JP3553890B2 - Rubber composition for tire and method for producing tire using the same - Google Patents

Rubber composition for tire and method for producing tire using the same Download PDF

Info

Publication number
JP3553890B2
JP3553890B2 JP2001019089A JP2001019089A JP3553890B2 JP 3553890 B2 JP3553890 B2 JP 3553890B2 JP 2001019089 A JP2001019089 A JP 2001019089A JP 2001019089 A JP2001019089 A JP 2001019089A JP 3553890 B2 JP3553890 B2 JP 3553890B2
Authority
JP
Japan
Prior art keywords
rubber
weight
parts
tire
expanded graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001019089A
Other languages
Japanese (ja)
Other versions
JP2001279020A (en
Inventor
麻樹夫 森
武 穂高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2001019089A priority Critical patent/JP3553890B2/en
Publication of JP2001279020A publication Critical patent/JP2001279020A/en
Application granted granted Critical
Publication of JP3553890B2 publication Critical patent/JP3553890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はタイヤ用ゴム組成物に関し、更に詳しくはジエン系ゴムに膨張黒鉛を配合して、耐摩耗性能を実用レベルに保ちながら氷上摩擦性能を向上させたタイヤ用、特に氷雪路走行用ラジアルタイヤのトレッド用として使用するのに好適なタイヤ用ゴム組成物及びそれを用いるタイヤの製造方法に関する。
【0002】
【従来の技術】
ゴムに硬質異物、発泡剤、中空微粒子を配合し、表面にミクロな凹凸をつくることによって、氷の表面に発生する水膜を除去し、氷上摩擦力を向上させる手法が数多く検討されている。しかしながら、これらの方法には添加剤の材質がもろいため、混合後に添加剤の一部が微細化又は破壊されて所定の効果を発揮できない場合があるという問題がある。また、ゴム組成物にこれらの異物粉体を混入した場合には、ゴム加硫物の耐摩耗性能が著しく低下するのが一般的である。
【0003】
例えば、前記の硬質異物を配合する例としては、特開昭60−258235号公報(セラミック微粉末)、特開平2−274740号公報(植物の粉砕物)および特開平2−281052号公報(金属)等があるが、これらの手法では、ゴムの硬度が上昇し、ゴムのしなやかさが失われるため路面への追従性に劣るという問題があった。また、前記の中空粒子を配合する事例としては、特開平2−170840号公報、特開平2−208336号公報および特開平4−5543号公報等があるが、これらの手法では、同様にゴムの硬度が上昇し、あるいはその混合中に中空粒子が破壊されるという問題があった。
これに対し、ゴムの硬度を上昇させることなく、また混練時のせん断力によって破壊されることなくゴムの氷上摩擦力を向上できる中空粒子として熱膨張性マイクロカプセルの配合(特開平11−35736号公報)が考案されているが、配合量の増加に伴うゴム加硫物の耐摩耗性能の低下はまぬがれない。
【0004】
【発明が解決しようとする課題】
本発明は、耐摩耗性とのバランスを保ちながら、加硫ゴムの氷上摩擦性能を高めたタイヤ用ゴム組成物及びそれを用いてタイヤを製造する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に従えば、ジエン系ゴム100重量部及び粒子サイズ30〜600μmの熱によって層間内包物質が気化して膨張する膨張黒鉛1〜30重量部を含んでなるタイヤ用ゴム組成物が提供される。
【0006】
本発明に従えば、また、ジエン系ゴム100重量部、粒子サイズ30〜600μmの膨張黒鉛1〜30重量部及び加硫系を含んでなるタイヤ用ゴム組成物を用いてタイヤを製造するに当り、まず膨張黒鉛及び加硫系を除く他の成分をジエン系ゴムと一緒に混練し、次にこれに膨張黒鉛及び加硫系を加えて最高到達温度が膨張黒鉛の膨張開始温度未満となるような条件で混練及び、同様な温度条件にてそれに続く押出し加工を行い、そして膨張黒鉛の膨張開始温度以上の温度で加硫することを含んでなるタイヤの製造方法が提供される。
【0007】
【発明の実施の形態】
膨張黒鉛(Expandable)は黒鉛粒子の層間に熱により気化する物質を内包する粒子サイズ30〜600μm、好ましくは100〜350μmの粉体物質であり、加硫時の熱によって膨張して黒鉛膨張体(Expanded Graphite)となることが好ましい。
【0008】
膨張黒鉛は炭素原子から形成されたシートが層状に重なり、その層間に気化性層間物質を含む構造をしており、例えば加熱によりその層間物質が気化膨張し、黒鉛膨張体となる。膨張処理前は材質が硬いために混合による品質低下が起りにくく、また一定温度にて不可逆的に膨張するため、タイヤの加硫によってゴムマトリックス内部に空間を伴う異物を容易に形成させることができる。このようなゴムを用いたタイヤのトレッド部は摩耗時に表面凹凸が適度に形成され、氷とタイヤの接触面上の水膜を効率よく除去することによって氷上摩擦力の向上に動く。
【0009】
一方、膨張黒鉛は炭素原子からなる骨格構造をとっているためにゴムマトリックスやカーボンブラックとの親和性が良好であり、ゴムに配合添加しても加硫ゴムの耐摩耗性能の低下が少ないという利点がある。
【0010】
本発明において使用するジエン系ゴムは、従来よりタイヤ用として使用されている任意のジエン系ゴム、例えば天然ゴム(NR)、ポリイソプレンゴム(IR)、各種スチレン−ブタジエン共重合体ゴム(SBR)、各種ポリブタジエンゴム(BR)、アクリロニトリル−ブタジエン共重合体ゴムなどをあげることができ、これらは単独又は任意のブレンドとして使用することができる。
【0011】
本発明においては、ジエン系ゴム100重量部に対し、前記膨張黒鉛1〜30重量部、好ましくは5〜15重量部を配合する。この配合量が少な過ぎると所望の効果が得られないので好ましくなく、逆に多過ぎるとゴム表面と氷結路面間のミクロレベルにおける接触面積が低下するために、氷上摩擦力が低下するので好ましくない。また配合量が多すぎる場合にはゴム加硫物の耐摩耗性および機械強度が低下するので好ましくない。
【0012】
本発明においては、好ましくは、前記ジエン系ゴム100重量部に対し、熱により気化、分解または化学反応して気体を発生する液体または固体を封入した熱膨張性熱可塑性樹脂粒子1〜20重量部、更に好ましくは5〜10重量部、を更に含ませることができる。この配合量が少な過ぎると所望の効果が得られないので好ましくなく、逆に多過ぎると耐摩耗性の低下が著しくなるので好ましくない。
【0013】
前記熱膨張性熱可塑性樹脂粒子は熱により気化、分解又は化学反応して気体を発生する液体又は固体を熱可塑性樹脂に内包した粉体粒子であり、その膨張開始温度以上の温度、通常140〜190℃の温度で加熱すると膨張し、その熱可塑性樹脂からなる外殻中に気体が封じ込められるものであり、この熱可塑性樹脂粒子の粒径は膨張前で5〜300μmであるものが好ましく、更に好ましくは粒径10〜200μmのものである。
【0014】
このような熱膨張性熱可塑性樹脂粒子としては、例えば、現在、スウェーデンのEXPANCEL社より商品名「エクスパンセル091DU−80」または「エクスパンセル092DU−120」等として、あるいは松本油脂社より商品名「マツモトマイクロスフェアーF−85」または「マツモトマイクロスフェアーF−100」等として入手可能である。
【0015】
前記の気体封入熱可塑性樹脂粒子の外殻成分を構成する熱可塑性樹脂としては、その膨張開始温度が100℃以上、好ましくは120℃以上で、最大膨張温度が150℃以上、好ましくは160℃以上のものが好ましく用いられる。そのような熱可塑性樹脂としては、例えば(メタ)アクリロニトリルの重合体、また(メタ)アクリロニトリル含有量の高い共重合体が好適に用いられる。その共重合体の場合の他のモノマー(コモノマー)としては、ハロゲン化ビニル、ハロゲン化ビニリデン、スチレン系モノマー、(メタ)アクリレート系モノマー、酢酸ビニル、ブタジエン、ビニルピリジン、クロロプレン等のモノマーが用いられる。なお、上記の熱可塑性樹脂は、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、アリル(メタ)アクリレート、トリアクリルホルマール、トリアリルイソシアヌレート等の架橋剤で架橋可能にされていてもよい。架橋形態については、未架橋が好ましいが、熱可塑性樹脂としての性質を損わない程度に部分的に架橋していてもかまわない。
【0016】
前記の熱により気化、分解又は化学反応して気体を発生する液体又は固体としては、例えば、n−ペンタン、イソペンタン、ネオペンタン、ブタン、イソブタン、ヘキサン、石油エーテルのような炭化水素類、塩化メチル、塩化メチレン、ジクロロエチレン、トリクロロエタン、トリクロルエチレンのような塩素化炭化水素のような液体、または、アゾジカーボンアミド、ジニトロソペンタメチレンテトラミン、アゾビスイソブチロニトリル、トルエンスルホニルヒドラジド誘導体、芳香族スクシニルヒドラジド誘導体のような固体が挙げられる。
【0017】
膨張黒鉛は既に公知の材料であり、公知の製法によって製造される。このような膨張黒鉛は一般に層間化合物を含み、それが熱処理で揮発することによって層間が開き、膨張する。従来は、通常300℃以上での熱処理によって膨張する膨張黒鉛が知られていたが、層間物質の改質や他の低沸点酸化合物の使用または併用によって、膨張開始温度を300℃以下に下げた膨張黒鉛が製造、市販されている。本発明で対象となるジエン系ゴムを主成分としたゴム組成物の加工温度は200℃以下であり、本発明では膨張開始温度が190℃以下の膨張黒鉛を用いることによって所定の効果が発揮される。
【0018】
このような膨張開始温度が190℃以下の膨張黒鉛としては、例えば巴工業より米国のUCAR Graphtech社製の「グラフガード160−50」または「グラフガード160−80」等が市販されており、入手可能である。
【0019】
膨張黒鉛は用語的には酸処理を行った直後の未膨張品を示すが、熱処理後の既膨張品のことを呼ぶ場合もある。本発明にてゴム組成物として配合される膨張黒鉛は熱処理前の未膨張品である。
【0020】
本発明においては、膨張黒鉛はゴム組成物の混練工程、押出し成形工程で膨張せず、加硫工程にて膨張させることが望ましく、膨張開始温度が好ましくは120〜190℃、更に好ましくは140〜170℃のものが用いられる。膨張開始温度が120℃未満であると、膨張黒鉛が混練り時、あるいは押出し加工時に膨張し、ゴム比重が工程途中で変化することにより加工性が損なわれるおそれがある。また、膨張開始温度が190℃を超える場合には加硫工程での加工温度を190℃以上に設定しなければならず、ゴム組成物の主成分であるジエン系ゴム分子の熱劣化が著しくなる傾向にある。
【0021】
本発明のゴム組成物には、ゴム補強剤として、通常ゴム組成物に配合される任意のカーボンブラックを配合することができる。また、シリカで表面処理を施したカーボンブラックも使用可能である。またシリカも使用することができる。カーボンブラックの配合量としては、ゴム成分100重量部に対し、20〜80重量部、好ましくは30〜60重量部で使用される。この配合量が少な過ぎるとゴムを十分に補強できないため、例えば耐摩擦性が悪化するので好ましくなく、逆に多過ぎると硬度が高くなり過ぎたり、加工性が低下したりするので好ましくない。また沈降性又は乾式シリカはゴム成分100重量部に対し好ましくは0〜50重量部、更に好ましくは0〜20重量部配合する。シリカは使用されなくてもよく、使用する場合はtanδなどの加硫ゴムの粘弾性特性が改良される範囲の配合量で用いるのがよく、これが多過ぎると電気伝導度が低下し、また補強剤の凝集力が強くなり、混練中の分散が不充分となるので好ましくない。
【0022】
本発明において使用するカーボンブラックは、窒素吸着比表面積(N SA)が好ましくは70m /g以上、更に好ましくは80〜200m /gであり、ジブチルフタレート(DBP)吸油量が好ましくは95ml/100g以上、更に好ましくは105〜140ml/100gである。
【0023】
本発明によれば、ジエン系ゴム100重量部、粒子サイズ30〜600μm、好ましくは100〜350μmの膨張黒鉛1〜30重量部、好ましくは5〜15重量部及び加硫系(例えば硫黄などの加硫剤及び必要に応じ加硫促進剤)を含んでなるタイヤ用ゴム組成物を用いてタイヤを製造するに当り、膨張黒鉛及び加硫系を除く他の成分をジエン系ゴムと一緒に、例えばバンバリーミキサーを用いて混練し、次にこれに膨張黒鉛及び加硫系を加えて最高到達温度が膨張黒鉛の膨張開始温度未満、好ましくは膨張開始温度よりも20℃又はそれ以上低い温度で混合する。更に膨張黒鉛の混練時と同様な温度条件にて押出し加工を行い、この押出物を用いて通常の成型加工によりグリーンタイヤを組み立てた後、膨張黒鉛の膨張開始温度以上の温度、好ましくは膨張開始温度より10℃又はそれ以上高い温度でグリーンタイヤを加硫する。上記混練、混合又は押出し工程の温度が膨張黒鉛の膨張開始温度以上の温度に達すると膨張黒鉛が膨張し、加硫工程での膨張性が不十分になり、また混合、押出し工程で膨張した膨張黒鉛が破壊したり、変形したりするので好ましくない。また、混合又は押出し工程の温度が膨張黒鉛の膨張開始温度以上の温度に達すると、膨張黒鉛の膨張により加工途中でゴム組成物の比重が変化し、加工性が損われるので好ましくない。
【0024】
本発明に係るタイヤ用ゴム組成物には、更に、通常の加硫または架橋剤、加硫または架橋促進剤、各種オイル、老化防止剤、充填剤、可塑化剤、その他一般ゴム用に一般的に配合されている各種添加剤を配合することができ、かかる配合物は、一般的な方法で混練して組成物とし、加硫または架橋することができる。これらの添加剤の配合量も、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。
【0025】
【実施例】
以下、実施例及び比較例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことは言うまでもない。
【0026】
比較例1〜2及び実施例1〜4
サンプルの調製
表Iに示す配合(重量部)に従って、1.7リットル密閉式バンバリーミキサーを用いて、ゴム、カーボンブラック等の配合剤を5分間混合した後、オープンロールにて、加硫促進剤、硫黄、マイクロカプセル及び膨張黒鉛を配合した。
【0027】
次に、この組成物を15×15×0.2cmの金型中で175℃で10分間プレス加硫して目的とする試験片(ゴムシート)を調製し、加硫物性として氷上摩擦力(−1.5℃及び−3℃)及び摩耗性能を評価した。結果は表Iに示す。
【0028】
試験方法
氷上摩擦力測定
各コンパウンドを加硫したシートを偏平円柱状の台ゴムにはりつけ、インサイドドラム型氷上摩擦試験機にて氷上摩擦係数を測定した。測定温度は−3.0℃と−1.5℃、荷重5.5kg/cm 、ドラム回転速度は25km/h。
【0029】
摩耗性能測定
ランボーン摩耗試験機(岩本製作所(株)製)を使用して荷重5kg、スリップ率25%、時間4分、室温の条件で測定し摩耗減量から求められる耐摩耗性能を指数表示した。
【0030】
【表1】

Figure 0003553890
【0031】
比較例3〜7及び実施例5〜12
表IIに示す配合(重量部)に従って、1.7リットル密閉式バンバリーミキサーを用いて、ゴム、カーボンブラック等の配合剤を5分間混合した後、オープンロールにて、加硫促進剤、硫黄、ナイロン微粒子、シラスバルーン、マイクロカプセル及び膨張黒鉛を配合した。
【0032】
次に、この組成物を15×15×0.2cmの金型中で175℃で10分間プレス加硫して目的とする試験片(ゴムシート)を調製し、加硫物性として氷上摩擦力(−1.5℃及び−3℃)及び摩耗性能を前記試験方法に従って評価した。結果は表IIに示す。
表Iと表IIに示される試験は同一時に行われたものではないため、試験コンディションの微妙なズレ、測定誤差等のため、同一サンプルを試験した場合においても両試験間で結果の絶体値は必ずしも一致しない。特に氷上摩擦試験機の氷を作成するのに用いられる水の誘電率のバラツキはゴム/氷間の摩擦係数に大きく影響し、各試験毎に基準とテスト品の間の性能差に変化のあることがある。ただし、サンプル間の性能順位は試験時によらず常に一定である。
【0033】
【表2】
Figure 0003553890
II 脚注
*1:表Iの脚注参照
*2:ナイロン微粒子:アラミン(東レ)
*3:シラスバルーン:シラス社製
*4:マイクロスフェア:F100D(松本油脂、熱膨張性マイクロカプセル)
*5:GG50N:GRAFGuard 160−50N(UCAR Graphtech製、巴工業より市販、膨張黒鉛・平均粒径300μm、膨張開始温度160℃)
*6:−3℃μ:氷上摩擦力(インサイドドラム型室内氷上試験機)の性能指数、試験温度−3℃(比較的固くてしまった氷状態を再現)
*7:−1.5℃μ:氷上摩擦力(インサイドドラム型室内氷上試験機)の性能指数、試験温度−1.5℃(比較的融けやすく、ゴムが滑りやすい状態を再現)
*8:摩耗:一連ランボーン摩耗試験による性能指数
【0034】
【発明の効果】
以上の通り、本発明に従えば、ジエン系ゴムに膨張黒鉛、及び場合によっては、熱膨張性気体封入熱可塑性樹脂、を配合することによって、耐摩耗性とのバランスを保ちながら加硫ゴムの氷上摩擦性能を高めることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a rubber composition for a tire, and more particularly, to a tire having improved friction performance on ice while maintaining abrasion resistance at a practical level, particularly a radial tire for running on icy and snowy roads, by adding expanded graphite to a diene rubber. The present invention relates to a rubber composition for tires suitable for use in treads and a method for producing a tire using the same.
[0002]
[Prior art]
A number of methods have been studied for blending a rubber with a hard foreign material, a foaming agent, and hollow fine particles to form micro unevenness on the surface, thereby removing a water film generated on the surface of ice and improving the frictional force on ice. However, in these methods, since the material of the additive is fragile, there is a problem that a part of the additive may be miniaturized or destroyed after mixing, so that a predetermined effect may not be exhibited. In addition, when these foreign particles are mixed in the rubber composition, the wear resistance of the rubber vulcanizate is generally significantly reduced.
[0003]
For example, examples of blending the above-mentioned hard foreign matter include JP-A-60-258235 (ceramic fine powder), JP-A-2-274740 (ground plant), and JP-A-2-281052 (metal However, these methods have a problem in that the hardness of the rubber increases and the flexibility of the rubber is lost, so that the followability to the road surface is poor. Examples of blending the hollow particles include JP-A-2-170840, JP-A-2-208336, and JP-A-4-5543. In these methods, rubber is similarly used. There is a problem that the hardness increases or the hollow particles are broken during the mixing.
On the other hand, blending of heat-expandable microcapsules as hollow particles capable of improving the frictional force of rubber on ice without increasing the hardness of the rubber and without being destroyed by the shearing force during kneading (JP-A-11-35736) However, a decrease in the wear resistance of the rubber vulcanizate due to an increase in the compounding amount is inevitable.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a rubber composition for a tire in which the friction performance on ice of a vulcanized rubber is enhanced while maintaining a balance with abrasion resistance, and a method for producing a tire using the same.
[0005]
[Means for Solving the Problems]
According to the present invention, there is provided a rubber composition for a tire, comprising 100 parts by weight of a diene rubber and 1 to 30 parts by weight of expanded graphite in which an intercalation substance is vaporized and expanded by heat having a particle size of 30 to 600 μm. .
[0006]
According to the present invention, in producing a tire using a rubber composition for a tire comprising 100 parts by weight of a diene rubber, 1 to 30 parts by weight of expanded graphite having a particle size of 30 to 600 μm, and a vulcanization system, First, the expanded graphite and other components excluding the vulcanized system are kneaded together with the diene rubber, and then the expanded graphite and the vulcanized system are added thereto so that the maximum temperature is lower than the expansion starting temperature of the expanded graphite. The present invention provides a method for producing a tire, which comprises kneading under the following conditions, followed by extrusion at the same temperature condition, and vulcanizing at a temperature equal to or higher than the expansion start temperature of the expanded graphite.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Expandable graphite (Expandable) is a powdery substance having a particle size of 30 to 600 μm, preferably 100 to 350 μm, which contains a substance that is vaporized by heat between layers of graphite particles, and expands by heat during vulcanization to expand the graphite. (Expanded Graphite) is preferable.
[0008]
The expanded graphite has a structure in which sheets formed from carbon atoms are layered and include a vaporizable interlayer material between the layers. For example, the interlayer material is vaporized and expanded by heating to form a graphite expanded body. Before the inflation treatment, the material is hard so that quality deterioration due to mixing hardly occurs, and since the material expands irreversibly at a constant temperature, foreign matter accompanying a space inside the rubber matrix can be easily formed by vulcanization of the tire. . The surface of the tread portion of the tire using such rubber is appropriately formed at the time of abrasion, and the frictional force on ice is improved by efficiently removing a water film on the contact surface between the ice and the tire.
[0009]
On the other hand, expanded graphite has a good affinity with the rubber matrix and carbon black because it has a skeleton structure composed of carbon atoms, and the wear resistance of the vulcanized rubber is less reduced even when added to the rubber. There are advantages.
[0010]
The diene rubber used in the present invention is any diene rubber conventionally used for tires, for example, natural rubber (NR), polyisoprene rubber (IR), various styrene-butadiene copolymer rubbers (SBR). And various polybutadiene rubbers (BR), acrylonitrile-butadiene copolymer rubbers, and the like, and these can be used alone or as an arbitrary blend.
[0011]
In the present invention, 1 to 30 parts by weight, preferably 5 to 15 parts by weight of the expanded graphite is added to 100 parts by weight of the diene rubber. If the amount is too small, the desired effect cannot be obtained, which is not preferable.On the contrary, if the amount is too large, the contact area at the micro level between the rubber surface and the icy road surface decreases, and the frictional force on ice decreases, which is not preferable. . If the compounding amount is too large, the wear resistance and mechanical strength of the rubber vulcanizate are undesirably reduced.
[0012]
In the present invention, preferably, 1 to 20 parts by weight of thermally expandable thermoplastic resin particles in which a liquid or a solid that generates a gas by vaporization, decomposition, or chemical reaction by heat is enclosed with respect to 100 parts by weight of the diene rubber. , More preferably 5 to 10 parts by weight. If the amount is too small, the desired effect cannot be obtained, which is not preferable. On the other hand, if the amount is too large, the abrasion resistance is significantly reduced.
[0013]
The heat-expandable thermoplastic resin particles are powder particles in which a liquid or a solid that generates gas by being vaporized, decomposed, or chemically reacted by heat is included in the thermoplastic resin, and has a temperature equal to or higher than the expansion start temperature, usually 140 to It expands when heated at a temperature of 190 ° C., and a gas is sealed in an outer shell made of the thermoplastic resin. The particle diameter of the thermoplastic resin particles before expansion is preferably 5 to 300 μm, Preferably, the particle size is 10 to 200 μm.
[0014]
Such thermally expandable thermoplastic resin particles are, for example, currently available under the trade name “EXPANCEL 091DU-80” or “EXPANCEL 092DU-120” from EXPANCEL of Sweden, or a product available from Matsumoto Yushi Co., Ltd. It is available under the name "Matsumoto Microsphere F-85" or "Matsumoto Microsphere F-100".
[0015]
The thermoplastic resin constituting the outer shell component of the gas-filled thermoplastic resin particles has an expansion start temperature of 100 ° C or higher, preferably 120 ° C or higher, and a maximum expansion temperature of 150 ° C or higher, preferably 160 ° C or higher. Is preferably used. As such a thermoplastic resin, for example, a polymer of (meth) acrylonitrile or a copolymer having a high content of (meth) acrylonitrile is suitably used. As other monomers (comonomer) in the case of the copolymer, monomers such as vinyl halide, vinylidene halide, styrene-based monomer, (meth) acrylate-based monomer, vinyl acetate, butadiene, vinylpyridine, and chloroprene are used. . In addition, the said thermoplastic resin is divinylbenzene, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, It may be made crosslinkable with a crosslinking agent such as allyl (meth) acrylate, triacrylformal, triallyl isocyanurate and the like. The crosslinked form is preferably not crosslinked, but may be partially crosslinked so as not to impair the properties as a thermoplastic resin.
[0016]
Examples of the liquid or solid that vaporizes, decomposes, or chemically reacts to generate a gas by the heat include, for example, n-pentane, isopentane, neopentane, butane, isobutane, hexane, hydrocarbons such as petroleum ether, methyl chloride, and methyl chloride. Liquids such as chlorinated hydrocarbons such as methylene chloride, dichloroethylene, trichloroethane, and trichloroethylene, or azodicarbonamide, dinitrosopentamethylenetetramine, azobisisobutyronitrile, toluenesulfonylhydrazide derivatives, and aromatic succinylhydrazide Solids such as derivatives are mentioned.
[0017]
Expanded graphite is a known material, and is manufactured by a known manufacturing method. Such expanded graphite generally contains an intercalation compound, and the intercalation opens and expands due to volatilization by heat treatment. Conventionally, expanded graphite, which normally expands by heat treatment at 300 ° C. or higher, was known. However, the expansion start temperature was lowered to 300 ° C. or lower by modifying an interlayer material or using or using other low-boiling acid compounds. Expanded graphite is manufactured and marketed. The processing temperature of the rubber composition containing a diene rubber as a main component in the present invention is 200 ° C. or less, and in the present invention, a predetermined effect is exhibited by using expanded graphite whose expansion start temperature is 190 ° C. or less. You.
[0018]
As such expanded graphite having an expansion start temperature of 190 ° C. or lower, for example, “Graph Guard 160-50” or “Graph Guard 160-80” manufactured by UCAR Graphtech, Inc. of the United States is commercially available from Tomoe Kogyo. It is possible.
[0019]
Expanded graphite refers to an unexpanded product immediately after the acid treatment, but it may also refer to an expanded product after heat treatment. The expanded graphite compounded as the rubber composition in the present invention is an unexpanded product before heat treatment.
[0020]
In the present invention, the expanded graphite is not expanded in the kneading step and the extrusion molding step of the rubber composition, but is preferably expanded in the vulcanization step. The expansion start temperature is preferably 120 to 190 ° C, more preferably 140 to 190 ° C. 170 ° C. is used. If the expansion start temperature is lower than 120 ° C., the expanded graphite expands during kneading or extrusion, and the rubber specific gravity changes in the course of the process, whereby the processability may be impaired. When the expansion start temperature exceeds 190 ° C., the processing temperature in the vulcanization step must be set to 190 ° C. or more, and the thermal deterioration of the diene rubber molecule, which is the main component of the rubber composition, becomes significant. There is a tendency.
[0021]
The rubber composition of the present invention may contain, as a rubber reinforcing agent, any carbon black usually added to the rubber composition. Carbon black surface-treated with silica can also be used. Silica can also be used. Carbon black is used in an amount of 20 to 80 parts by weight, preferably 30 to 60 parts by weight, based on 100 parts by weight of the rubber component. If the amount is too small, the rubber cannot be satisfactorily reinforced. For example, the friction resistance is deteriorated, which is not preferable. On the contrary, if the amount is too large, the hardness becomes too high and the workability is deteriorated. The sedimentable or dry silica is preferably used in an amount of 0 to 50 parts by weight, more preferably 0 to 20 parts by weight, based on 100 parts by weight of the rubber component. Silica may not be used, and if used, it is preferable to use a compounding amount in a range where the viscoelastic properties of the vulcanized rubber such as tan δ are improved. It is not preferable because the cohesive force of the agent becomes strong and dispersion during kneading becomes insufficient.
[0022]
The carbon black used in the present invention preferably has a nitrogen adsorption specific surface area (N 2 SA) of 70 m 2 / g or more, more preferably 80 to 200 m 2 / g, and a dibutyl phthalate (DBP) oil absorption of preferably 95 ml. / 100 g or more, more preferably 105 to 140 ml / 100 g.
[0023]
According to the present invention, 100 parts by weight of diene rubber, 1 to 30 parts by weight, preferably 5 to 15 parts by weight of expanded graphite having a particle size of 30 to 600 μm, preferably 100 to 350 μm, and a vulcanization system (for example, (A vulcanizing agent and, if necessary, a vulcanization accelerator), when producing a tire using the rubber composition for a tire, the exothermic graphite and other components other than the vulcanized system are added together with the diene rubber, for example, Kneading using a Banbury mixer, and then adding expanded graphite and a vulcanizing system to the mixture, and mixing at a temperature at which the maximum attained temperature is lower than the expansion start temperature of the expanded graphite, preferably 20 ° C. or more lower than the expansion start temperature. . Further, the extruded material is extruded under the same temperature conditions as during the kneading, and a green tire is assembled using the extruded material by ordinary molding, and then a temperature equal to or higher than the expansion start temperature of the expanded graphite, preferably, the expansion start temperature. Vulcanize the green tire at a temperature of 10 ° C. or higher than the temperature. When the temperature of the kneading, mixing or extrusion step reaches a temperature equal to or higher than the expansion start temperature of the expanded graphite, the expanded graphite expands, and the expandability in the vulcanization step becomes insufficient, and the expansion expanded in the mixing and extrusion step. It is not preferable because graphite breaks or deforms. Further, when the temperature of the mixing or extrusion step reaches a temperature equal to or higher than the expansion start temperature of the expanded graphite, the specific gravity of the rubber composition changes during processing due to expansion of the expanded graphite, which is not preferable because the processability is impaired.
[0024]
The rubber composition for a tire according to the present invention further includes a general vulcanizing or crosslinking agent, a vulcanizing or crosslinking accelerator, various oils, an antioxidant, a filler, a plasticizer, and other general rubbers. Can be blended, and such a blend can be kneaded by a general method to form a composition and vulcanized or crosslinked. The amounts of these additives may be conventional general amounts as long as the object of the present invention is not adversely affected.
[0025]
【Example】
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but it is needless to say that the scope of the present invention is not limited to these Examples.
[0026]
Comparative Examples 1-2 and Examples 1-4
Preparation of sample According to the composition (parts by weight) shown in Table I, a compounding agent such as rubber and carbon black was mixed for 5 minutes using a 1.7-liter closed Banbury mixer. A vulcanization accelerator, sulfur, microcapsules and expanded graphite were blended.
[0027]
Next, this composition was press-vulcanized in a 15 × 15 × 0.2 cm mold at 175 ° C. for 10 minutes to prepare a target test piece (rubber sheet). (−1.5 ° C. and −3 ° C.) and abrasion performance were evaluated. The results are shown in Table I.
[0028]
Test method
Measurement of frictional force on ice A sheet obtained by vulcanizing each compound was attached to a flat cylindrical base rubber, and the friction coefficient on ice was measured by an inside drum type friction tester on ice. The measurement temperatures were −3.0 ° C. and −1.5 ° C., the load was 5.5 kg / cm 3 , and the drum rotation speed was 25 km / h.
[0029]
Abrasion performance measurement Using a Lambourn abrasion tester (manufactured by Iwamoto Seisakusho Co., Ltd.), measurement was performed under the conditions of a load of 5 kg, a slip ratio of 25%, a time of 4 minutes, and room temperature, and the wear resistance obtained from the wear loss was measured. Exponential display.
[0030]
[Table 1]
Figure 0003553890
[0031]
Comparative Examples 3 to 7 and Examples 5 to 12
According to the composition (parts by weight) shown in Table II, a compounding agent such as rubber and carbon black was mixed for 5 minutes using a 1.7-liter closed Banbury mixer, and then the vulcanization accelerator, sulfur, Nylon fine particles, shirasu balloon, microcapsules and expanded graphite were blended.
[0032]
Next, this composition was press-vulcanized in a 15 × 15 × 0.2 cm mold at 175 ° C. for 10 minutes to prepare a target test piece (rubber sheet). (−1.5 ° C. and −3 ° C.) and abrasion performance were evaluated according to the test methods described above. The results are shown in Table II.
Since the tests shown in Tables I and II were not performed at the same time, slight differences in test conditions and measurement errors caused the absolute value of the results between the two tests even when the same sample was tested. Do not always match. In particular, the variation in the dielectric constant of water used to make ice for an ice-on-friction tester greatly affects the friction coefficient between rubber and ice, and the performance difference between the reference and the test product changes for each test. Sometimes. However, the performance order between samples is always constant regardless of the time of the test.
[0033]
[Table 2]
Figure 0003553890
Table II Footnotes
* 1 : See footnote in Table I
* 2 : Nylon fine particles: Alamine (Toray)
* 3 : Shirasu balloon: Shirasu Corporation
* 4 : Microsphere: F100D (Matsumoto Yushi, thermally expandable microcapsule)
* 5 : GG50N: GRAF Guard 160-50N (manufactured by UCAR Graphtech, commercially available from Tomoe Kogyo, expanded graphite, average particle size 300 µm, expansion start temperature 160 ° C)
* 6 : -3 ° C μ: Friction on ice (inside drum type indoor ice tester) performance index, test temperature -3 ° C (reproduces a relatively hard ice condition)
* 7 : -1.5 ° C μ: Performance index of friction force on ice (inside drum type indoor ice tester), test temperature -1.5 ° C (reproduces a state in which rubber is relatively easy to melt and rubber is slippery)
* 8 : Wear: Performance index by a series of Lambourn abrasion tests
【The invention's effect】
As described above, according to the present invention, by blending the diene rubber with expanded graphite, and, in some cases, a thermally expandable gas-filled thermoplastic resin, the vulcanized rubber is maintained while maintaining a balance with abrasion resistance. Friction performance on ice can be improved.

Claims (6)

ジエン系ゴム100重量部及び粒子サイズ30〜600μmの膨張黒鉛1〜30重量部を含んでなるタイヤ用ゴム組成物。A rubber composition for a tire, comprising 100 parts by weight of a diene rubber and 1 to 30 parts by weight of expanded graphite having a particle size of 30 to 600 μm. ジエン系ゴム100重量部に対し、熱によって膨張して気体封入熱可塑性樹脂となるマイクロカプセル1〜20重量部を更に含む請求項1に記載のゴム組成物。The rubber composition according to claim 1, further comprising 1 to 20 parts by weight of microcapsules that expand by heat to become a gas-encapsulated thermoplastic resin, based on 100 parts by weight of the diene rubber. 前記ジエン系ゴムのガラス転移温度が平均値で−55℃以下である請求項1又は2に記載のゴム組成物。The rubber composition according to claim 1, wherein a glass transition temperature of the diene rubber is −55 ° C. or less on average. ゴム100重量部に対し、窒素吸着比表面積(N SA)が70m /g以上で、ジブチルフタレート(DBP)吸油量が95ml/100g以上であるカーボンブラック20〜80重量部並びに沈降又は乾式シリカ0〜50重量部を更に含む請求項1〜3のいずれか1項に記載のゴム組成物。20 to 80 parts by weight of carbon black having a nitrogen adsorption specific surface area (N 2 SA) of 70 m 2 / g or more and a dibutyl phthalate (DBP) oil absorption of 95 ml / 100 g or more, based on 100 parts by weight of rubber, and precipitated or dry silica The rubber composition according to any one of claims 1 to 3, further comprising 0 to 50 parts by weight. ジエン系ゴム100重量部、粒子サイズ30〜600μmの膨張黒鉛1〜30重量部及び加硫系を含んでなるゴム組成物を用いてタイヤを製造するに当り、まず膨張黒鉛及び加硫系を除く他の成分をジエン系ゴムと一緒に混練し、次にこれに膨張黒鉛及び加硫系を加えて最高到達温度が膨張黒鉛の膨張開始温度未満となるような条件で混合及び同様な温度条件にてそれに続く押出し加工を行い、そしてゴム混合物の押出物でグリーンタイヤを組み立て、次に膨張黒鉛の膨張開始温度以上の温度でグリーンタイヤを加硫することを特徴とするタイヤの製造方法。In manufacturing a tire using a rubber composition comprising 100 parts by weight of a diene rubber, 1 to 30 parts by weight of expanded graphite having a particle size of 30 to 600 μm, and a vulcanized system, first remove the expanded graphite and the vulcanized system. The other components are kneaded together with the diene rubber, and then expanded graphite and a vulcanizing system are added thereto, and mixed under the condition that the maximum attained temperature is lower than the expansion starting temperature of the expanded graphite, and the same temperature conditions are set. A subsequent extrusion process, and assembling a green tire with an extrudate of the rubber mixture, and then vulcanizing the green tire at a temperature equal to or higher than the expansion start temperature of the expanded graphite. 請求項1〜4のいずれか1項に記載のゴム組成物をタイヤのトレッドに用いた氷雪路走行用ラジアルタイヤ。A radial tire for traveling on icy and snowy roads, wherein the rubber composition according to any one of claims 1 to 4 is used for a tread of a tire.
JP2001019089A 2000-01-27 2001-01-26 Rubber composition for tire and method for producing tire using the same Expired - Fee Related JP3553890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001019089A JP3553890B2 (en) 2000-01-27 2001-01-26 Rubber composition for tire and method for producing tire using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000023349 2000-01-27
JP2000-23349 2000-01-27
JP2001019089A JP3553890B2 (en) 2000-01-27 2001-01-26 Rubber composition for tire and method for producing tire using the same

Publications (2)

Publication Number Publication Date
JP2001279020A JP2001279020A (en) 2001-10-10
JP3553890B2 true JP3553890B2 (en) 2004-08-11

Family

ID=26584589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019089A Expired - Fee Related JP3553890B2 (en) 2000-01-27 2001-01-26 Rubber composition for tire and method for producing tire using the same

Country Status (1)

Country Link
JP (1) JP3553890B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206037A (en) * 2001-01-10 2002-07-26 Yokohama Rubber Co Ltd:The Rubber composition for tire
US9353248B2 (en) 2011-04-08 2016-05-31 The Yokohama Rubber Co., Ltd. Rubber composition for use in tire treads and pneumatic tire using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4056250B2 (en) 2001-12-14 2008-03-05 横浜ゴム株式会社 Rubber composition for tire and method for producing the same
US7414087B2 (en) 2003-08-20 2008-08-19 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire using the same
CN101443401B (en) 2006-05-17 2011-06-29 住友橡胶工业株式会社 Rubber composition for bead apex and tire using thereof
EP2052018A2 (en) * 2006-08-10 2009-04-29 Dow Global Technologies Inc. Polymers filled with highly expanded graphite
JP5228365B2 (en) * 2007-04-23 2013-07-03 横浜ゴム株式会社 Rubber composition for tire
US7902265B2 (en) 2007-10-17 2011-03-08 The Yokohama Rubber Co., Ltd. Rubber composition for tire
JP5515867B2 (en) * 2010-03-05 2014-06-11 横浜ゴム株式会社 Rubber composition for tire tread and pneumatic tire using the same
JP5648342B2 (en) * 2010-06-29 2015-01-07 横浜ゴム株式会社 Rubber composition for pneumatic studless tire
JP6180948B2 (en) * 2014-01-23 2017-08-16 横浜ゴム株式会社 Vulcanized rubber composition for tires
WO2017191839A1 (en) * 2016-05-02 2017-11-09 横浜ゴム株式会社 Rubber member, tire, and method of manufacturing rubber member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206037A (en) * 2001-01-10 2002-07-26 Yokohama Rubber Co Ltd:The Rubber composition for tire
US9353248B2 (en) 2011-04-08 2016-05-31 The Yokohama Rubber Co., Ltd. Rubber composition for use in tire treads and pneumatic tire using the same

Also Published As

Publication number Publication date
JP2001279020A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
JP4267062B2 (en) Rubber composition for tread of studless tire
US6892774B2 (en) Radial tire derived from rubber composition containing expandable graphite
US6730710B2 (en) Rubber composition for tire and process of production thereof
JP3553890B2 (en) Rubber composition for tire and method for producing tire using the same
JP3352627B2 (en) Rubber composition for tire tread with increased frictional force on ice and pneumatic tire
JP3995565B2 (en) Rubber composition for tire and method for producing the same
JP2006249324A (en) Rubber composition for tire
JP2006131714A (en) Rubber composition for tire tread
JP4064744B2 (en) Rubber composition having improved frictional force on ice and pneumatic tire using the same
JP2008163234A (en) Rubber composition for tire tread
US20030036599A1 (en) Rubber composition for tire
JP2005320374A (en) Rubber composition for tire tread
JP4090349B2 (en) Rubber composition having improved frictional force on ice and pneumatic tire using the same
JP2002060548A (en) Rubber composition for tire
JP2004107482A (en) Rubber composition for tread of tire for ice/snow-covered road
JP5617316B2 (en) Rubber composition for tire tread and pneumatic tire using the same
JP2004256745A (en) Rubber composition for tire
JP2005082620A (en) Rubber composition for tire tread
JP2004051754A (en) Tire tread rubber composition for iced or snowy road
JP3980001B2 (en) Rubber composition
JP2003026858A (en) Rubber composition for tire and method for producing tire by using the same
JP3979862B2 (en) Rubber composition for tire
JP2004091745A (en) Tire rubber composition
JP2003026859A (en) Rubber composition for tire and method for producing tire by using the same
JP2001288306A (en) Rubber composition for tire tread

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040430

R150 Certificate of patent or registration of utility model

Ref document number: 3553890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees