JP3554809B2 - Method for analyzing fine particles using a fine particle component analyzer - Google Patents
Method for analyzing fine particles using a fine particle component analyzer Download PDFInfo
- Publication number
- JP3554809B2 JP3554809B2 JP13955398A JP13955398A JP3554809B2 JP 3554809 B2 JP3554809 B2 JP 3554809B2 JP 13955398 A JP13955398 A JP 13955398A JP 13955398 A JP13955398 A JP 13955398A JP 3554809 B2 JP3554809 B2 JP 3554809B2
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- wavelength
- light
- wavelengths
- analyzing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は微粒子の成分を分析するマイクロ波誘導プラズマを利用した微粒子
の分析方法に関し、更に詳しくは測定精度の向上を図った分析方法に関する。
【0002】
【従来の技術】
例えば大気中に浮遊する微粒子を空気とともに吸引し、その微粒子をフィルタ上に集めその微粒子を構成する元素の数や大きさをマイクロ波誘導プラズマを利用して測定している。
【0003】
この測定方法は予め元素の種類とその元素の粒子の大きさが既知のものを走査形顕微鏡(SEM)や透過電子顕微鏡法(TEM)等を用いて測定し、次にその元素をマイクロ波誘導プラズマ分析装置で発光させてその発光強度を光電変換器により電気信号に変換して出力する。図6は縦軸を個数、横軸を出力電圧として示すもので、斜線で示す棒グラフは例えば公称直径5μmの市販の元素をSEMにより測定した粒径の分布の1例を示している。公称5μmとはいいながら実際にはばらついているのが分かる。
【0004】
図6の黒の棒グラフはSEMにより測定した斜線で示す棒グラフの元素をプラズマ分析装置で発光させてその発光強度を光電変換器により電気信号に変換した場合の出力の分布を示すものである。図によれば、SEMで測定したものと同様の分布を示すグラフとなっている。このことから、例えば、この元素の直径5μmの大きさの出力が5Vであることが分かり、この場合、換算係数は(5V/ 5μm)=1となる。
【0005】
従って元素の種類が既知で粒子の大きさが未知のものを同様の条件で測定した場合、図6のような結果であれば出力が1Vのものは直径1μmと推定する。また、他の元素でも同様のことを行って5μmの直径のものの出力が例えば4V(直径が同じであっても元素の種類により発光強度は異なる)であった場合、その元素の換算係数(4V/5μmは)0.8となる。そのような場合、1Vの出力の元素の直径は1.25μmと推定する。
【0006】
マイクロ波誘導プラズマを用いた場合に限らず、元素を発光させた場合発光強度の異なる複数の特定の波長で発光するが、より小さな粒径の測定を可能にするために一般的には分光器の測定波長を最大の出力が得られる波長に合わせて測定する。
一例をあげればカルシウム(Ca)は393.37nmの波長を選択したとき発光強度が最も強く422.67nmの波長を選択した場合は393.37nmの波長の場合より発光強度が低下する。
【0007】
【発明が解決しようとする課題】
ところで、発光強度の強い既知の元素で、且つ、小さな直径の粒子の入手が困難な場合、光電変換器としての電子増倍管の加速電圧を調整して出力が飽和しないようにしている(例えば測定スパンを10Vとした場合、この範囲をオーバーするものがある)が、元素によっては対応しきれない場合がある。
【0008】
しかしながら、発光強度の低い波長で粒径を求めた場合、小さな粒径のものは感度が低くなって測定困難になるという問題があった。
本発明は上記問題点を解決するために成されたもので、出力が飽和する波長での出力と出力が飽和しない少なくとも2つの波長を基に感度勾配を求め、この感度勾配から発光強度の強い波長での変換係数を求めることにより小さな粒径のものを精度よく測定することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するための本発明の構成は、微粒子をマイクロ波誘導プラズマを利用して原子化・イオン化して励起・発光させ、発光した波長の異なる複数の光を電気信号に変換し、前記微粒子の発光波長、発光する回数および発光の強弱から微粒子の成分を特定する微粒子成分分析装置を用いた微粒子の分析方法において、微粒子の直径と電気信号との換算係数を求めるに際し、一つの元素に対しその元素が発する少なくとも2つの波長を用いて感度比を求め、その感度比に基づいて換算係数を求めるようにしたことを特徴とする微粒子の分析方法。
【0010】
【発明の実施の形態】
始めに本発明に使用するマイクロ波誘導ブラズマを利用した微粒子成分分析
装置について図3を用いて簡単に説明する。
図3において51はディスパーサであり、この中には測定すべき固体微粒子(図示せず)が付着したフィルタ52が配置されている。53は同じくディスパーサ1内に配置されたアスピレータで、フィルタ52に付着した固体微粒子を吸引し反応管54に供給する。なお、ディスパーサ51内は図示しない吸引ポンプにより空気が排出された後Heガスが導入されて大気圧より僅かに高い圧力に維持されている.55はマイクロ波源、56はマイクロ波源55からのマイクロ波が導入されたキャビティである。
【0011】
57は反応管54の他端に設けられた検出窓である。60は信号処理部で4本の光ファイバ58を介してそれぞれ光を受光する4台の分光器59及びこれらの分光器の出カが入力されるCPUが配置されている。
【0012】
上記の構成において、マイクロ波源55から周波数が2.45GHzのマイ
クロ波をキヤビティ56内に導くと、反応管54内に4000°K程度のプラズマが生成される。一方ディスパーサ51から反応管54内に導かれた固体微粒子はプラズマ中で原子化・イオン化され、更に励起されて基底状態に落ちるときに発光する。
【0013】
この発光スペクトルは反応管54から軸方向に取り出され、光学窓57を介して集光され、その後、分光器59で分光されて信号処理60のCPUで処理され試料中の元素が測定表示される。ここで、試料は必ずしも球状とはなっていないが、予め同元素で既知の大きさの球状の試料の発光強度を測定し、その既知試料の測定値にもとずいて等価な粒径に演算して出カされる。
【0014】
なお、分光器59の後段には選択された波長の光の強さに応じた電気信号を出力する電子増倍管(図示省略)を有しており、微粒子の大きさは増幅器の出力信号の大きさに応じて分類している。
【0015】
また、フイルタ52は所定の面積を有するものであり、アスピレータ53は図4に示すようにフィルタ52上を複数回スキャンし、各回とも同じ量の微粒子を吸入するように構成されている。
【0016】
また、この装置では前提として複数の元素からなる微粒子がフィルタ上に同じ割合で分布しているものとする。既ち上記複数回のスキヤンにより吸引される元素数は常に同じ割合とし、分光器は1スキヤン毎に一つの波長に設定して一つの元素を分析するものを使用するものとする。
【0017】
図5は4台の分光器の測定波長をNi、Cu、Fe、A1の波長に設定しある微粒子の分析を行ったときの発光のタイミングを示すもので、NiとFeは同時に発光しており一つの微粒子に2つの元素が存在していることを示している。
本発明はこの様な元素の種類と大きさを分析するに先立って各元素の発光強度と出力がどのような関係にあるかをしるための換算係数に関するものである。
【0018】
図1は図3に示す装置を用いて例えばカルシゥム(Ca)の換算係数を求める場合の方法を示すもので、前述の微粒子分析装置のフィルタ上にカルシゥム(Ca)の微粒子(例えば5μm)を付着させる。そして、2台の分光器のうちの1台の測定波長をCaの最大発光強度の波長である393.37nmとし、もう一台の測定波長を強度の弱い発光長の422,67nmに設定する。
【0019】
図1に摸式的に示すようにNo.1,No.2の分光器で設定した波長(λ1,λ2)の出力は2つの分光器に設定された波長で同時に検出される。ここでは、λ1が発光強度の強い波長に設定してあり、λ2が発光強度の弱い波長に設定してある。なお、図は代表的な出力の一部を示すものであり、実際にはレベルの異なる多数の信号が出力する。
【0020】
図から分かるように2つの分光器は一定の比率の信号を出力する。ここでAで囲った部分は信号が飽和している様子を示している。図2は図1に示す信号をプロットしたもので、ここではλ1の波長がλ2の波長より2倍の発光強度で発光していることが分かる。このことからλ1とλ2の感度比を求めることができる。
【0021】
そして、実際の測定にあたってはCaの設定波長をλ1とし、λ2の波長を基に定めた換算係数に2を乗じて換算係数を設定して測定すれば粒度の小さなものを精度よく測定することができる。
【0022】
なお、本発明の以上の説明は、説明および例示を目的として特定の好適な実施例を示したに過ぎない。したがって本発明はその本質から逸脱せずに多くの変更、変形をなし得ることは当業者に明らかである。例えば、測定元素はCaに限ることなく、発光強度の強い元素でピーク部分がレンジオーバーし、これより低い波長で発光強度の弱い出力となる元素であれば適用可能である。
【0023】
【発明の効果】
以上詳しく説明したような本発明によれば、微粒子をマイクロ波誘導ブラズマを利用して原子化・イオン化して励起・発光させ、発光した波長の異なる複数の光を電気信号に変換し、複数の元素の特定を行う微粒子成分分析装置を用い、前記微粒子の発光波長、発光する回数および発光の強弱から微粒子の成分を特定する微粒子成分分析装置を用いた微粒子の分析方法において、微粒子の直径と電気信号との換算係数を求めるに際しては、一つの元素に対しその元素が発する少なくとも2つの波長を用いて換算係数を求めるようにしたので、小さな粒径のものを精度よく測定することができる。
【図面の簡単な説明】
【図1】同じ元素の発光を2つの分光器で異なる波長で受信したときの出力レベルの違いを示す図である。
【図2】発光強度の強い波長と弱い波長の感度比を求めるための図である。
【図3】本発明の説明に用いる微粒子分析装置の構成説明図である。
【図4】フィルタ上をアスピレータがスキヤンする状態を示す図である。
【図5】分光器を4台用いた場合における設定波長の元素の発光タイミングの一例を示す図である。
【図6】SEMやTEM等を用いて測定した粒径と分析装置の出力を比較した図である。
【符号の説明】
51 ディスパーサ
52 フィルタ
53 アスピレータ
54 反応管
55 マイクロ波源
56 キャビティ
57 光学窓
59 分光器
60 信号処理部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for analyzing fine particles using microwave induced plasma for analyzing the components of fine particles, and more particularly to an analysis method for improving measurement accuracy.
[0002]
[Prior art]
For example, fine particles floating in the atmosphere are sucked together with air, the fine particles are collected on a filter, and the number and size of elements constituting the fine particles are measured using microwave induced plasma.
[0003]
In this measuring method, the element type and the particle size of the element are known in advance using a scanning microscope (SEM) or transmission electron microscopy (TEM), and then the element is subjected to microwave induction. The light is emitted by a plasma analyzer, and the emission intensity is converted into an electric signal by a photoelectric converter and output. FIG. 6 shows the number on the vertical axis and the output voltage on the horizontal axis. The hatched bar graph shows an example of the particle size distribution of a commercially available element having a nominal diameter of 5 μm measured by SEM. It can be seen that although the nominal value is 5 μm, it actually varies.
[0004]
The black bar graph in FIG. 6 shows the distribution of the output when the elements of the bar graph shown by the oblique lines measured by SEM are emitted by the plasma analyzer and the emission intensity is converted into an electric signal by the photoelectric converter. According to the figure, the graph shows a distribution similar to that measured by SEM. This indicates that, for example, the output of the element having a diameter of 5 μm is 5 V, and in this case, the conversion coefficient is (5 V / 5 μm) = 1.
[0005]
Therefore, when the type of the element is known and the particle size is unknown under the same conditions, if the result is as shown in FIG. 6, the one having an output of 1 V is estimated to have a diameter of 1 μm. When the output of another element having a diameter of 5 μm is, for example, 4 V (even if the diameter is the same, the emission intensity varies depending on the type of the element), the conversion factor of the element (4 V / 5 μm) is 0.8. In such a case, the diameter of the element with an output of 1 V is estimated to be 1.25 μm.
[0006]
Not only when using microwave-induced plasma but also when emitting light from an element, the device emits light at a plurality of specific wavelengths with different emission intensities. Is measured in accordance with the wavelength at which the maximum output is obtained.
As an example, calcium (Ca) has the highest emission intensity when the wavelength of 393.37 nm is selected, and the emission intensity is lower when the wavelength of 422.67 nm is selected than in the case of the wavelength of 393.37 nm.
[0007]
[Problems to be solved by the invention]
By the way, when it is difficult to obtain a particle having a small emission diameter and a known element having a high emission intensity, the output is not saturated by adjusting the acceleration voltage of an electron multiplier as a photoelectric converter (for example, When the measurement span is set to 10 V, there is a case where the range exceeds this range.)
[0008]
However, when the particle size is determined at a wavelength where the emission intensity is low, there is a problem in that a particle having a small particle size has low sensitivity and is difficult to measure.
The present invention has been made in order to solve the above-mentioned problem. A sensitivity gradient is obtained based on at least two wavelengths at which the output is saturated and at least two wavelengths at which the output is not saturated. An object of the present invention is to accurately measure a particle having a small particle size by obtaining a conversion coefficient at a wavelength.
[0009]
[Means for Solving the Problems]
The configuration of the present invention for solving the above-mentioned problems, the microparticles are atomized and ionized using microwave induction plasma to excite and emit light, and convert a plurality of emitted lights having different wavelengths into electrical signals, emission wavelength of the fine particles, in the analysis method of the fine particles with a particle component analysis device for identifying ingredient particulates from the number and emission intensity for light-emitting, upon obtaining the conversion factor between the diameter and the electric signal of the fine particles, one element A method for determining a sensitivity ratio using at least two wavelengths emitted by the element, and determining a conversion coefficient based on the sensitivity ratio.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a particle component analyzer using microwave induction plasma used in the present invention will be briefly described with reference to FIG.
In FIG. 3, reference numeral 51 denotes a disperser, in which a
[0011]
Reference numeral 57 denotes a detection window provided at the other end of the reaction tube 54.
[0012]
In the above configuration, when a microwave having a frequency of 2.45 GHz is guided from the microwave source 55 into the cavity 56, a plasma of about 4000 ° K is generated in the reaction tube 54. On the other hand, the solid fine particles guided into the reaction tube 54 from the disperser 51 are atomized and ionized in the plasma, and further emit light when excited and fall to the ground state.
[0013]
This emission spectrum is taken out of the reaction tube 54 in the axial direction, collected through the optical window 57, then separated by the
[0014]
Note that the subsequent stage of the
[0015]
The
[0016]
Also, in this apparatus, it is assumed that fine particles composed of a plurality of elements are distributed on the filter at the same ratio. It is assumed that the number of elements sucked by the plurality of scans is always the same ratio, and that a spectrometer is set to one wavelength for each scan and analyzes one element.
[0017]
FIG. 5 shows the emission timing when analyzing the fine particles with the measurement wavelengths of the four spectrometers set to the wavelengths of Ni, Cu, Fe, and A1, where Ni and Fe emit light simultaneously. This indicates that two elements exist in one fine particle.
The present invention relates to a conversion coefficient for determining the relationship between the emission intensity and output of each element prior to analyzing the type and size of such an element.
[0018]
FIG. 1 shows a method for obtaining a conversion coefficient of calcium (Ca) using the apparatus shown in FIG. 3, for example, where calcium (Ca) fine particles (for example, 5 μm) adhere to a filter of the above-mentioned fine particle analyzer. Let it. Then, the measurement wavelength of one of the two spectroscopes is set to 393.37 nm, which is the wavelength of the maximum emission intensity of Ca, and the other measurement wavelength is set to 422, 67 nm, which is the emission length of low intensity.
[0019]
As schematically shown in FIG . 1, No. Wavelength set at 2 spectrometer (λ1, λ2) output is detected at the same time at a set wavelength into two spectrometers. Here, λ1 is set to a wavelength having a high emission intensity, and λ2 is set to a wavelength having a low emission intensity. It should be noted that the figure shows a part of a typical output, and a large number of signals having different levels are actually output.
[0020]
As can be seen, the two spectrometers output signals at a fixed ratio. Here, the portion surrounded by A indicates that the signal is saturated. FIG. 2 is a plot of the signal shown in FIG. 1, and it can be seen here that the wavelength of λ1 emits light with twice the emission intensity as the wavelength of λ2. From this, the sensitivity ratio between λ1 and λ2 can be obtained.
[0021]
Then, in the actual measurement, the set wavelength of Ca is set to λ1, and the conversion coefficient set based on the wavelength of λ2 is multiplied by 2 to set the conversion coefficient. it can.
[0022]
It should be noted that the foregoing description of the invention merely illustrates certain preferred embodiments for purposes of explanation and illustration. Thus, it will be apparent to one skilled in the art that the present invention may be modified or modified in many ways without departing from its essentials. For example, the element to be measured is not limited to Ca, but may be applied to any element having a strong luminescence intensity, the peak portion of which is over-ranged, and an output having a low luminescence intensity at a lower wavelength.
[0023]
【The invention's effect】
According to the present invention as described in detail above, microparticles are atomized and ionized using microwave induction plasma to excite and emit light, a plurality of emitted lights having different wavelengths are converted into electric signals, and a plurality of using particulate component analyzer performs a particular element, the emission wavelength of the fine particles, in the analysis method of the fine particles with a particle component analysis device for identifying ingredient particulates from the number and emission intensity for light emission, and the diameter of the fine particles When obtaining the conversion coefficient with respect to an electric signal, the conversion coefficient is obtained using at least two wavelengths emitted by one element for one element, so that a particle having a small particle size can be measured with high accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram showing a difference in output level when two spectroscopes receive light of the same element at different wavelengths.
FIG. 2 is a diagram for obtaining a sensitivity ratio between a strong wavelength and a weak wavelength of light emission intensity.
FIG. 3 is a configuration explanatory view of a particle analyzer used for describing the present invention.
FIG. 4 is a diagram showing a state in which an aspirator scans on a filter.
FIG. 5 is a diagram illustrating an example of emission timing of an element having a set wavelength when four spectroscopes are used.
FIG. 6 is a diagram comparing the particle size measured using an SEM, a TEM, or the like with the output of an analyzer.
[Explanation of symbols]
51
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13955398A JP3554809B2 (en) | 1998-05-21 | 1998-05-21 | Method for analyzing fine particles using a fine particle component analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13955398A JP3554809B2 (en) | 1998-05-21 | 1998-05-21 | Method for analyzing fine particles using a fine particle component analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11326178A JPH11326178A (en) | 1999-11-26 |
JP3554809B2 true JP3554809B2 (en) | 2004-08-18 |
Family
ID=15247955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13955398A Expired - Fee Related JP3554809B2 (en) | 1998-05-21 | 1998-05-21 | Method for analyzing fine particles using a fine particle component analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3554809B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014215055A (en) * | 2013-04-22 | 2014-11-17 | 株式会社堀場製作所 | Emission spectrophotometer and data processing unit |
-
1998
- 1998-05-21 JP JP13955398A patent/JP3554809B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11326178A (en) | 1999-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6184517B1 (en) | Particle analyzer system | |
EP3588117A1 (en) | Diamond magnetic sensor | |
KR101123171B1 (en) | Method and apparatus for measuring process parameters of a plasma etch process | |
WO2002065108A2 (en) | Laser scanning wafer inspection using nonlinear optical phenomena | |
WO2009050536A1 (en) | Integrating sphere for the optical analysis of luminescent materials | |
JP3554809B2 (en) | Method for analyzing fine particles using a fine particle component analyzer | |
JP2003173896A (en) | Abnormal discharge detection device, abnormal discharge detection method, and plasma treatment device | |
JP2005134181A (en) | Data processing method and analyzing apparatus | |
US20070164205A1 (en) | Method and apparatus for mass spectrometer diagnostics | |
JP2000269191A (en) | Plasma apparatus | |
JP3554810B2 (en) | Fine particle component analyzer and method for analyzing fine particles using fine particle component analyzer | |
US5510611A (en) | Particle component analyzing apparatus, and equivalent particle diameter measuring method using same | |
WO2021233903A1 (en) | Optical detector | |
CN105738332B (en) | A kind of subtraction method suitable for atomic fluorescence scattering interference | |
JP2865187B2 (en) | Fine particle component analyzer and equivalent particle size measuring method using the same | |
JP2003315271A (en) | Plasma generating apparatus and gas analyzer using the same | |
JPH07146240A (en) | Density measuring method for fine particles | |
US11361951B2 (en) | System and method for photomultiplier tube image correction | |
JPH02190744A (en) | Fine particle measuring instrument | |
JP2007225447A (en) | Emission analyzer | |
JPH1054801A (en) | Method for evaluating property of fine particle using fine particle component-analyzing apparatus | |
JPH04363633A (en) | Spectrometry apparatus | |
KR20090046583A (en) | Process monitoring method and proces monitoring apparatus | |
Zhong et al. | A LED-induced confocal fluorescence detection system for quantitative PCR instruments | |
JP2001167726A (en) | Apparatus of producing work function image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040415 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080521 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090521 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |