JP3553360B2 - 孔位置の計測方法 - Google Patents

孔位置の計測方法 Download PDF

Info

Publication number
JP3553360B2
JP3553360B2 JP06296298A JP6296298A JP3553360B2 JP 3553360 B2 JP3553360 B2 JP 3553360B2 JP 06296298 A JP06296298 A JP 06296298A JP 6296298 A JP6296298 A JP 6296298A JP 3553360 B2 JP3553360 B2 JP 3553360B2
Authority
JP
Japan
Prior art keywords
hole
point
distance
work
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06296298A
Other languages
English (en)
Other versions
JPH11257918A (ja
Inventor
孝男 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP06296298A priority Critical patent/JP3553360B2/ja
Priority to CA002242179A priority patent/CA2242179C/en
Priority to US09/110,320 priority patent/US6163035A/en
Publication of JPH11257918A publication Critical patent/JPH11257918A/ja
Application granted granted Critical
Publication of JP3553360B2 publication Critical patent/JP3553360B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ワークに形成した孔の位置を、ワークとの間の距離をワークに対する投受光で測定する測距器を用いて計測する孔位置の計測方法に関する。
【0002】
【従来の技術】
本願出願人は、先に、特願平9−181550号により、ワークに対する測距器からの光線の照射点が孔の孔縁に交差するように設定した走査線に沿って動くように、ロボットにより測距器をワークに対し移動し、この移動中に測距器で測定されるワークとの間の距離の変化に基づいて走査線に交差する孔の孔縁点の座標を求め、孔縁点の座標から孔の中心座標を算出するようにした孔位置の計測方法を提案した。
【0003】
このものでは、図8に示すように、孔を横断するように設定した第1の走査線alに沿って照射点が動くように測距器を移動し、照射点が孔に入って測定距離が急増した位置から第1の走査線a1に交差する第1の孔縁点blの座標を求めると共に、照射点が孔から外れて測定距離が急減した位置から第1の走査線a1に交差する第2の孔縁点b2の座標を求め、次に、第1の走査線alに対し所定角度傾いた第2の孔縁点b2を通る第2の走査線a2に沿って照射点が動くように測距器を移動し、照射点が孔から外れて測定距離が急減する位置から第2の走査線a2に交差する第3の孔縁点b3の座標を求め、これら3つの孔縁点b1,b2,b3を通る円の方程式を算出して、この円の中心座標を孔の中心Oの座標としている。
【0004】
【発明が解決しようとする課題】
ところで、測距器の移動速度を速くすると、測定距離の急変点、即ち、孔縁点の位置検出の分解能が低下する。そして、上記先願のように走査線a1,a2を設定すると、各走査線に直交する方向への孔位置のずれで各走査線a1,a2に交差する孔縁点b1,b2,b3の位置が大きくずれる可能性があるため、孔縁点の位置を高い分解能で精度良く検出するには、測距器を各走査線L1,L2の全域に亘って低速で移動することが必要になり、孔位置の計測に時間がかかる。
【0005】
また、測距器はロボットの複数の軸の合成動作で移動されるようになっており、ロボットの各軸の動きを制御するロボットコントローラにより測距器の位置が認識されるが、各軸の駆動系のバックラッシュ等により測距器の実際の位置がロボットコントローラによる認識位置からずれることがある。ここで、走査線が一定であれば、ロボットの複数の軸の合成動作の形態も一定となり、バックラッシュ等による測距器の位置ずれ量も一定になるから、測距器の実際の移動軌跡の位置も一定になる。従って、一義的に決定される第1の走査線a1に沿って照射点が動くように測距器を移動したときに、ロボットコントローラで認識される測距器の位置から求められる第1と第2の孔縁点b1,b2の座標は、マスタワークに対し第1の走査線a1に沿って照射点が動くように測距器を移動して同じように求めた第1と第2の孔縁点b1,b2の座標に対し孔位置のずれに応じた所定の相関関係を持つ。
【0006】
一方、第2の走査線a2は、第2の孔縁点b2の位置に応じてマスタワークの孔位置の計測時における第2の走査線から平行に変位し、測距器を照射点が第2の走査線a2に沿って動くように移動させるためのロボットの複数の軸の合成動作の形態が第2の走査線a2の変位によって変化する。このように合成動作の形態が変化すると、測距器の位置に対する各軸の駆動系のバックラッシュの影響度が変化して、測距器の位置ずれ量がマスタワークの計測時とは異なった値になる。その結果、第2の走査線a2に沿って照射点が動くように測距器を移動したときに、ロボットコントローラで認識される測距器の位置から求められる第3の孔縁点b3の座標と、マスタマークに対し第2の走査線に沿って照射点が動くように測距器を移動して同じように求めた第3の孔縁点a3の座標との間には孔位置のずれに応じた正確な相関関係が成立しなくなり、孔位置の計測精度が悪くなる。
【0007】
本発明は、以上の点に鑑み、孔位置を能率良く高精度で計測し得るようにした計測方法を提供することを課題としている。
【0008】
【課題を解決するための手段】
上記課題を解決すべく、本発明は、ワークに形成した孔の位置を、ワークとの間の距離をワークに対する投受光で測定する測距器を用いて計測する方法であって、ワークに対する測距器からの光線の照射点が孔の孔縁に交差するように設定した走査線に沿って動くように、ロボットにより測距器をワークに対し移動し、この移動中に測距器で測定されるワークとの間の距離の変化に基づいて走査線に交差する孔の孔縁点の座標を求め、孔縁点の座標から孔の中心座標を算出する方法において、正規位置に存する孔の中心に照射点が合致する原点位置と、正規位置に存する孔と同心で、孔の中心位置の予想最大ずれ量を孔の半径に加えた値より若干大きな半径の基準円上の第1の点に照射点が合致する第1の走査基点位置と、照射点が基準円上の第2の点に合致する第2の走査基点位置と、照射点が基準円上の第3の点に合致する計測終点位置とを設定し、第1の走査基点位置でワークとの間の距離を測定した後、測距器を第1の走査基点位置から原点位置に向けて直線移動して、第1の点と基準円の中心とを結ぶ第1の走査線に交差する第1の孔縁点の座標を求める工程と、第2の走査基点位置でワークとの間の距離を測定した後、測距器を第2の走査基点位置から原点位置に向けて直線移動して、第2の点と基準円の中心とを結ぶ第2の走査線に交差する第2の孔縁点の座標を求める工程と、測距器を原点位置を経由して計測終点位置に移動してワークとの間の距離を測定する工程とを順に実行すると共に、測距器の移動速度を、測距器で測定されるワークとの間の距離が走査線に交差する孔の孔縁点で変化するまでは比較的低速とし、その後、測距器を比較的高速で原点位置を経由して次の走査基点位置に移動させ、第1と第2の両走査基点位置と計測終点位置とにおけるワークとの間の距離に基づいてワークの孔開設面を表わす方程式を求め、第1と第2の両孔縁点の座標に基づいて、両孔縁点を通る、孔の径と等径の孔開設面上の2つの円の方程式を求め、2つの円のうち中心が基準円の中心に近い方の円の中心座標を孔の中心座標とするものである。
【0009】
本発明によれば、走査線が基準円の中心に向う放射状の線として設定されるから、走査基点位置に対応する基準円上の点と走査線に交差する孔の孔縁点との間の距離が増加するのは、孔位置が正規の孔中心に対し走査基点位置と反対方向にずれたときであって、この距離は最大予想ずれ量の2倍程度以下の範囲に収まり、測距器の低速移動距離は比較的短くなる。そして、孔縁点の検出位置から次の走査基点位置までは測距器を高速移動するため、測距器の移動に要する時間を短縮して、能率良く孔位置を計測できる。
【0010】
また、各走査線は、基準円上の各点と基準円の中心とを結ぶ放射状の線として一義的に設定されており、孔位置のずれで走査線が変位することはない。
【0011】
尚、孔の孔縁点を検出したところで、孔縁点の検出位置から次の走査基点位置まで測距器を直線移動することも考えられるが、この場合には、孔の位置ずれにより孔縁点の位置がずれると、孔縁点の検出位置と次の走査基点位置とを結ぶ直線が変位し、この変位に伴い測距器を次の走査基点位置に移動するためのロボットの複数の軸の合作動作の形態がワーク毎に変化する。その結果、次の走査基点位置における測距器の位置ずれ量がワーク毎にばらつき、この走査基点位置からの測距器の実際の移動軌跡の位置もワーク毎にばらつく。
【0012】
これに対し、本発明では、測距器を孔縁点の検出位置から原点位置を経由して次の走査基点位置に移動するため、孔縁点の検出位置から次の走査基点位置までの測距器の移動経路は一定になる。従って、ロボットの各軸の駆動系のバックラッシュ等により測距器の実際の位置がロボットコントローラによる認識位置からずれるとしても、次の走査基点位置における測距器の位置ずれ量はワーク毎にばらつくことなく一定になり、この走査基点位置からの測距器の実際の移動軌跡の位置も一定になる。その結果、各走査線に沿って照射点が動くように測距器を移動したときに、ロボットコントローラで認識される測距器の位置から求められる各孔縁点の座標と、マスタワークに対し各走査線に沿って照射点が動くように測距器を移動して同じように求めた各孔縁点の座標との間には孔位置のずれに応じた正確な相関関係が成立し、これら孔縁点の座標から算出されるワークの孔の中心座標とマスタワークの孔の中心座標との比較で孔位置を正確に計測できる。
【0013】
ところで、走査基点位置と走査線とを夫々3つ設定し、3つの走査基点位置において測定されたワークとの間の距離に基づいてワークの孔開設面を表わす方程式を求め、3つの走査線に交差する3つの孔縁点の座標に基づいて、これら孔縁点を通る孔開設面上の円の方程式を求め、この円の中心座標を孔の中心座標としても良いが、3つの孔縁点を検出するには時間がかかる。ここで、孔の径は既知であるから、照射点が基準円上の第1の点に合致する第1の走査基点位置と照射点が基準円上の第2の点に合致する第2の走査基点位置と、照射点が基準円上の第3の点に合致する計測終点位置とを設定し、第1の走査基点位置でワークとの間の距離を測定した後、測距器を第1の走査基点位置から原点位置に向けて直線移動して、第1の点と基準円の中心とを結ぶ第1の走査線に交差する第1の孔縁点の座標を求める工程と、第2の走査基点位置でワークとの間の距離を測定した後、測距器を第2の走査基点位置から原点位置に向けて直線移動して、第2の点と基準円の中心とを結ぶ第2の走査線に交差する第2の孔縁点の座標を求める工程と、測距器を原点位置を経由して計測終点位置に移動してワークとの間の距離を測定する工程とを順に実行し、第1と第2の両走査基点位置と計測終点位置とにおけるワークとの間の距離に基づいてワークの孔開設面を表わす方程式を求め、第1と第2の両孔縁点の座標に基づいて、両孔縁点を通る、孔の径と等径の孔開設面上の2つの円の方程式を求め、2つの円のうち中心が基準円の中心に近い方の円の中心座標を孔の中心座標としても良い。これによれば、3番目の孔縁点を検出するための走査が不要となり、計測時間を短縮できる。また、第1の孔縁点の検出位置から第2の走査基点位置に上記の如く原点位置を経由して測距器を移動すると共に、第2の孔縁点の検出位置から計測終点位置に原点位置を経由して測距器を移動することにより、計測終点位置における測距器の位置ずれ量もワーク毎にばらつくことなく一定になり、孔開設面の方程式を正確に算出できる。
【0014】
【発明の実施の形態】
本発明を、図7に示すワークたるサブフレームWに形成したサスペンション連結用の孔の位置の計測に適用した実施形態について説明する。
【0015】
サブフレームWは、左右両側部の前後両端に車体に対する計4個の取付部A1,A2,A3,A4を備えており、各取付部A1〜A4をこれに形成した各取付穴A1a〜A4aに挿通する穴径より小径のボルト(図示せず)で穴位置のずれを許容し得るように車体に締結する。
【0016】
サブフレームWの左右各側部には、マルチリンク式サスペンションが組付けられる。マルチリンク式サスペンションは、ナックルNの下部に連結するロアアームと上部に連結するアッパアームとを夫々複数のリンクで構成するサスペンションであり、図示のものでは、ロアアームを、ナックルNの下部前端に連結した斜め前方にのびるトレーリングリンクS1と、ナックルNの下部中間に連結した横方向にのびるロアリンクS2と、ナックルNの下部後端に連結したコントロールリンクS3とで構成し、アッパアームを、ナックルNの上部に連結した横方向にのびるアッパリンクS4と、ナックルNの上部に連結した斜め後方にのびるリーデングリンクS5とで構成しており、これら各リンクをサブフレームの側部に設けた各連結部B1〜B5に連結する。各連結部B1〜B5は、対向する1対の板部Ba,Baを有し、各リンクの端部を両板部Ba,Ba間に挿入して、両板部Ba,Baに形成した孔Bb,Bbに挿通するボルトにより各リンクの端部を各連結部に枢着している。また、トレーリングリンクS1用とロアリンクS2用とアッパリンクS4用とリーデングリンクS5用の連結部B1,B2,B4,B5の片側の板部Bdの外面には、図5(B)に示す如く、ボルトを螺合するナットBcが溶着されている。コントロールリンクS3用の連結部B3の各板部Baに形成する孔Bbは、図6(B)に示す如く、長円形に形成されており、偏心カムによりボルトを孔Bbの長手方向に変位させてアライメントを調整できるようにしている。
【0017】
ところで、左右各側における連結部B1〜B5の相対位置精度に狂いを生ずると、偏心カムによるコントロールリンクS3の調整だけではアライメントを正確に調整できなくなる。そこで、サブフレームWを組立てた後、計測ステーションにおいて左右各側の連結部B1〜B5の位置を計測し、連結部B1〜B5の相対位置精度が公差内に収まっているか否かを判別し、公差内に収まっているサブフレームWのみを合格品として次工程に搬送するようにした。
【0018】
計測ステーションには、図1及び図2に示す如く、サブフレームWを定位置に支持する治具1と、サブフレームWの左右各側の連結部B1〜B5の位置を計測する左右2台の計測装置2,2とが配置されている。
【0019】
治具1は、サブフレームWを各取付部A1〜A4において支持する4個のワーク受け11,12,13,14を備えており、サブフレームWを各取付部A1〜A4の車体に対する座面が下方を向くように上下反転した状態で図外のトランスファー装置により計測ステーションに搬入し、トランスファー装置の上下方向の動きで各取付部A1〜A4を各ワーク受け11〜14に載置するようになっている。
【0020】
計測装置2は、ロボット20と、その動作端たる手首20aに搭載した計測ヘッド21とで構成されており、計測ヘッド21には図3(A)(B)に示すように測距器22が取付けられている。測距器22としては、例えば、キーエンス社製のLK−2000シリーズのレーザ式測距器を用いることができる。この測距器22は、レーザダイオード22aからのレーザ光(波長670mm)を投光レンズ22bとバンドパスフィルタ22cとを介して計測対象物に照射し、反射光をバンドパスフィルタ22dと受光レンズ22eとを介してCCD素子から成る受光素子22fで受光して、計測対象物までの距離を計測するものであり、基準計測距離が30mmであって、±5mmの測定レンジにおいて1μmの分解能で距離を測定できる。測距器22による測定データはコンピュータ2aに送信される。
【0021】
また、本実施形態では、計測ヘッド21に1対の測距器22,22を取付けると共に、計測ヘッド21の先端部に各測距器22の光軸22gを屈曲させる1対のミラー23,23を取付け、一方の測距器22の光軸22gの一方のミラー23による屈曲方向と、他方の測距器22の光軸22gの他方のミラー23による屈曲方向とが互に反対方向になるようにしている。
【0022】
計測に際しては、サブフレームWの左右各側の連結部B1〜B5に左右各側の計測装置2の計測ヘッド21を順に移動し、各連結部B1〜B5の1対の板部Ba,Ba間にミラー23,23を取付けた計測ヘッド21の先端部を、各ミラー23で屈曲された各測距器22の光軸22gが各板部Baの法線方向を向くように挿入する。
【0023】
そして、各測距器22から各ミラー23を介して各板部Baに照射されるレーザ光の照射点が、図4(A)に示す如く、孔Bbの孔縁に交差するように設定した各走査線L1,L2に沿って動くように、計測ヘッド21をロボット20で移動する。
【0024】
計測ヘッド21は、ロボットコントローラ2bに格納されているティーチングデータに従ったロボット20の複数の軸の合成動作で移動されるもので、ティーチング時に、マスタワークを用いて、各連結部B1〜B5における計測ヘッド21の原点位置と走査基点位置と計測終点位置とを設定し、この位置データをティーチングデータとしてロボットコントローラ2bに格納する。原点位置は、マスタワークの各連結部の孔、即ち、正規位置に存する孔Bb′の中心P0に照射点が合致する位置に設定される。そして、この孔Bb′と同心で、孔Bbの中心位置の予想最大ずれ量(例えば3mm)を孔の半径r(例えば7mm)に加えた値より若干(例えば2mm)大きな半径Rの基準円BC上の第1の点P1と第2の点P2に夫々照射点が合致する位置を第1と第2の走査基点位置に設定すると共に、基準円BC上の第3の点P3に照射点が合致する位置を計測終点位置として設定する。そして、第1と第2の各走査基点位置から原点位置に向けて計測ヘッド21を直線移動することにより、第1と第2の各点P1,P2と基準円BCの中心P0とを結ぶ第1と第2の各走査線L1,L2に沿って照射点を移動させる。各走査線L1,L2に対応する計測ヘッド21の移動軌跡は、光軸22gに直交する平面座標系における各走査基点位置と原点位置とを結ぶ直線方程式で規定され、この直線方程式により走査線L1,L2上の各点の平面座標系における座標を求めることができる。
【0025】
各連結部B1〜B5の孔位置の計測に際しては、先ず、計測ヘッド21を原点位置を経由して第1の走査基点位置に移動して、照射点を基準円BC上の第1の点P1に合致させ、測距器22により板部Baとの間の距離を測定して、その測定データをコンピュータ2aに送信する。次に、計測ヘッド21を第1の走査基点位置から原点位置に向けて直線移動し、照射点を第1の点P1から第1の走査線L1に沿って移動させる。この際、測距器22による測定距離は、図5(A)に示す如く、照射点が孔Bbに入ったところで計測限界まで急増する。そして、測定距離の急増時点での計測ヘッド21の位置をロボットコントローラ2bからの位置データにより検出し、第1の走査線L1に交差する孔Bbの第1の孔縁点Laの平面座標系における座標を求める。
【0026】
ここで、計測ヘッド21の移動速度を速くすると、測定距離の変化点の位置検出の分解能が低下する。そこで、計測ヘッド21の移動速度を、第1の孔線点Laで測定距離が急増までは比較的低速(例えば15mm/秒)にし、孔縁点Laの位置を高分解能で検出できるようにする。尚、第1の点P1と孔縁点Laとの間の低速移動距離は、孔Bbの中心位置が基準円BCの中心P0に対し第1の点P1と反対方向にずれたときに増加するが、この距離は最大でも予想最大ずれ量の2倍程度に収まり、孔縁点Laの検出に左程時間はかからない。
【0027】
孔縁点Laを検出すると、計測ヘッド21を孔縁点Laの検出位置から原点位置を経由して第2の走査基点位置に比較的高速(例えば100mm/秒)で移動し、照射点を基準円BC上の第2の点P2に合致させて、測距器22により板部Baとの間の距離を測定し、その測定データをコンピュータ2aに送信する。次に、計測ヘッド21を第2の走査基点位置から原点位置に向けて直線移動し、照射点を第2の点P2から第2の走査線L2に沿って移動させる。この場合も、照射点が孔Bbに入ったところで測距器22による測定距離が計測限界まで急増するから、この急増時点における計測ヘッド21の位置をロボットコントローラ2bからの位置データにより検出し、第2の走査線L2に交差する孔Bbの第2の孔縁点Lbの平面座標系における座標を求める。また、第1の走査線L1に沿った走査時と同様に、第2の孔縁点Lbで測定距離が急増するまでは計測ヘッド21を比較的低速で移動し、孔縁点Lbの位置を高分解能で検出できるようにする。
【0028】
孔縁点Lbを検出すると、計測ヘッド21を孔縁点Lbの検出位置から原点位置を経由して計測終点位置に比較的高速で移動し、照射点を基準円BC上の第3の点P3に合致させて、測距器22により板部Baとの間の距離を測定し、その測定データをコンピュータ2aに送信する。その後、計測ヘッド21を計測終点位置から次に計測する連結部に移動する。
【0029】
コンピュータ2aは、第1と第2の両走査基点位置と計測終点位置とにおける測定距離に基づいて、板部Baの板面、即ち、孔Bbの開設面を表す空間座標系における面方程式を算出し、次に、第1と第2の両孔縁点La,Lbの座標に基づいて、図4(B)に示す如く、両孔縁点La,Lbを通る、孔Bbの径rと等径の孔開設面上の2つの円C1,C2の方程式を算出する。そして、これら両円C1,C2のうち中心が基準円BCの中心P0に近い方の円(図では円C1)の中心座標を孔Bbの中心Oの座標とする。
【0030】
尚、ナットBcを溶着した板部Baの孔Bbの計測では、図5(B)に示す如く、照射点が板部Baの板面が孔Bb内に臨むナットBcの端面に移行したところで測定距離が板部Baの板厚分だけ増加し、照射点がナットBcの内径内に入ったところで測定距離が計測限界に急増する。そこで、各走査線L1,L2とナットBcの内径円との交点の位置を各孔縁点La,Lbの位置として測定し、板部Baの板面上におけるナットBcの内径円の中心座標を孔Bbの中心座標として求める。
【0031】
そして、図6(A)に示す如く、一方の板部Baの孔Bbの中心Oと他方の板部Baの孔Bbの中心Oとの結線の中点Mの座標を求め、この中点Mを連結部の位置を表わす点として連結部の基準位置からのずれを測定している。
尚、孔Bbを長円形に形成する、コントロールリンクS3用の連結部B3においては、図6(B)に示す如く、一方の板部Baの孔Bbの長手方向一方の半円部と、他方の板部Baの孔Bbの長手方向他方の半円部とに対し、夫々、基準円BCの半周上の第1乃至第3の3点P1,P2,P3を設定し、これら3点での測定距離と、第1と第2の各点P1,P2と基準円BCの中心P0とを結ぶ各走査線L1,L2に交差する孔縁点La,Lbの座標とから上記と同様に各半円部の中心Oの座標を算出し、両半円部の中心O,Oの結線の中点Mを連結部B3の位置を表わす点としてその座標を求める。
【0032】
上記の如くサブフレームWの左右各側の連結部B1〜B5の位置を計測すると、連結部B1〜B5の相対位置精度が公差内に収まっているか否かを判別し、公差内に収まっていないサブフレームWは不合格品として回収し、公差内に収まっているサブフレームWのみを次工程に搬送する。また、孔位置が大幅にずれると、基準円BC上の3点P1,P2,P3の何れかが孔Bb内に入って孔Bbの中心座標を計測できなくなることがあり、この場合にはその旨を表示しサブフレームWを回収する。
【0033】
ところで、孔位置の計測に際し、第1の孔縁点Laや第2の孔縁点Lbを検出した後、計測ヘッド21をこれら各孔縁点La,Lbの検出位置から第2の走査基点位置や計測終点位置に直線移動して、計測時間の短縮を図ることが考えられる。然し、これでは、孔の位置ずれによる各孔縁点La,Lbの変位で、第2の走査基点位置や計測終点位置への計測ヘッド21の移動経路が変化することになり、計測ヘッド21の移動時におけるロボット20の複数の軸の合成動作の形態がワーク毎にばらつくことになる。ここで、計測ヘッド21の実際の位置は、ロボット20の各軸の駆動系のバックラッシュ等の影響で、ロボットコントローラ2aが認識する位置からずれる可能性がある。そして、ロボット20の複数の軸の合成動作の形態が変化すると、計測ヘッド21の位置ずれに対する各軸の駆動系のバックラッシュの影響度が変化し、計測ヘッド21の位置ずれ量が変化することになる。
【0034】
これに対し、本実施形態では、計測ヘッド21を第1の孔縁点Laの検出位置や第2の孔縁点Lbの検出位置から第2の走査基点位置や計測終点位置に原点位置を経由して移動しているため、計測ヘッド21の移動経路は各孔縁点La,Lbの位置に係わりなく一定になり、この移動時のロボット20の複数の軸の合作動作の形態がワーク毎にばらつくことを防止できる。そのため、ロボット20の各軸の駆動系のバックラッシュ等により計測ヘッド21の位置ずれを生じ、照射点が第2の点P2や第3の点P3からずれたり、照射点の実際の移動軌跡が第2の走査線L2からずれても、このずれ量はワーク毎にばらつくことなく一定になり、マスタワークの計測時と同一の条件で各ワークの計測を行うことができ、マスタワークの計測で求められた基準位置からのずれを正確に計測できる。
【0035】
尚、本実施形態では、計測ヘッド21を第1の走査基点位置にも原点位置を経由して移動しているが、第1の走査基点位置への移動経路を一定にしておく限り、照射点の第1の点P1からのずれ量はワーク毎にばらつくことなく一定になるから、第1の走査基点位置に原点位置を経由せずに計測ヘッドを移動しても良い。
【0036】
また、本実施形態では、治具1に、U字状の枠体から成る左右1対の標準器15,15を設け、計測装置2で連結部B1〜B5の位置を計測する前に、計測ヘッド21の先端部を標準器15の対向する側板15a,15a間に挿入して、各側板15aに形成した孔15bの中心座標を計測し、両側の孔15b,15bの中心を結ぶ結線の中点の基準位置からのずれを計測している。このずれはロボット20による計測ヘッド21の位置決め誤差に起因するものであり、各連結部B1〜B5における第1と第2の各走査基点位置と原点位置とをこのずれに応じて補正して、計測ヘッド21が各連結部B1〜B5に対し正しく位置決めされるようにする。
【0037】
【発明の効果】
以上の説明から明らかなように、本発明によれば、測距器の低速移動距離を短くできると共に、測距器の位置がワーク毎にばらつくことを防止でき、孔位置を能率良く高精度で計測できる。
【図面の簡単な説明】
【図1】本発明の実施に用いる計測設備を配置した計測ステーションの平面図
【図2】計測ステーションの正面図
【図3】(A)測距器を取付けた計測ヘッドの正面図、(B)計測ヘッドの平面図
【図4】(A)走査線の設定と計測ヘッドの移動経路とを示す図、(B)第1と第2の両孔縁点を通る2つの円を示す図
【図5】(A)孔と測定距離との関係を示す図、(B)ナット付きの孔と測定距離との関係を示す図
【図6】(A)計測対象たる連結部の位置の求め方を示す図、(B)長円形の孔を形成した連結部の位置の求め方を示す図
【図7】ワークたるサブフレームの斜視図
【図8】先願の走査線の設定を示す図
【符号の説明】
Bb 孔 BC 基準円 P0 基準円の中心
P1 第1の点 P2 第2の点 P3 第3の点
L1 第1の走査線 L2 第2の走査線 La 第1の孔縁点
L2 第2の孔縁点 20 ロボット 22 測距器

Claims (1)

  1. ワークに形成した孔の位置を、ワークとの間の距離をワークに対する投受光で測定する測距器を用いて計測する方法であって、
    ワークに対する測距器からの光線の照射点が孔の孔縁に交差するように設定した走査線に沿って動くように、ロボットにより測距器をワークに対し移動し、この移動中に測距器で測定されるワークとの間の距離の変化に基づいて走査線に交差する孔の孔縁点の座標を求め、孔縁点の座標から孔の中心座標を算出する方法において、
    正規位置に存する孔の中心に照射点が合致する原点位置と、正規位置に存する孔と同心で、孔の中心位置の予想最大ずれ量を孔の半径に加えた値より若干大きな半径の基準円上の第1の点に照射点が合致する第1の走査基点位置と、照射点が基準円上の第2の点に合致する第2の走査基点位置と、照射点が基準円上の第3の点に合致する計測終点位置とを設定し、
    第1の走査基点位置でワークとの間の距離を測定した後、測距器を第1の走査基点位置から原点位置に向けて直線移動して、第1の点と基準円の中心とを結ぶ第1の走査線に交差する第1の孔縁点の座標を求める工程と、
    第2の走査基点位置でワークとの間の距離を測定した後、測距器を第2の走査基点位置から原点位置に向けて直線移動して、第2の点と基準円の中心とを結ぶ第2の走査線に交差する第2の孔縁点の座標を求める工程と、
    測距器を原点位置を経由して計測終点位置に移動してワークとの間の距離を測定する工程とを順に実行すると共に、
    測距器の移動速度を、測距器で測定されるワークとの間の距離が走査線に交差する孔の孔縁点で変化するまでは比較的低速とし、その後、測距器を比較的高速で原点位置を経由して次の走査基点位置に移動させ、
    第1と第2の両走査基点位置と計測終点位置とにおけるワークとの間の距離に基づいてワークの孔開設面を表わす方程式を求め、
    第1と第2の両孔縁点の座標に基づいて、両孔縁点を通る、孔の径と等径の孔開設面上の2つの円の方程式を求め、
    2つの円のうち中心が基準円の中心に近い方の円の中心座標を孔の中心座標とする、
    ことを特徴とする孔位置の計測方法。
JP06296298A 1997-07-07 1998-03-13 孔位置の計測方法 Expired - Fee Related JP3553360B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP06296298A JP3553360B2 (ja) 1998-03-13 1998-03-13 孔位置の計測方法
CA002242179A CA2242179C (en) 1997-07-07 1998-07-03 Method of, and apparatus for, measuring position of hole
US09/110,320 US6163035A (en) 1997-07-07 1998-07-06 Method of, and apparatus for, measuring position of hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06296298A JP3553360B2 (ja) 1998-03-13 1998-03-13 孔位置の計測方法

Publications (2)

Publication Number Publication Date
JPH11257918A JPH11257918A (ja) 1999-09-24
JP3553360B2 true JP3553360B2 (ja) 2004-08-11

Family

ID=13215472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06296298A Expired - Fee Related JP3553360B2 (ja) 1997-07-07 1998-03-13 孔位置の計測方法

Country Status (1)

Country Link
JP (1) JP3553360B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101057460B1 (ko) 2010-02-17 2011-08-17 주식회사 이오테크닉스 타이틀러 시스템의 마커들 위치를 조정하기 위한 보정 옵셋 측정 방법
CN103759646B (zh) * 2014-01-27 2016-02-24 哈尔滨飞机工业集团有限责任公司 一种利用螺纹孔定位安装定位件的方法
CN113340238B (zh) * 2021-07-07 2022-07-29 成都威诺精密机械有限公司 一种用于检测零件大孔内小斜孔的角度和位置的检测方法
CN115447694B (zh) * 2022-09-22 2023-06-30 东风汽车集团股份有限公司 用于汽车电池包的合装方法、存储介质、电子设备及系统
CN116447978B (zh) * 2023-06-16 2023-10-31 先临三维科技股份有限公司 孔位信息检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JPH11257918A (ja) 1999-09-24

Similar Documents

Publication Publication Date Title
CN106862741B (zh) 机器人控制装置、机器人的控制方法
JP4486571B2 (ja) サスペンションアッセンブリ位置決め方法
US20020020071A1 (en) Method and system for conducting wheel alignment
US20090145888A1 (en) Preparing and performing of a laser welding process
US10688664B2 (en) Arrangement and method for the model-based calibration of a robot in a working space
EP0895056A2 (en) Method and device for regulating the attitude of a motor vehicle.
CN105705905A (zh) 对测量物体的厚度进行测量的方法以及用于应用该方法的设备
US10654142B2 (en) Device and method for checking and correcting the position of an operating device with respect to a piece
EP0843155B1 (en) Optical distance measuring equipment and method therefor
CN112424563A (zh) 用于精确计算动态对象的位置和方位的多维测量系统
JP3553360B2 (ja) 孔位置の計測方法
CN101925796A (zh) 用来检验底盘测量系统的测量头的基准的方法和装置
CA2242179C (en) Method of, and apparatus for, measuring position of hole
JP5789010B2 (ja) 表面形状測定装置およびそれを備えた工作機械
JP3583468B2 (ja) 軸芯ずれ測定装置
JPH0890464A (ja) ロボット装置の原点較正装置及び双腕型ロボット装置
JP2006187794A (ja) シームトラッキング溶接装置
JP3432706B2 (ja) 孔位置の計測方法
JPH06328385A (ja) 産業用ロボットの視覚センサの姿勢制御方法
CN100514449C (zh) 磁头的静止姿势角校正方法及装置
JPH11295023A (ja) 車両用サブフレームの組立精度検査方法及びこの方法の実施に用いるダミーサスペンションアーム
US4845639A (en) Robotic sealant calibration
JPH07128011A (ja) 三次元測定装置
KR100869055B1 (ko) 양단 지지 회전부의 센터축의 정렬도 측정장치 및 이를이용한 센터축의 정렬 방법
EP1677071B1 (en) Multiple axle alignment method and device for trucks

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040428

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees