium carbonate are preferably used as the alkaline agent. For mixing the alkaline agent and the wastewater, a mixing device such as a static mixer or an in-line mixer is used in addition to the stirring and mixing tank.
[0011]
Next, peroxide is added to the pH adjusted wastewater. Examples of peroxides include hydrogen peroxide, adducts of hydrogen peroxide and inorganic salts such as sodium percarbonate, inorganic peroxides such as sodium borate and sodium peroxide, and organic peroxides such as formic acid and peracetic acid. Peroxides are mentioned, but preferably hydrogen peroxide is used. The concentration of residual dithionite is measured by an oxidation-reduction potentiometer (abbreviated as ORP meter), and when the concentration of dithionite becomes 10 ppm or less, preferably 5 ppm or less, the addition of peroxide is performed. finish. As a method for measuring the concentration of the dithionite, a method using colorimetry, a method using the degree of electric power of the solution, and the like may be used in addition to the ORP meter. In order to mix the peroxide and the wastewater, a mixing device such as a static mixer or an in-line mixer is used in addition to a stirring and mixing tank.
[0012]
Here, when the pH of the wastewater containing dithionite is less than 9, the reaction with peroxide is slow and it takes a long time to process, and the reaction with oxygen in the air causes the formation of a precipitate containing sulfur as a by-product. And the measurement of the concentration of dithionite becomes difficult, and the amount of peroxide added may increase.Peroxide remains in the waste liquid after the treatment, and after the treatment, activated sludge treatment is performed. However, it is not preferable that bacteria are killed by a large amount of residual peroxide or sludge floats by a decomposing enzyme.
[0013]
The wastewater treated with the residual dithionite according to the present invention is sent to an activated sludge treatment tank, preferably after neutralization. For the neutralization, inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and organic acids such as formic acid, acetic acid and oxalic acid are used. As the acid to be used, an aqueous solution of an inorganic acid is preferable, and particularly, sulfuric acid is suitably used. Generally, a pH meter is used for measuring pH, but any method may be used as long as it can measure pH. For mixing the neutralizing agent and the wastewater, a mixing device such as a static mixer or an in-line mixer is used in addition to the stirring and mixing tank.
The present invention can be carried out in a batch system, but is preferably carried out in a continuous system.
[0014]
According to the present invention, the dithionite is promptly treated with the peroxide, and the concentration of the dithionite can be easily measured without forming a precipitate as a by-product, and the amount of the peroxide added can be easily measured. Control can be performed accurately.
[0015]
【Example】
Next, the present invention will be specifically described with reference to examples. The pH was measured using a PHL-20 type pH meter manufactured by Electrochemical Instruments Co., Ltd. For measurement of the oxidation-reduction potential, 9220YL was used as a PH82 type ORP meter manufactured by YOKOGAWA and an electrode. The analysis of the amount of dithionite was carried out according to the JIS K1443 method.
The present invention is not limited by the following examples.
[0016]
Example 1
0.306 gr of sodium dithionite was dissolved in a solution of 1.5 ml of 10% by weight sodium hydroxide in deionized water. The pH of the resulting solution was 12.1. An ORP meter was inserted into this solution, and a 1 wt% H 2 O 2 solution was added dropwise to treat the dithionite. The end point of the dropping of the H 2 O 2 solution was determined when the oxidation-reduction potential gradient became steep. The 1 wt% H 2 O 2 dropped to this end point was 18.1 ml (181 mg in terms of 100% H 2 O 2 ), the pH at the end point was 10.2, and the residual dithionite was not measured. Was.
[0017]
Comparative Example 1
0.306 gr of sodium dithionite was dissolved in deionized water. The pH of the resulting solution was 7.8. An ORP meter was inserted into the solution, and air was blown at a rate of 60 L / hr to treat the dithionite.
As a result, it was not clearly understood where the oxidation-reduction potential gradient became steep. As a result of analyzing the residual amount of the residual dithionite when air was blown in for 3 hours, the residual amount was 0.0251 gr (residual rate: 8.2%). At this time, the pH of the solution was 2.8, and the solution was cloudy.
[0018]
Comparative Example 2
0.306 gr of sodium dithionite was dissolved in deionized water. The pH of the resulting solution was 7.8. An ORP meter was inserted into this solution, and a 1 wt% H 2 O 2 solution was added dropwise to oxidize the dithionite.
As a result, it was not clearly understood where the oxidation-reduction potential gradient became steep. At this time, the pH of the solution was 2.6, and the solution was cloudy.
[0019]
As in Comparative Example 1, in the conventional method using air aeration, it takes a long time to treat the residual dithionite, and the reducing substance generated by the decomposition of the residual dithionite or the dithionite is used. Is difficult to completely oxidize.
In the method using hydrogen peroxide in the system to which the alkali agent is not added in Comparative Example 2, it is difficult to find the end point of dropping the hydrogen peroxide.
[0020]
Example 2
Three solutions of 0.153 gr of sodium dithionite in deionized water were prepared, and 1.5 ml, 3 ml and 10 ml of 1% by weight sodium hydroxide were added to each solution. The pH of the obtained solution was 9.1, 10.1, and 11.6, respectively. An ORP meter was inserted into each of the solutions, and a 0.5 wt% H 2 O 2 solution was added dropwise to treat the dithionite. The end point of the dropping of the H 2 O 2 solution was determined when the oxidation-reduction potential gradient became steep. The 1 wt% H 2 O 2 dropped to this end point was 17.9 ml (89.5 mg in terms of 100% H 2 O 2 ), 18.0 ml (90.0 mg in terms of 100% H 2 O 2 ), and 18. It was 1 ml (90.5 mg in terms of 100% H 2 O 2 ), and no residual dithionite was measured.
[0021]
Comparative Example 3
0.153 gr of sodium dithionite was dissolved in a solution of 0.5 ml of 1% by weight sodium hydroxide in deionized water. The pH of the resulting solution was 8.5. An ORP meter was inserted into this solution, and a 0.5% by weight H 2 O 2 solution was added dropwise to perform treatment with dithionite.
As a result, it was not clearly understood where the oxidation-reduction potential gradient became steep. The solution at this time was cloudy.
[0022]
As shown in Example 2, in the present invention, the pH of the solution before the treatment with the residual dithionite is required to be 9 or more. If the pH of the solution before the treatment is less than 9, it is difficult to find the end point of dropping hydrogen peroxide.
[0023]
Example 3
The cotton fibers bleached with hydrogen peroxide were bleached with sodium dithionite. The bleaching wastewater with sodium dithionite contained 0.13 gr / l of residual dithionite and a reducing sulfur compound. 1.5 ml of 10% by weight sodium hydroxide was added to 300 ml of the bleaching wastewater to adjust the pH to 12.1. An ORP meter was inserted into this solution, and a 1 wt% H 2 O 2 solution was added dropwise to treat the dithionite. The end point of the dropping of the H 2 O 2 solution was determined when the oxidation-reduction potential gradient became steep. The amount of 1 wt% H 2 O 2 dropped to this end point was 2.4 ml (24 mg in terms of 100% H 2 O 2 ). The pH at the end point was 11.5, and no residual dithionite was measured.
[0024]
Comparative Example 4
An ORP meter was inserted into 300 ml of the bleaching wastewater used in Example 3, and air was blown at 60 L / hr to treat dithionite.
As a result, it was not clearly understood where the oxidation-reduction potential gradient became steep. As a result of analyzing the residual amount of the residual dithionite at the time when air was blown in for 3 hours, the residual amount was 0.0177 gr (residual rate: 13.6%). The solution pH at this time was 4.3.
[0025]
Comparative Example 5
The wastewater (COD 417 ppm) from Comparative Example 4 from which residual dithionite had been removed was neutralized to pH 7.4 with dilute sulfuric acid, and then activated sludge treatment was carried out. % Met.
[0026]
Example 4
The wastewater (382 ppm of COD) from Example 3 from which residual dithionite had been removed was neutralized to pH 7.4 with dilute sulfuric acid, and activated sludge treatment was carried out. As a result, COD was reduced to 68 ppm, and the COD reduction rate was 82.2. % Met.
As described above, by removing the residual dithionite, the COD reduction rate in the activated sludge was greatly improved.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, processing time is short, processing can be performed continuously, and the effect that a trace amount of dithionite can be completely processed is acquired.
If the present invention is combined with the preceding stage of the activated sludge treatment, the activated sludge treatment trouble caused by the residual dithionite is completely eliminated, and the activated sludge treatment is stabilized, so that the wastewater of stable water quality can be discharged.

Claims (2)

亜二チオン酸塩を含有する廃水を処理する方法において、廃水のpHを9以上に調整し、次いで該廃水に有機または無機の過酸化物を添加し、残存亜二チオン酸塩の濃度をORP計で測定し、該濃度が10ppm以下になった点を以て過酸化物の添加を終了することを特徴とする、廃水中の亜二チオン酸塩の処理方法。In a method for treating wastewater containing dithionite, the pH of the wastewater is adjusted to 9 or more, and then an organic or inorganic peroxide is added to the wastewater to reduce the concentration of residual dithionite to ORP. A method for treating dithionite in wastewater, wherein the addition of the peroxide is terminated when the concentration falls below 10 ppm . 過酸化物として過酸化水素であることを特徴とする、請求項1記載の処理方法。2. The method according to claim 1, wherein the peroxide is hydrogen peroxide.
JP15166495A 1995-06-19 1995-06-19 Wastewater treatment method Expired - Fee Related JP3555631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15166495A JP3555631B2 (en) 1995-06-19 1995-06-19 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15166495A JP3555631B2 (en) 1995-06-19 1995-06-19 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH091161A JPH091161A (en) 1997-01-07
JP3555631B2 true JP3555631B2 (en) 2004-08-18

Family

ID=15523536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15166495A Expired - Fee Related JP3555631B2 (en) 1995-06-19 1995-06-19 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3555631B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046797A1 (en) * 2009-11-18 2011-05-19 Voith Patent Gmbh bleaching
JP5505103B2 (en) * 2010-06-09 2014-05-28 三菱瓦斯化学株式会社 Processing method of bleached pulp using reducing bleach
JP2019151081A (en) * 2018-03-06 2019-09-12 クミ化成株式会社 Injection molding die and molding method

Also Published As

Publication number Publication date
JPH091161A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
CA1176387A (en) Process for treating continuous effluent streams having varying contents of different oxidizable substances with hydrogen peroxide
EP0166557B1 (en) Process for waste treatment
JPS5845909B2 (en) Arsenic removal method from aqueous media
Monteagudo et al. Advanced oxidation processes for destruction of cyanide from thermoelectric power station waste waters
FI111966B (en) Inhibition of hydrogen peroxide decomposing enzymes, e.g. catalase and peroxidase in bleaching cellulose fibers
JP3555631B2 (en) Wastewater treatment method
RU2131491C1 (en) Method of bleaching cellulose pulp (its version), biodegradable chelation agent for bleaching cellulose pulp with hydrogen peroxide, and method of removing printer's ink from cellulose pulp
KR100365556B1 (en) Advanced Wastewater Treatment System Adding Dechlorination Process
US4584107A (en) Method of treating effluents containing sulfur oxides
JP2020002493A (en) Antibacterial treatment method for paper manufacturing process water system
CN209493459U (en) A kind of dyeing waste water advanced treatment device
US5676846A (en) Process for the detoxification of effluents containing free or complexed cyanides
GB2042493A (en) Method of removing cyanide from aqueous liquid
JP2001259688A (en) Waste liquid treating method
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant
RU2747664C2 (en) Paper pulp bleaching method
KR20100034816A (en) Manufacturing methods for clearing to non-dissolable organic matter
JP2001300553A (en) Method for treating cyanide-containing wastewater
JP4399854B2 (en) Treatment method of waste water containing hydrazine
EP1433756A1 (en) Process for treating sludge, in particular wastewater treatment sludge, to reduce the weight thereof
CN109095591A (en) Activate persulfate, the method for removing pollutant, application
JPS6190799A (en) Method for controlling rancidity of sludge
JPH11267666A (en) Treatment of water containing hydrogen peroxide and peracetic acid
JP3495420B2 (en) Treatment of colored wastewater
JP2000263049A (en) Method and apparatus for cleaning barn effluent

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees