JP3554810B2 - Fine particle component analyzer and method for analyzing fine particles using fine particle component analyzer - Google Patents

Fine particle component analyzer and method for analyzing fine particles using fine particle component analyzer Download PDF

Info

Publication number
JP3554810B2
JP3554810B2 JP31593498A JP31593498A JP3554810B2 JP 3554810 B2 JP3554810 B2 JP 3554810B2 JP 31593498 A JP31593498 A JP 31593498A JP 31593498 A JP31593498 A JP 31593498A JP 3554810 B2 JP3554810 B2 JP 3554810B2
Authority
JP
Japan
Prior art keywords
signal
fine particle
particle component
output
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31593498A
Other languages
Japanese (ja)
Other versions
JP2000081384A (en
Inventor
虹 景
俊之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP31593498A priority Critical patent/JP3554810B2/en
Publication of JP2000081384A publication Critical patent/JP2000081384A/en
Application granted granted Critical
Publication of JP3554810B2 publication Critical patent/JP3554810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【産業上の利用分野】
本発明は微粒子の成分を分析する微粒子分析装置および微粒子分析装置を用いた微粒子の分析方法に関し、更に詳しくは測定精度の向上を図った分析方法に関する。
【0002】
【従来の技術】
例えば大気中に浮遊する微粒子を空気とともに吸引し、その微粒子をフィルタ上に集め、微粒子を構成する元素の数や大きさをマイクロ波誘導ブラズマを利用して測定する微粒子分析装置が知られている。
【0003】
この分析装置では、予め元素の種類とその元素の粒子の大きさが既知のものを走査形顕微鏡(SEM)や透過電子顕微鏡法(TEM)等を用いて測定し、次にその元素をマイクロ波誘導ブラズマ分析装置で発光させてその発光強度を光電変換器により電気信号に変換して出力する。
【0004】
図6は粒径とその分布状態を示すもので、縦軸を個数(%表示)、横軸を粒径として示すもので、斜線で示す棒グラフは例えば公称直径5.0μmの市販のシリコン粒子をSEMにより測定した粒径の分布を示している。
また、多点で示す棒グラフはSEMにより測定した前記シリコン元素をプラズマ分析装置で発光させてその発光強度を光電変換器により電気信号に変換した出
力の分布を示すものである。
【0005】
図によれば、SEMで測定したものと電気信号に変換した結果がほぼ同様の分布を示すグラフとなっており、5μmの大きさの粒子は2.522V程度の出力である。
【0006】
このような場合、1Vの出力であれば1.98μm、2Vの出力であれば3.97μm程度の大きさであると推定することができる。
従って元素の種類が既知で粒子の大きさが未知のものを同様の条件で測定することにより、微粒子の大きさを推定することができる。
【0007】
図7はこのような装置の信号処理の流れを示すもので、マイクロ波誘導ブラズマを利用して発光した光が分光器57に入力し、光電子増倍管58及びプリアンブ59を経てバンドパスフィルタ70で選別され、選別された信号が3乗根アンプ66で等価粒径に換算され演算部71で画像信号に変換されている。
【0008】
この場合、バンドパスフィルタ70のカットオフ周波数が10Hzのハイパスフイルタ及びカットオフ周波数が750Hzのローパスフイルタを用いて、光電子増倍管58やプリアンプ59の出力信号の直流成分をカットする方法を採用している。
【0009】
図8はこのような従来装置のプリアンプ59の出力信号イ(実線)とこの信号がバンドパスフィルタ70を通過した場合の演算処理結果ロ(細い点線)を示すもので、被測定粒子が凡そ30msの間に3つ(A,B,C)連続して発光した状態を示している。
【0010】
【発明が解決しようとする課題】
その場合、バンドパスフィルタ70を通過して演算処理されたB,Cの粒子では、曲線の立ち上がり部イ1,イ2の出力電圧が、ハイパスフイルタ70のアンダーシュートの影響で0Vレベルより小さな電圧となっている。
その結果、B,Cの粒子では実体よりも小さく観測されてしまい、また、大きい微粒子の後に来る小さな微粒子は全く観測されないという問題がある。
【0011】
図9はこのような装置を用いて、公称0.75μmの炭素粒子を測定した例を示すものである。この様に小さな微粒子では測定信号そのものが小さくノイズレベルに近いものとなり、信号との判別が難しいという問題があった。
本発明はこのような問題点を解決するためになされたもので、アンダーシュートによる測定誤差がなく、信号とノイズとの判別基準を設けることにより測定精度を向上させた微粒子測定装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記課題を解決するための本発明の構成は、請求項1においては、
微粒子を原子化・イオン化して励起・発光させる励起・発光手段と、発光した波長の異なる複数の光を分光する複数の分光器と、これら複数の分光器のそれぞれに設けられ分光した所定の波長を電気信号に変換する光電変換手段と、この光電変換手段で変換された電気信号を増幅する信号増幅手段と、信号増幅手段からの出力信号を入力して波長選別を行なう波長選別手段と、波長選別手段で選別された信号から微粒子の大きさを測定する微粒子成分分析装置において、
【0013】
前記波長選別手段はローパスフィルタであって、前記信号増幅手段からの出力を入力し直流成分信号を出力する直流成分演算手段と、を備え、前記ローパスフィルタからの出力と直流成分演算手段からの出力を入力してローパスフィルタの出力から直流成分を引き算する差分演算手段と、差分演算手段からの出力信号に基づいて前記微粒子の大きさを演算する粒径演算手段で構成されている
【0014】
請求項2においては、
微粒子を原子化・イオン化して励起・発光させる励起・発光手段と、発光した波長の異なる複数の光を分光する複数の分光器と、これら複数の分光器のそれぞれに設けられ分光した所定の波長を電気信号に変換する光電変換手段と、この光電変換手段で変換された電気信号を増幅する信号増幅手段と、信号増幅手段からの出力信号を入力して波長選別を行なう波長選別手段と、波長選別手段で選別された信号から微粒子の大きさを測定する微粒子成分分析装置を用いた微粒子成分分析方法であって、
【0015】
予め微粒子がない状態で微粒子成分分析装置を動作させ、装置自身によるノイズ信号を測定し、所定の範囲を超えるピークを有する信号について、時間積分とピークの半値幅を測定し、統計処理を行なって時間積分とピークの半値幅の値を求めておき、前記選別された信号のうち所定の範囲にピークを有する信号については波形の時間積分若しくはピーク値の半値幅の少なくとも一つと前記予め求めた統計データを基に測定信号若しくはノイズの判定を行なうようにしている。
【0016】
請求項3においては、
請求項1記載の微粒子成分分析装置を用いた微粒子成分分析方法であって、下記の手順により成分分析を行なうことを特徴としている

1)微粒子成分を測定するに先立って、微粒子成分分析装置の測定波長を測定対象の微粒子の測定波長に合わせる。
2)微粒子が存在しない状態で測定を行なって微粒子成分分析装置の出力を測定する。
3)出力の平均電圧を測定し、これをベースライン電圧とする。
4)微粒子成分の測定を行ない、その測定出力からベースライン電圧を減算し、これより高い電圧出力を微粒子成分信号としてカウントする。
【0017】
請求項4においては、
請求項1記載の微粒子成分分析装置を用いた微粒子成分分析方法であって、下記の手順により成分分析を行なうことを特徴としている。

1)微粒子成分測定中に微粒子が存在しない状態で測定を行なって微粒子成分分析装置の出力を測定する。
2)出力の平均電圧を測定し、これをベースライン電圧とする。
3)微粒子成分測定を行ない、その測定出力からベースライン電圧を減算し、これより高い電圧出力を微粒子成分信号としてカウントする。
【0018】
請求項5においては、
請求項1記載の微粒子成分分析装置を用いた微粒子成分分析方法であって、
前記複数の分光器のうち、同じ測定波長に設定した分光器を2台用い、それらの分光器の出力の相関から真の出力の判定を行なうようにしたことを特徴としている。
【0019】
【発明の実施の形態】
始めに本発明に使用するマイクロ波誘導ブラズマを利用した微粒子成分分析装置について図10を用いて簡単に説明する。
図10おいて51はフィルタユニットであり、この表面には測定すべき固体微粒子(図示せず)が付着したフィルタ52が配置されている。53はアスピレータで、フィルタ52に付着した固体微粒子を吸引し放電管54に供給する。55はマイクロ波源、56はマイクロ波源55からのマイクロ波が導入されたキヤピティである。
【0020】
57は放電管54で発光した光を光ファイバ80を介して取入れて分光する分光器であり、この例では4台の分光器を備えている。58は分光器57の後段に設けられた光電変換手段であり、例えば光電子増倍管(Photo Maltlplire tube)が用いられる。71は演算手段である。
【0021】
図1は本発明の請求項1における微粒子分析装置の演算手段の一例を示すもので、光電子増倍管58で増借された電気信号がプリアンプ59で増幅され、その信号がローパスフィルタ60及び直流成分演算回路61に入力される。直流成分演算回路61に入力した電気信号は接点Aに接続されたセレクタ62を介して演算部63に出力され、この演算部63を構成するメモリ(図示省略)に記憶される。直流成分がメモリに記憶された時点で演算部63はセレクタ62に対して切替え信号を発し接続を接点Bに接続する。
【0022】
メモリに記憶された直流成分の信号はD/A変換器64によりアナログ信号に変換されて差分演算回路65の一方の端子に入力される。
差分演算回路65の他方の端子にはローパスフィルタ60を通過した信号が入力され、差分演算が行なわれて、ローパスフィルタ60を通過した信号から直流成分が取り除かれる。差分演算回路65の出力は3乗根アンプ66に入力されて等価粒径が求められ、その信号はセレクタ62の接点Bを介して演算部63に送られて所定の演算が行なわれてモニター67で視覚化される。
【0023】
図8に戻り、太い点線ハは本発明による演算処理結を示すもので、2番目以降の波形の立ち上がり(ハ1,ハ2)が零V付近となり、アンダーシュートがなくなっていることが分かる。
【0024】
ところで、先に図9を用いて説明したようにサブμmの小さな微粒子では信号レベルが低くなりノイズ信号との区別がつきにくい。
そこで、本発明の請求項2ではピーク検出に加えて、そのピークを含む信号の時間積分とピークの半値幅を測定する。
【0025】
即ち、フィルタに微粒子がない状態で装置を動作させ、光電子増倍管58やプリアンプ59など装置自身によるノイズ信号を測定する。そして所定の範囲を超えるピークを有する信号について、時間積分とピークの半値幅を測定し、統計処理を行なって時間積分とピークの半値幅の値を求めておく。
【0026】
次にサブμmの元素名が既知の粒子をフィルタに採取して通常の測定を行なう。図2は粒径0.7511mの炭素粒子の測定例を示すもので、ここでは、4mV以上のピークを有する信号A,Bに注日する。
【0027】
そして、注目した信号の時間積分とピークの半値幅の値を求めると、Aの信号の半値幅は比較的に長く4.2ms、Bの信号の半値幅は2.0msで、Aの信号が2倍程度あり、また、Aの信号の時間積分は24.9V・ms、Bの信号の時間積分は9.3V・msでAの信号の時間積分はBの信号の2.7倍となる。従って、ここではAの信号を微粒子からの信号としてピックアップする。
【0028】
図3は測定サンプルとして公称3.8μmと5.4μmの炭素粒子を混合して粒子の数を測定した例を示すもので、点線で示す線分は理論値の個数、実線に◇印を付して示す線分は本発明の、実線に×印を付して示す線分は従来の装置で測定した個数である。
【0029】
図から明らかなように、従来の装置で測定した線分×印の個数はパーティクル度数にばらつきが見られるが、本発明の装置を用いた◇印を付した線分では理論値とよく一致していることが分かる。
【0030】
図4はピーク検出を行なった後半値幅計算を行なうとともに、積分計算を行なって信号判別を行なうまでの流れ図を示している。なお、半値幅計算や積分計算は公知のソフトウエア技術に基づいて行なうものとするが、これらの計算は元素の種類や大きさにより両方若しくはいずれか一方であってもよい。
【0031】
なお、上記では測定元素を炭素とし、時間積分とピークの半値幅を比較して、大きな方を微粒子信号としたが、元素によってはノイズの時間積分とピークの半値幅より小さなものがある。そのような場合は何れを測定信号とするか適宜判断するものとする。また、元素の種類によってはノイズと同程度のものもあるがそのような元素ついては判定不能である。
【0032】
請求項2においては、フィルタに微粒子がない状態で装置を動作させ、光電子増倍管58やプリアンブ59など装置自身によるノイズ信号を測定し、所定の範囲を超えるピークを有する信号について、時間積分とピークの半値幅を測定し、統計処理を行なって時間積分とピークの半値幅を求めておき、そのノイズの半値幅と微粒子が発する信号の半値幅を比較して信号を判定した。
【0033】
請求項3及び4においては、フィルタに微粒子がない状態で装置を動作させ(請求項3は測定開始時、請求項4は測定途中において複数回微粒子を含まない…発光しない…状態をつくる)、ノイズ及びバックグランドを含む出力電圧をベースラインとする。そして、微粒子の測定に際してそのべースラインを越えたものを微粒子の発光による信号と判定する。
【0034】
即ち、請求項3では、はじめに分析装置が有する固有の器差やノイズの平均値を含んでベースラインを定め、これを規準として信号かノイズかを判断するので精度の高い測定が可能となる。
また、請求項4においてはベースラインを常に補正しながら測定を行なうので、請求項3の方法より更に正確な測定が可能となる。
【0035】
請求項5においては、同じ測定波長に設定した分光器を2台用い、それらの分光器で微粒子の発光を同時に測定する。図5は公称1μmのラテックスを2台のひで同時に測定し、それら、2台の分光器の出力を重畳したもので、実線は分光器1の出力、点線は分光器2の出力を示している。
【0036】
ここで、例えば220mVを超えるものを微粒子の出力とした場合、(a)で示す部分は両方の出力が220mVを超え、(b)で示す部分の出力は分光器2のみ、(c)で示す部分の出力は分光器1のみの出力となっている。このような場合は(a)の部分の出力を微粒子信号とし、(b),(c)で示す部分の出力はノイズ信号と判定する。
【0037】
なお、2台の分析装置の信号を加えたり、一方から他方を減じるようにしてもよく、要は信号とノイズの判別ができる方法であればよい。
【0038】
なお、本発明の以上の説明は、説明および例示を目的として特定の好適な実施例を示したに過ぎない。したがって本発明はその本質から逸脱せずに多くの変更、変形をなし得ることは当業者に明らかである。例えば、測定元素は炭素に限ることなく、半値幅と時間積分値がノイズ信号と異なる元素であれば適用可能である。
【0039】
【発明の効果】
以上詳しく説明したような本発明によれば、微粒子を原子化・イオン化して励起・発光させる励起・発光手段と、発光した波長の異なる複数の光を分光する複数の分光器と、これら複数の分光器のそれぞれに設けられ分光した所定の波長を電気信号に変換する光電変換手段と、この光電変換手段で変換された電気信号を増幅する信号増幅手段と、信号増幅手段からの出力信号を入力して波長選別を行なう波長選別手段と、波長選別手段で選別された信号から微粒子の大きさを測定する微粒子成分分析装置において、
【0040】
前記波長選別手段はローパスフィルタであって、前記信号増幅手段からの出力を入力し直流成分信号を出力する直流成分演算手段と、を備え、前記ローパスフィルタからの出力と直流成分演算手段からの出力を入力してローパスフィルタの出力から直流成分を引き算する差分演算手段と、差分演算手段からの出力信号に基づいて前記微粒子の大きさを演算する粒径演算手段とで構成したので、アンダーシュートによる測定誤差のない微粒子成分分析装置を提供することができる。
【0041】
また、予め微粒子がない状態で微粒子成分分析装置を動作させ、装置自身によるノイズ信号を測定し、所定の範囲を超えるピークを有する信号について、時間積分とピークの半値幅を測定し、統計処理を行なって時間積分とピークの半値幅の値を求めておき、前記選別された信号のうち所定の範囲にピークを有する信号については波形の時間積分若しくはピーク値の半値幅の少なくとも一つと前記予め求めた統計データを基に測定信号若しくはノイズの判定を行なうようにしたので、小さな粒径のものも精度よく測定可能な微粒子成分分析装置を提供することができる。
また、はじめに分析装置が有する固有の器差やノイズの平均値を含んでベースラインを定め、これを規準として信号かノイズかを判断するので精度の高い測定が可能となる。
また、ベースラインを常に補正しながら測定を行なうことにより更に正確な測定が可能となる。
また、複数の分光器のうち、同じ測定波長に設定した分光器を2台用い、それらの分光器の出力の相関から真の出力の判定を行なうようにしたので、ノイズか信号かの判別精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の微粒子成分分析装置の演算手段の一例を示す図である。
【図2】炭素微粒子の測定例を示す図である。
【図3】2種類の炭素微粒子を混合して微粒子の数を測定した例を示す図である。
【図4】ピーク検出後、半値幅計算と、積分計算を行って信号判別を行うまでの流れを示す図である。
【図5】2台の分光器で同時に測定した出力を重畳した図である。
【図6】粒径とその分布状態の一例を示す図である。
【図7】微粒子成分分析装置の信号処理の流れを示す図である。
【図8】従来装置による演算処理結果を示す図である。
【図9】サブμmの炭素微粒子を測定した例を示す図である。
【図10】微粒子成分分析装置の一般的構成例を示す図である。
【0042】
【符号の説明】
51 フィルタユニツト52 フィルタ53アスピレータ54 反応管55 マイクロ波源56 キャビテイ57 分光器
58 光電変換器(光電子増倍管)59 プリアンプ60 ローパスフィルタ61 直流成分演算回路
62 セレクタ
63 演算部
64 D/A変換器
65 差分演算器
66 3乗根アンプ
67 モニター
[0001]
[Industrial applications]
The present invention relates to a fine particle analyzer for analyzing the components of fine particles and a method for analyzing fine particles using the fine particle analyzer, and more particularly to an analysis method for improving measurement accuracy.
[0002]
[Prior art]
For example, there is known a fine particle analyzer in which fine particles floating in the air are sucked together with air, the fine particles are collected on a filter, and the number and size of elements constituting the fine particles are measured using microwave induction plasma. .
[0003]
In this analyzer, an element whose type and particle size are known in advance is measured using a scanning microscope (SEM) or transmission electron microscopy (TEM), and then the element is analyzed by microwave. Light is emitted by an induction plasma analyzer, and the emission intensity is converted into an electric signal by a photoelectric converter and output.
[0004]
FIG. 6 shows the particle size and its distribution state. The vertical axis shows the number (expressed in%), and the horizontal axis shows the particle size. The hatched bar graph shows, for example, commercially available silicon particles having a nominal diameter of 5.0 μm. 3 shows the distribution of particle sizes measured by SEM.
Further, a bar graph indicated by multiple points shows a distribution of an output in which the silicon element measured by SEM is emitted by a plasma analyzer and the emission intensity is converted into an electric signal by a photoelectric converter.
[0005]
According to the figure, the result measured by SEM and converted into an electric signal is a graph showing almost the same distribution, and particles having a size of 5 μm have an output of about 2.522 V.
[0006]
In such a case, it can be estimated that the size is about 1.98 μm for an output of 1 V and about 3.97 μm for an output of 2 V.
Therefore, the size of the fine particles can be estimated by measuring an element having a known type and an unknown particle size under the same conditions.
[0007]
FIG. 7 shows the flow of signal processing in such an apparatus. Light emitted using microwave induction plasma enters a spectroscope 57, passes through a photomultiplier tube 58 and a preamble 59, and passes through a bandpass filter 70. Are converted into equivalent particle diameters by the cube root amplifier 66 and are converted into image signals by the calculation unit 71.
[0008]
In this case, a method is employed in which the DC component of the output signal of the photomultiplier tube 58 or the preamplifier 59 is cut using a high-pass filter having a cut-off frequency of 10 Hz and a low-pass filter having a cut-off frequency of 750 Hz. ing.
[0009]
FIG. 8 shows an output signal A (solid line) of the preamplifier 59 of such a conventional device and a result B (thin dotted line) of the arithmetic processing result when this signal passes through the band-pass filter 70, and the particle to be measured is approximately 30 ms. 3 shows a state in which three (A, B, C) continuously emit light.
[0010]
[Problems to be solved by the invention]
In this case, in the B and C particles that have been processed by passing through the band-pass filter 70, the output voltages at the rising portions I1 and A2 of the curve are lower than the 0 V level due to the undershoot of the high-pass filter 70. It has become.
As a result, there is a problem that the B and C particles are observed smaller than the actual particles, and the small particles following the large particles are not observed at all.
[0011]
FIG. 9 shows an example in which carbon particles having a nominal size of 0.75 μm are measured using such an apparatus. With such small particles, the measurement signal itself is small and close to the noise level, and there is a problem that it is difficult to distinguish the signal from the signal.
The present invention has been made in order to solve such a problem, and it is an object of the present invention to provide a fine particle measuring apparatus which has no measurement error due to undershoot and has improved measurement accuracy by providing a reference for discriminating between signal and noise. It is an object.
[0012]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a configuration for solving the above-mentioned problems.
Excitation / emission means for atomizing / ionizing the microparticles to excite / emit light, a plurality of spectroscopes for splitting a plurality of lights having different emitted wavelengths, and a predetermined wavelength provided for each of the plurality of spectrometers photoelectric conversion means for converting into electric signals, and a signal amplifying means for amplifying the electric signal converted by the photoelectric conversion means, a wavelength selection means for wavelength selection inputs an output signal from the signal amplifying means, wavelength In a fine particle component analyzer for measuring the size of the fine particles from the signal selected by the selection means,
[0013]
The wavelength selection unit is a low-pass filter, and includes a DC component calculation unit that receives an output from the signal amplification unit and outputs a DC component signal, and includes an output from the low-pass filter and an output from the DC component calculation unit. a difference calculating means for subtracting the DC component from the output of the low-pass filter to input, [0014] which is composed of a particle size calculating means for calculating the size of the fine particles based on an output signal from the differential operation means
In claim 2,
Excitation / emission means for atomizing / ionizing the microparticles to excite / emit light, a plurality of spectroscopes for splitting a plurality of lights having different emitted wavelengths, and a predetermined wavelength provided for each of the plurality of spectrometers photoelectric conversion means for converting into electric signals, and a signal amplifying means for amplifying the electric signal converted by the photoelectric conversion means, a wavelength selection means for wavelength selection inputs an output signal from the signal amplifying means, wavelength A fine particle component analysis method using a fine particle component analyzer that measures the size of the fine particles from the signal selected by the selection means ,
[0015]
Operate the particle component analyzer in the absence of particles in advance, measure the noise signal by the device itself, measure the time integral and the half width of the peak for the signal having a peak exceeding a predetermined range, and perform statistical processing. to previously obtain the value of the half-value width of the time integral and peak, at least one said previously obtained statistics of the half-value width of the time integral or peak value of the waveform for the signal having a peak in a predetermined range among the sorted signal The measurement signal or noise is determined based on the data.
[0016]
In claim 3,
A method for analyzing fine particle components using the fine particle component analyzer according to claim 1, wherein the component analysis is performed according to the following procedure .
Note 1) Prior to measuring the fine particle component , the measurement wavelength of the fine particle component analyzer is adjusted to the measurement wavelength of the fine particle to be measured.
2) The measurement is performed in the absence of fine particles , and the output of the fine particle component analyzer is measured.
3) Measure the average voltage of the output and use this as the baseline voltage.
4) The fine particle component is measured, the baseline voltage is subtracted from the measured output, and a higher voltage output is counted as the fine particle component signal.
[0017]
In claim 4,
A method for analyzing fine particle components using the fine particle component analyzer according to claim 1, wherein the component analysis is performed according to the following procedure .
Note 1) During the measurement of the fine particle component , the measurement is performed in a state where no fine particles exist, and the output of the fine particle component analyzer is measured.
2) Measure the average output voltage and use this as the baseline voltage.
3) The fine particle component is measured, the baseline voltage is subtracted from the measured output, and a higher voltage output is counted as a fine particle component signal.
[0018]
In claim 5,
A fine particle component analysis method using the fine particle component analyzer according to claim 1,
Two spectrometers set to the same measurement wavelength are used among the plurality of spectrometers, and a true output is determined from a correlation between outputs of the spectrometers .
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a particle component analyzer using microwave induction plasma used in the present invention will be briefly described with reference to FIG.
In FIG. 10, reference numeral 51 denotes a filter unit, on which a filter 52 to which solid fine particles (not shown) to be measured are attached is disposed. Reference numeral 53 denotes an aspirator, which sucks solid fine particles attached to the filter 52 and supplies the fine particles to the discharge tube 54. Reference numeral 55 denotes a microwave source, and reference numeral 56 denotes a capacity into which the microwave from the microwave source 55 is introduced.
[0020]
Reference numeral 57 denotes a spectroscope which takes in the light emitted from the discharge tube 54 through the optical fiber 80 and splits the light. In this example, four spectroscopes are provided. Reference numeral 58 denotes a photoelectric conversion unit provided downstream of the spectroscope 57, for example, a photomultiplier tube. Reference numeral 71 denotes an operation means.
[0021]
FIG. 1 shows an example of a calculating means of the particle analyzer according to claim 1 of the present invention. An electric signal borrowed by a photomultiplier tube 58 is amplified by a preamplifier 59, and the signal is converted into a low-pass filter 60 and a DC signal. It is input to the component operation circuit 61. The electric signal input to the DC component calculation circuit 61 is output to the calculation unit 63 via the selector 62 connected to the contact A, and is stored in a memory (not shown) constituting the calculation unit 63. When the DC component is stored in the memory, the operation unit 63 issues a switching signal to the selector 62 and connects the connection to the contact B.
[0022]
The DC component signal stored in the memory is converted to an analog signal by the D / A converter 64 and input to one terminal of the difference calculation circuit 65.
The signal that has passed through the low-pass filter 60 is input to the other terminal of the difference operation circuit 65, and a difference operation is performed to remove a DC component from the signal that has passed through the low-pass filter 60. The output of the difference calculation circuit 65 is input to a cube root amplifier 66 to determine an equivalent particle size, and the signal is sent to a calculation unit 63 via a contact B of a selector 62 to perform a predetermined calculation and a monitor 67 Visualized by
[0023]
Returning to FIG. 8, the thick dotted line C indicates the result of the arithmetic processing according to the present invention, and it can be seen that the rising of the second and subsequent waveforms (ha1, ha2) is near zero V, and the undershoot is eliminated.
[0024]
By the way, as described above with reference to FIG. 9, the signal level of fine particles having a small size of sub-μm is low, so that it is difficult to distinguish them from noise signals.
Therefore, in claim 2 of the present invention, in addition to the peak detection, the time integration of the signal including the peak and the half width of the peak are measured.
[0025]
That is, the apparatus is operated with no particles in the filter, and a noise signal by the apparatus itself such as the photomultiplier tube 58 and the preamplifier 59 is measured. Then, with respect to a signal having a peak exceeding a predetermined range, the time integral and the half width of the peak are measured, and statistical processing is performed to determine the values of the time integral and the half width of the peak.
[0026]
Next, sub-μm particles having known element names are collected by a filter, and ordinary measurement is performed. FIG. 2 shows a measurement example of carbon particles having a particle size of 0.7511 m. Here, signals A and B having peaks of 4 mV or more are injected.
[0027]
When the time integral of the signal of interest and the value of the half width of the peak are obtained, the half width of the signal of A is relatively long, 4.2 ms, the half width of the signal of B is 2.0 ms, and the signal of A is The time integration of the A signal is about 24.9 V · ms, the time integration of the B signal is 9.3 V · ms, and the time integration of the A signal is 2.7 times that of the B signal. . Therefore, here, the signal of A is picked up as a signal from the fine particles.
[0028]
Figure 3 shows an example of measurement of the number of mixing carbon particles with a nominal 3.8μm and 5.4μm particles as a measurement sample, the line segment indicated by dotted line number of theory, the mark ◇ in the solid line line segment shown by biasing the line segments shown by urging of the present invention, the × mark the solid line is the number measured by the conventional apparatus.
[0029]
As is clear from the figure, the number of line segments x marks measured by the conventional apparatus shows a variation in the particle frequency, but the line segments marked with the を mark using the apparatus of the present invention agree well with the theoretical values. You can see that.
[0030]
FIG. 4 is a flowchart showing a process of performing the latter half value width calculation after the peak detection and performing the integral calculation to determine the signal. Note that the half-width calculation and the integration calculation are performed based on known software techniques, but these calculations may be performed on both or any of them depending on the type and size of the element.
[0031]
In the above description, carbon was used as the element to be measured, and the time integral and the half width of the peak were compared, and the larger one was used as the fine particle signal. However, some elements were smaller than the time integral of noise and the half width of the peak. In such a case, it is appropriately determined which one is used as the measurement signal. Some types of elements are almost equal to noise, but such elements cannot be determined.
[0032]
According to claim 2, the apparatus is operated in a state where there is no fine particle in the filter, a noise signal by the apparatus itself such as the photomultiplier tube 58 and the preamble 59 is measured, and a signal having a peak exceeding a predetermined range is subjected to time integration. The half width of the peak was measured, statistical processing was performed to determine the time integration and the half width of the peak, and the half width of the noise was compared with the half width of the signal emitted from the fine particles to determine the signal.
[0033]
In claims 3 and 4, the apparatus is operated with no particles in the filter (Claim 3 creates a state in which no particles are contained ... no light emission ... multiple times during the start of measurement; claim 4). The output voltage including noise and background is used as a baseline. Then, when measuring the fine particles, a signal exceeding the base line is determined as a signal due to the emission of the fine particles.
[0034]
That is, according to the third aspect, since a baseline is first determined by including an average of inherent instrumental errors and noises inherent in the analyzer, and whether the signal or noise is determined based on the baseline, highly accurate measurement can be performed.
In the fourth aspect, since the measurement is performed while always correcting the baseline, more accurate measurement can be performed than the method of the third aspect.
[0035]
According to the fifth aspect, two spectrometers set to the same measurement wavelength are used, and the light emission of the fine particles is simultaneously measured by these spectrometers . FIG. 5 shows the results obtained by simultaneously measuring the nominal 1 μm latex with two strings and superimposing the outputs of the two spectrometers. The solid line indicates the output of the spectrometer 1 and the dotted line indicates the output of the spectrometer 2. .
[0036]
Here, for example, when the output exceeding 220 mV is set as the output of the fine particles, the output shown in (a) shows both the outputs exceeding 220 mV, the output shown in (b) shows only the spectroscope 2 and the output shown in (c). The output of the portion is the output of only the spectroscope 1. In such a case, the output of the portion (a) is determined to be a fine particle signal, and the outputs of the portions (b) and (c) are determined to be noise signals.
[0037]
The signals from the two analyzers may be added, or one signal may be subtracted from the other signal. In short, any method may be used as long as it can discriminate between the signal and the noise.
[0038]
It should be noted that the foregoing description of the invention merely illustrates certain preferred embodiments for purposes of explanation and illustration. Thus, it will be apparent to one skilled in the art that the present invention may be modified or modified in many ways without departing from its essentials. For example, the element to be measured is not limited to carbon, but may be applied to any element having a half width and a time integral different from that of the noise signal.
[0039]
【The invention's effect】
According to the present invention as described in detail above, excitation / emission means for atomizing / ionizing fine particles to excite / emit light, a plurality of spectroscopes for dispersing a plurality of emitted lights having different wavelengths , input and photoelectric conversion means for converting a predetermined wavelength that is spectrally provided in each of the spectrometer into an electric signal, a signal amplifying means for amplifying the electric signal converted by the photoelectric conversion means, an output signal from the signal amplifying means A wavelength selection means for performing wavelength selection, and a fine particle component analyzer for measuring the size of the fine particles from the signal selected by the wavelength selection means,
[0040]
The wavelength selection unit is a low-pass filter, and includes a DC component calculation unit that receives an output from the signal amplification unit and outputs a DC component signal, and includes an output from the low-pass filter and an output from the DC component calculation unit. And a particle size calculation means for calculating the size of the fine particles based on an output signal from the difference calculation means. A fine particle component analyzer having no measurement error can be provided.
[0041]
In addition, the fine particle component analyzer is operated in the absence of fine particles in advance, a noise signal is measured by the device itself, and a signal having a peak exceeding a predetermined range is measured for time integration and a half width of the peak, and statistical processing is performed. The values of the time integral and the half-value width of the peak are determined in advance, and for the signal having a peak in a predetermined range among the selected signals, at least one of the time integral of the waveform or the half-value width of the peak value is obtained in advance. Since the determination of the measurement signal or the noise is performed based on the statistical data, it is possible to provide a fine particle component analyzer capable of accurately measuring even a small particle size.
In addition, since a baseline is first determined including an inherent instrumental difference and an average value of noise of the analyzer, and whether the signal or the noise is determined based on the baseline, highly accurate measurement can be performed.
In addition, more accurate measurement can be performed by performing measurement while always correcting the baseline.
Further, among the plurality of the spectrometer, the spectrometer was set to the same measurement wavelength using two, since the correlation between the outputs of the spectrometer to perform the determination of the true output, the noise or signal of determination accuracy Can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a calculating means of the fine particle component analyzer of the present invention.
FIG. 2 is a view showing a measurement example of carbon fine particles.
FIG. 3 is a diagram showing an example in which two types of carbon fine particles are mixed and the number of fine particles is measured.
FIG. 4 is a diagram showing a flow from detection of a peak to calculation of a half-value width and integration calculation to signal discrimination.
FIG. 5 is a diagram in which outputs measured simultaneously by two spectrometers are superimposed.
FIG. 6 is a diagram showing an example of a particle size and a distribution state thereof.
FIG. 7 is a diagram showing a flow of signal processing of the fine particle component analyzer.
FIG. 8 is a diagram showing a result of arithmetic processing by a conventional device.
FIG. 9 is a diagram showing an example of measuring sub-μm carbon fine particles.
FIG. 10 is a diagram showing a general configuration example of a fine particle component analyzer.
[0042]
[Explanation of symbols]
Reference Signs List 51 filter unit 52 filter 53 aspirator 54 reaction tube 55 microwave source 56 cavity 57 spectroscope 58 photoelectric converter (photomultiplier tube) 59 preamplifier 60 low-pass filter 61 DC component calculation circuit 62 selector 63 calculation unit 64 D / A converter 65 Difference calculator 66 Third root amplifier 67 Monitor

Claims (5)

微粒子を原子化・イオン化して励起・発光させる励起・発光手段と、発光した波長の異なる複数の光を分光する複数の分光器と、これら複数の分光器のそれぞれに設けられ分光した所定の波長を電気信号に変換する光電変換手段と、この光電変換手段で変換された電気信号を増幅する信号増幅手段と、信号増幅手段からの出力信号を入力して波長選別を行なう波長選別手段と、波長選別手段で選別された信号から微粒子の大きさを測定する微粒子成分分析装置において、
前記波長選別手段はローパスフィルタであって、前記信号増幅手段からの出力を入力し直流成分信号を出力する直流成分演算手段と、を備え、前記ローパスフィルタからの出力と直流成分演算手段からの出力を入力してローパスフィルタの出力から直流成分を引き算する差分演算手段と、差分演算手段からの出力信号に基づいて前記微粒子の大きさを演算する粒径演算手段とで構成されたことを特徴とする微粒子成分分析装置。
Excitation / emission means for atomizing / ionizing the microparticles to excite / emit light, a plurality of spectroscopes for splitting a plurality of lights having different emitted wavelengths, and a predetermined wavelength provided for each of the plurality of spectrometers photoelectric conversion means for converting into electric signals, and a signal amplifying means for amplifying the electric signal converted by the photoelectric conversion means, a wavelength selection means for wavelength selection inputs an output signal from the signal amplifying means, wavelength In a fine particle component analyzer that measures the size of the fine particles from the signal selected by the selection means,
The wavelength selection unit is a low-pass filter, and includes a DC component calculation unit that receives an output from the signal amplification unit and outputs a DC component signal, and includes an output from the low-pass filter and an output from the DC component calculation unit. And a difference calculation means for subtracting a DC component from the output of the low-pass filter and a particle size calculation means for calculating the size of the fine particles based on an output signal from the difference calculation means. Fine particle component analyzer.
微粒子を原子化・イオン化して励起・発光させる励起・発光手段と、発光した波長の異なる複数の光を分光する複数の分光器と、これら複数の分光器のそれぞれに設けられ分光した所定の波長を電気信号に変換する光電変換手段と、この光電変換手段で変換された電気信号を増幅する信号増幅手段と、信号増幅手段からの出力信号を入力して波長選別を行なう波長選別手段と、波長選別手段で選別された信号から微粒子の大きさを測定する微粒子成分分析装置を用いた微粒子成分分析方法であって、
予め微粒子がない状態で微粒子成分分析装置を動作させ、装置自身によるノイズ信号を測定し、所定の範囲を超えるピークを有する信号について、時間積分とピークの半値幅を測定し、統計処理を行なって時間積分とピークの半値幅の値を求めておき、前記選別された信号のうち所定の範囲にピークを有する信号については波形の時間積分若しくはピーク値の半値幅の少なくとも一つと前記予め求めた統計データを基に測定信号若しくはノイズの判定を行なうようにしたことを特徴とする微粒子成分分析装置を用いた微粒子成分分析方法。
Excitation / emission means for atomizing / ionizing the microparticles to excite / emit light, a plurality of spectroscopes for splitting a plurality of lights having different emitted wavelengths, and a predetermined wavelength provided for each of the plurality of spectrometers photoelectric conversion means for converting into electric signals, and a signal amplifying means for amplifying the electric signal converted by the photoelectric conversion means, a wavelength selection means for wavelength selection inputs an output signal from the signal amplifying means, wavelength a fine particles components partial析方method using a particle component analyzer for measuring the sizes of the particles from the sorted signal selecting means,
Operate the particle component analyzer in the absence of particles in advance, measure the noise signal by the device itself, measure the time integral and the half width of the peak for the signal having a peak exceeding a predetermined range, and perform statistical processing. to previously obtain the value of the half-value width of the time integral and peak, at least one said previously obtained statistics of the half-value width of the time integral or peak value of the waveform for the signal having a peak in a predetermined range among the sorted signal A method for analyzing a fine particle component using a fine particle component analyzer, wherein a determination of a measurement signal or noise is performed based on data.
請求項1記載の微粒子成分分析装置を用いた微粒子成分分析方法であって、下記の手順により成分分析を行なうことを特徴とする微粒子成分分析方法。

1)微粒子成分を測定するに先立って、微粒子成分分析装置の測定波長を測定対象の微粒子の測定波長に合わせる。
2)微粒子が存在しない状態で測定を行なって微粒子成分分析装置の出力を測定する。
3)出力の平均電圧を測定し、これをベースライン電圧とする。
4)微粒子成分の測定を行ない、その測定出力からベースライン電圧を減算し、これより高い電圧出力を微粒子成分信号としてカウントする。
A method for analyzing a fine particle component using the fine particle component analyzer according to claim 1, wherein the component analysis is performed according to the following procedure .
Note 1) Prior to measuring the fine particle component , the measurement wavelength of the fine particle component analyzer is adjusted to the measurement wavelength of the fine particle to be measured.
2) The measurement is performed in the absence of fine particles, and the output of the fine particle component analyzer is measured.
3) Measure the average voltage of the output and use this as the baseline voltage.
4) The fine particle component is measured, the baseline voltage is subtracted from the measured output, and a higher voltage output is counted as the fine particle component signal.
請求項1記載の微粒子成分分析装置を用いた微粒子成分分析方法であって、下記の手順により成分分析を行なうことを特徴とする微粒子成分分析方法。

1)微粒子成分測定中に微粒子が存在しない状態で測定を行なって微粒子成分分析装置の出力を測定する。
2)出力の平均電圧を測定し、これをベースライン電圧とする。
3)微粒子成分測定を行ない、その測定出力からベースライン電圧を減算し、これより高い電圧出力を微粒子成分信号としてカウントする。
A method for analyzing a fine particle component using the fine particle component analyzer according to claim 1, wherein the component analysis is performed according to the following procedure .
Note 1) During the measurement of the fine particle component , the measurement is performed in a state where no fine particles exist, and the output of the fine particle component analyzer is measured.
2) Measure the average output voltage and use this as the baseline voltage.
3) The fine particle component is measured, the baseline voltage is subtracted from the measured output, and a higher voltage output is counted as a fine particle component signal.
前記複数の分光器のうち、同じ測定波長に設定した分光器を2台用い、それらの分光器の出力の相関から真の出力の判定を行なうようにしたことを特徴とする請求項1記載の微粒子成分分析装置を用いた微粒子成分分析方法。 Among the plurality of spectrometer, the spectrometer was set to the same measurement wavelength using two, according to claim 1, in which the correlation between the outputs of the spectroscope, characterized in that to carry out the determination of the true output A fine particle component analysis method using a fine particle component analyzer.
JP31593498A 1998-06-25 1998-11-06 Fine particle component analyzer and method for analyzing fine particles using fine particle component analyzer Expired - Fee Related JP3554810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31593498A JP3554810B2 (en) 1998-06-25 1998-11-06 Fine particle component analyzer and method for analyzing fine particles using fine particle component analyzer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-179020 1998-06-25
JP17902098 1998-06-25
JP31593498A JP3554810B2 (en) 1998-06-25 1998-11-06 Fine particle component analyzer and method for analyzing fine particles using fine particle component analyzer

Publications (2)

Publication Number Publication Date
JP2000081384A JP2000081384A (en) 2000-03-21
JP3554810B2 true JP3554810B2 (en) 2004-08-18

Family

ID=26499006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31593498A Expired - Fee Related JP3554810B2 (en) 1998-06-25 1998-11-06 Fine particle component analyzer and method for analyzing fine particles using fine particle component analyzer

Country Status (1)

Country Link
JP (1) JP3554810B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794671B2 (en) * 2002-07-17 2004-09-21 Particle Sizing Systems, Inc. Sensors and methods for high-sensitivity optical particle counting and sizing
JP2013015357A (en) * 2011-07-01 2013-01-24 Shimadzu Corp Flow cytometer

Also Published As

Publication number Publication date
JP2000081384A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP4874697B2 (en) Electron probe X-ray analyzer and operation method thereof
JPH06229827A (en) Device and method for inspecting finished point of plasma etching
JPH10154693A (en) Method for monitoring trench forming process in real time at job site
JP2012021863A (en) Analyzer and analysis method
JP4443167B2 (en) Scanning electron microscope
JP3554810B2 (en) Fine particle component analyzer and method for analyzing fine particles using fine particle component analyzer
US20080135754A1 (en) Charged-Particle Beam System
JP6219760B2 (en) ICP emission spectrometer
JP3689274B2 (en) Dynamic light scattering particle size distribution measurement system
JP3554809B2 (en) Method for analyzing fine particles using a fine particle component analyzer
JP4506524B2 (en) Optical emission spectrometer
US9157866B2 (en) Light source device, surface inspecting apparatus using the device, and method for calibrating surface inspecting apparatus using the device
JPH05172638A (en) Photo array sensor and image intensifier for spectral analyzer
JP2763907B2 (en) Breakdown spectroscopic analysis method and apparatus
JP2007225447A (en) Emission analyzer
JP2001091451A (en) Crystal defect analyzer
JP2865187B2 (en) Fine particle component analyzer and equivalent particle size measuring method using the same
KR0172623B1 (en) Method and apparatus for analyzing contaminative element concentrations
JPH10300659A (en) Method for measuring grain size distribution of oxide based inclusion in metal
KR102279383B1 (en) Rapid Evaluation Method for Non_metalic Oxide in Steel
JPH05152254A (en) Dryetching system
JP2001066256A (en) Fine particle component analyzing apparatus
JPH0348751A (en) Method for evaluating composition of inclusion by emission spectrochemical analysis
JPH07225136A (en) Method and apparatus for measuring electric signal
JPH03183145A (en) Electron beam apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees