JP3553149B2 - Lightweight 2-piece DI can with excellent strength and uniform heating properties and electro-tin plating - Google Patents

Lightweight 2-piece DI can with excellent strength and uniform heating properties and electro-tin plating Download PDF

Info

Publication number
JP3553149B2
JP3553149B2 JP21507294A JP21507294A JP3553149B2 JP 3553149 B2 JP3553149 B2 JP 3553149B2 JP 21507294 A JP21507294 A JP 21507294A JP 21507294 A JP21507294 A JP 21507294A JP 3553149 B2 JP3553149 B2 JP 3553149B2
Authority
JP
Japan
Prior art keywords
piece
strength
thickness
uniform heating
lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21507294A
Other languages
Japanese (ja)
Other versions
JPH0871674A (en
Inventor
八七 大八木
博一 横矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21507294A priority Critical patent/JP3553149B2/en
Publication of JPH0871674A publication Critical patent/JPH0871674A/en
Application granted granted Critical
Publication of JP3553149B2 publication Critical patent/JP3553149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、鋼製容器、特に絞りとしごき加工により缶底と缶胴が一体に成形される電気錫めっきを施した2ピース缶(以下DI缶)に関するものである。
【0002】
【従来の技術】
金属容器を缶体という観点から分類すると、天蓋、地蓋、胴から成る3ピース缶と、缶胴と地蓋が一体となった2ピース缶に大きく分類される。
2ピースDI缶を形成する加工はDI加工と呼ばれ、2回の絞り加工(Drawing)と2〜 3回のしごき加工(Ironing)によって成形され、缶胴は原板厚みの1/2〜1/3程度にまで加工される。そのため、使用される素材には高度の加工性が要求され、現在アルミニウム板と、鋼板に錫めっきしたぶりきが用いられている。
DI缶は、ビール、炭酸飲料等を充填した飲料缶および制汗剤、シェービングクリーム等を充填したエアゾール缶などがあり、非常に生活に密着した容器で年々製造缶数は増加している。
【0003】
3ピース缶は、炭酸飲料以外の真空巻き締めされる(非内圧)飲料に主として用いられてきたが、缶胴接合部(溶接あるいは接着)での巻き締めトラブルが起り易いこと、使用板厚が厚いため缶重量が重く、缶コスト面での競争力が弱い点に問題がある。
従って、近年3ピース缶に充填されていた内容物が、除々に2ピース缶に充填される傾向にある。
【0004】
3ピース缶に充填されていた内容物が2ピース缶に充填される場合、大きく分けて二つの新しい問題を提起する。
第一の問題としては、缶強度の問題である。非内圧飲料あるいは非内圧食品(3ピース缶)では、缶強度は缶そのものの強度であったがビール、炭酸飲料等を充填する2ピース缶の場合、缶内圧により缶強度を保持しているため、缶そのものの強度は非常に低いことである。従って、缶強度面での対策が必要となり、2ピース缶強度を強くするか、内容物充填時に窒素ガスなどを封入し缶内圧を付与する方策が考えられる。
【0005】
第二の問題は、ビール・炭酸飲料缶等と異なり、多くの加熱・冷却工程が必要とされる点にある。例えば、天然食品を内容物とする場合、内容物充填後に加熱殺菌処理(通常レトルト処理と呼ばれる)が必要であり、その温度は高いものでは130℃近くまで昇温される。
このレトルト処理を行う場合、内容物を均一に短時間で加熱できることが重要である(例えば、上島正八郎著、昭和61年、缶詰技術研究会発行、293〜332頁参照)。
2ピース缶の場合、前述したように、缶胴部の板厚は缶底に比べて極端に薄いことを特徴としており、缶底〜缶胴間の板厚差が大きく、均一加熱に適していない問題点がある。また、急速冷却性に問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、非内圧飲料あるいは非内圧食品を2ピースDI缶に充填する場合に発生する缶強度と加熱・冷却時の不均一性問題を解決し、経済的に競争力を十分確保する電気錫めっきを施した2ピースDI缶を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、経済性を最重視し、鋼板素材と缶体、さらには充填法との組合わせにて最も合理的な缶のあり方を提案するものであり、その要旨は、
(1)CとNの含有量が(C+N)で0.02%以下、かつ厚みが0.22mm以下の高純度鋼板を素材とし、缶体の底部板厚と側壁最薄肉部板厚との差が0.15mm以下であることを特徴とする強度と均一加熱性に優れ電気錫めっきを施した軽量2ピースDI缶。および、
(2)缶底部における鋼板が、硬度(HR30T換算)74以上、結晶粒の長軸と短軸の比率が4.0以上であることを特徴とする前項(1)記載の強度と均一加熱性に優れ電気錫めっきを施した軽量2ピースDI缶にある。
【0008】
以下本発明の内容につき詳述する。
従来の2ピース缶の場合、缶強度の保持のため0.24mm以上の比較的厚めの素材を使用していた。本発明の場合、経済性重視のため、素材板厚は0.22mm以下、望ましくは0.14〜0.20mmの鋼板を使用する。0.14mmは窒素充填を行う場合の缶底耐圧強度面での下限であり、上限の0.22mmは経済性面での制約である。
【0009】
真空巻き締めを行う場合、缶内は減圧になるため缶強度そのものが必要であるが、天然食品あるいは非炭酸飲料の場合でも、窒素充填を行えば缶強度が発現する。従って、窒素充填を前提として考えれば、天然食品あるいは非炭酸飲料を肉厚の薄い2ピース缶に充填することが可能になる。
窒素により発現される缶内圧レベルは、缶そのものが外力に対する抵抗力を有すると共に、内圧にも抗する必要あり、そのバランスを見て決定される必要がある。内圧を2kg/cm2とすれば、0.14mm〜0.16mm程度の板厚でも実用的な缶強度を得ることができる。
【0010】
次に、(C+N)含有量を0.02%以下とした理由は、鋼板の加工性を向上させるためである。一般に(C+N)含有量が低減すると共に鋼板の加工性は向上する傾向にあるが0.02%以下、望ましくは0.01%以下に限定することにより著しい加工性の向上が期待できる。さらに、最もこの効果が期待出来る条件は、(C+N)含有量が0.006%以下の場合であり、これで冷間圧延のままでもDI成形が可能となる。
近年の製鋼技術の進歩により、(C+N)含有量が0.006%以下の鋼板を得ることは比較的容易であり、従来の焼鈍・調圧工程が省略可能となれば、最も経済的な素材をベースとした缶体を得ることができる。
【0011】
(C+N)含有量の低い鋼を、熱間圧延後、70%以上の圧下率で圧延すると、硬度(HR30T換算)74以上、結晶粒の長軸と短軸の比率が4.0以上である高強度の鋼板を得ることができる。この鋼板は、引っ張り強さ70kg/mm2以上の強度を有し、より薄い板厚でより高い缶内圧に耐えることができる。従って、より経済的に優れた缶の提供が可能である。
【0012】
また、板厚面からの缶体形状の問題であるが、缶体の底部板厚(t0)と側壁最薄肉部板厚(tmin)の差(t0−tmin)が0.15mm以下、更に望ましくは0.13mm以下の範囲にあることが重要である。一般家庭で冷蔵庫で冷却する場合、ある程度十分な時間をかけることが可能であり比較的問題は少ないが、内容物充填後のレトルト処理は工業的規模の量産が必要であり、短時間で均一な処理が必要とされる。従って、缶体を構成する鋼板板厚は薄くて均一なことが要請される。
【0013】
缶体を構成する鋼板板厚を除々に薄くしていった場合、内容物の加熱あるいは冷却速度が速くなることは当然期待される所であるが、窒素封入による缶内圧に対する強度が不足してくる点は前述の通りである。通常、側壁は円形断面を有し缶内圧に対して優れた耐圧強度を示しているが、缶底部は缶内圧に抗しきれず外部に膨らみ易い弱点を有している。従って、缶底部はある程度の厚みを必要とし側壁より厚めの板厚を必要とされる。
【0014】
缶底部と側壁の板厚差が大きすぎる場合、内容物の加熱あるいは冷却速度に差が生じるため、その程度を出来るだけ小さくする必要がある。その限界を調査した結果、底部板厚(t0)と側壁最薄肉部板厚(tmin)の差(t0−tmin)が0.15mm以下、更にその効果を安定して得るには望ましくは0.13mm以下の範囲にあれば、実用的に均一加熱が可能であることを知見した。
この値は、缶強度と均一加熱・均一冷却のバランスも考慮して決定された値である。
【0015】
【実施例】
以下、実施例にて詳細に説明する。
[実施例1]
C含有量0.0010%、N含有量0.0028%の鋼を溶製し、2.5mmの板厚にまで熱間圧延後、酸洗によりスケールを除去し、0.26mmの板厚にまで冷間圧延した。720℃にて最結晶焼鈍を行い、十分軟化させた後、31%の圧下率で2回目の冷間圧延を行い、C方向(板幅方向)の引っ張り強さ52kg/mm2の鋼板(0.18mm)を製造した。
【0016】
この鋼板の表裏に付着量2.8g/m2の電気めっきを行った後、ブランク寸法150mmより出発し、1段目の絞り加工にて85mmφのカップとし、2段目の絞り加工により65mmφのカップに成形した後、合計3回のしごき加工により側壁の厚みを0.065mmにまで加工した。側壁のしごき加工後、缶底形状を図1に示すような形状に加工することにより、内圧に耐え、缶同士を積み重ね可能な缶体とした。
【0017】
この缶を、脱脂・化成処理後、外面塗装および内面塗装し実用品質に関する性能試験を行った。
実用試験として、缶体の耐内圧強度、垂直方向での座屈強度の測定を行った所、耐内圧強度は7.5kg/cm2以上の強度を示し、座屈強度は100kg以上あり、十分な座屈強度を有することが確認された。
【0018】
一方、温度を130℃に設定した加熱炉中に水道水を充填した缶をいれ、時間−温度曲線を缶体中心部と缶底近傍部にて測定し、温度差の最大値を求め、均一加熱性の尺度とした。本実施例の缶体では、最大温度差は6℃以下であり、良好な均一加熱性を示すものであった。
【0019】
[実施例2]
C含有量0.0006%、N含有量0.0026%、B含有量0.0006%の鋼を溶製し、2.3mmの板厚にまで熱間圧延後、酸洗によりスケールを除去し、0.18mmの板厚にまで冷間圧延した。この鋼板は、硬度(HR30T換算)77、結晶粒の長軸と短軸の比率は顕微鏡での正確な測定は困難であるが、理論的には約160程度に成っていると推定される。
又、引っ張り強さは78〜80kg/mm2とかなり高強度の鋼板であった。
【0020】
この鋼板を脱脂・酸洗後、1表裏に付着量2.8g/m2の電気錫めっきを行い、ブランク寸法150mmより出発し、1段目の絞り加工にて85mmφのカップとし、2段目の絞り加工により65mmφのカップに成形した後、合計3回のしごき加工により側壁の厚みを0.065mmにまで加工した。側壁のしごき加工後、缶底形状を図1に示すような形状に加工することにより、内圧に耐え、缶同士を積み重ね可能な缶体とした。
【0021】
この缶を、脱脂・化成処理後、外面塗装および内面塗装し実用品質に関する性能試験を行った。
実用試験として、缶体の耐内圧強度、垂直方向での座屈強度の測定を行った所、耐内圧強度は8.0kg/cm2以上の強度を示し、空缶座屈強度は100kg以上であり、十分な実用強度を有することが確認された。
実施例1と同様の均一加熱性試験を行った所、本実施例の缶体でも、最大温度差は6℃以下であり、良好な均一加熱性を示すものであった。
【0022】
[比較例1]
C含有量0.056%、N含有量0.0032%の鋼を溶製し、2.5mmの板厚にまで熱間圧延後、酸洗によりスケールを除去し、0.26mmの板厚にまで冷間圧延した。680℃にて再結晶焼鈍を行い、十分軟化させた後、1.3%の圧下率で調質圧延を行い、C方向の引張り強さ40kg/mm2の鋼板を製造した。
【0023】
この鋼板の表裏に付着量2.8g/m2の電気錫めっきを行った後、ブランク寸法139mmより出発し、1段目の絞り加工にて85mmφのカップとし、2段目の絞り加工により65mmφのカップに成形した後、合計3回のしごき加工により側壁の厚みを0.080mmにまで加工した。側壁のしごき加工後、缶底形状を図1に示すような形状に加工することにより、内圧に耐え、缶同士を積み重ね可能な缶体とした。
【0024】
この缶を、脱脂・化成処理後、外面塗装および内面塗装し実用品質に関する性能試験を行った。
実用試験として、缶体の耐内圧強度、垂直方向での座屈強度の測定を行った所、耐内圧強度は7.5kg/cm2以上の強度を示し、空缶座屈強度は100kg以上あり、十分な座屈強度を有することが確認された。
加熱炉中での均一試験では、缶体中心部と缶底付近にて10℃以上の温度差を生じ、均一加熱性に劣るものであった。
【0025】
[比較例2]
C含有量0.063%、N含有量0.0035%の鋼を溶製し、2.3mmの板厚にまで熱間圧延後、酸洗によりスケールを除去し、0.18mmの板厚にまで冷間圧延した。この鋼板の引張り強さは93〜96kg/mm2とかなり高強度の鋼板であった。
この鋼板を脱脂・酸洗後、表裏に付着量2.8g/m2の電気錫めっきを行い、ブランク寸法150mmより出発し、1段目の絞り加工にて85mmφのカップとし、2段目の絞り加工により65mmφのカップに成形した後、合計3回のしごき加工により側壁の厚みを0.065mmにまで加工した。
側壁のしごき加工後、実施例1と同様に缶底と缶上端部フランジ加工を行った所、缶底部では“しわ”が多発し、フランジ部では“割れ”が多発し、正常な缶を作成出来なかった。
【0026】
【発明の効果】
本発明の缶体は、極薄素材を使用して、缶体の軽量化をはかり経済性の極限を追求したものとなっている。更に、缶体に置ける板厚差を最小にすることにより、レトルト処理等における不均一加熱問題を解消し、固形分等を含む非内圧食品を軽量2ピース缶に充填可能とする貴重な効果を発揮する。
【図面の簡単な説明】
【図1】成形缶の底部形状を示す図である。
[0001]
[Industrial applications]
The present invention relates to a steel container, particularly to a two-piece can (hereinafter referred to as a DI can) provided with electrotin plating in which a can bottom and a can body are integrally formed by drawing and ironing.
[0002]
[Prior art]
When metal containers are classified from the viewpoint of can bodies, they can be broadly classified into three-piece cans composed of a canopy, a canopy, and a trunk, and two-piece cans in which a can trunk and a canopy are integrated.
The process of forming a two-piece DI can is called DI process, which is formed by two drawing operations (Ironing) and two or three times of ironing operation. It is processed to about 3. For this reason, a high degree of workability is required for the material to be used, and an aluminum plate and tinplate tinned on a steel plate are currently used.
DI cans include beverage cans filled with beer, carbonated beverages, and the like, and aerosol cans filled with antiperspirants, shaving creams, and the like.
[0003]
Three-piece cans have been used mainly for vacuum-tightened (non-inner pressure) beverages other than carbonated beverages. There is a problem in that the weight of the can is heavy due to the thickness, and the competitiveness in terms of can cost is weak.
Therefore, contents that have been filled in three-piece cans in recent years tend to be gradually filled in two-piece cans.
[0004]
When the contents of a three-piece can are filled into a two-piece can, there are roughly two new problems.
The first problem is the problem of can strength. For non-inner pressure beverages or non-inner pressure foods (three-piece cans), the can strength was the strength of the can itself, but in the case of two-piece cans filled with beer, carbonated beverages, etc., the can strength is maintained by the can internal pressure. However, the strength of the can itself is very low. Therefore, it is necessary to take measures in terms of the strength of the can, and it is conceivable to increase the strength of the two-piece can, or to fill the contents with nitrogen gas or the like and apply a can internal pressure.
[0005]
The second problem is that, unlike beer and carbonated beverage cans, many heating and cooling steps are required. For example, when natural food is used as the content, heat sterilization treatment (usually called retort treatment) is required after filling the content, and the temperature is raised to nearly 130 ° C. at a high temperature.
When performing this retort treatment, it is important that the contents can be heated uniformly and in a short time (see, for example, Shohachiro Kamijima, published in 1986 by The Canning Technology Research Institute, pages 293-332).
In the case of a two-piece can, as described above, the thickness of the can body is extremely thin compared to the can bottom, and the thickness difference between the can bottom and the can body is large, which is suitable for uniform heating. There are no problems. In addition, there is a problem in rapid cooling.
[0006]
[Problems to be solved by the invention]
The present invention solves the problem of can strength and non-uniformity during heating / cooling that occur when filling non-inner pressure beverages or non-inner pressure foods into two-piece DI cans, and is an electric tin that ensures sufficient economic competitiveness. It is an object of the present invention to provide a plated two-piece DI can.
[0007]
[Means for Solving the Problems]
The present invention places the highest priority on economics, and proposes the most rational can in combination with a steel plate material and a can, and furthermore, a filling method.
(1) A high-purity steel sheet having a C and N content of (C + N) of 0.02% or less and a thickness of 0.22 mm or less is used as a material. A light-weight, two-piece DI can with excellent difference in strength and uniform heating, characterized in that the difference is 0.15 mm or less. and,
(2) The strength and uniform heating property as described in (1) above, wherein the steel plate at the bottom of the can has a hardness (HR30T conversion) of 74 or more and the ratio of the major axis to the minor axis of the crystal grains is 4.0 or more. It is a lightweight 2-piece DI can with excellent electrical tin plating .
[0008]
Hereinafter, the contents of the present invention will be described in detail.
In the case of a conventional two-piece can, a relatively thick material of 0.24 mm or more has been used to maintain the strength of the can. In the case of the present invention, the thickness of the raw material is 0.22 mm or less, preferably 0.14 to 0.20 mm for economical consideration. 0.14 mm is the lower limit in terms of the pressure resistance of the can bottom when filling with nitrogen, and the upper limit of 0.22 mm is a constraint in terms of economy.
[0009]
When performing vacuum winding, the pressure inside the can is reduced, so that the can strength itself is required. However, even in the case of natural foods or non-carbonated beverages, the can strength is exhibited by filling with nitrogen. Therefore, on the premise of nitrogen filling, it becomes possible to fill natural foods or non-carbonated beverages into thin two-piece cans.
The internal pressure level of the can expressed by nitrogen needs to be determined in view of the balance between the can itself and the internal pressure as well as having a resistance to an external force. If the internal pressure is 2 kg / cm 2 , practical can strength can be obtained even with a plate thickness of about 0.14 mm to 0.16 mm.
[0010]
Next, the reason for setting the (C + N) content to 0.02% or less is to improve the workability of the steel sheet. Generally, the workability of a steel sheet tends to improve as the (C + N) content decreases, but significant improvement in workability can be expected by limiting the workability to 0.02% or less, preferably 0.01% or less. Furthermore, the condition under which this effect can be expected most is when the (C + N) content is 0.006% or less, whereby DI molding can be performed even with cold rolling.
Due to recent advances in steelmaking technology, it is relatively easy to obtain a steel sheet having a (C + N) content of 0.006% or less, and if the conventional annealing and pressure control steps can be omitted, the most economical material Can be obtained.
[0011]
When a steel having a low content of (C + N) is rolled at a rolling reduction of 70% or more after hot rolling, the hardness (HR30T conversion) is 74 or more, and the ratio of the major axis to the minor axis of the crystal grains is 4.0 or more. A high-strength steel plate can be obtained. This steel sheet has a tensile strength of 70 kg / mm 2 or more, and can withstand a higher can internal pressure with a thinner sheet thickness. Therefore, it is possible to provide a more economical can.
[0012]
In addition, there is a problem of the shape of the can from the plate thickness side. The difference (t 0 −t min ) between the bottom plate thickness (t 0 ) and the side wall thinnest portion plate thickness (t min ) of the can is 0.15 mm. Hereafter, it is more preferable that the distance be in the range of 0.13 mm or less. When cooling in a refrigerator at home, it is possible to take a sufficient time to a certain extent and there are relatively few problems, but the retort treatment after filling the contents requires mass production on an industrial scale, and is uniform in a short time. Processing is required. Therefore, it is required that the thickness of the steel plate constituting the can be thin and uniform.
[0013]
If the thickness of the steel sheet constituting the can body is gradually reduced, it is naturally expected that the heating or cooling rate of the contents will increase, but the strength against the internal pressure of the can by nitrogen filling is insufficient. The coming point is as described above. Normally, the side wall has a circular cross section and exhibits excellent pressure resistance against the internal pressure of the can. However, the bottom of the can has a weak point that cannot easily withstand the internal pressure of the can and swells outward. Therefore, the bottom of the can requires a certain thickness, and a thicker plate than the side wall is required.
[0014]
If the thickness difference between the bottom of the can and the side wall is too large, a difference occurs in the heating or cooling rate of the contents. Results of the examination of its limitations, the bottom thickness (t 0) the difference between the side wall thinnest portion thickness (t min) (t 0 -t min) is 0.15mm or less, the may further its effect stably It has been found that if the thickness is desirably within the range of 0.13 mm or less, uniform heating can be practically performed.
This value is determined in consideration of the balance between can strength and uniform heating / cooling.
[0015]
【Example】
Hereinafter, the embodiment will be described in detail.
[Example 1]
A steel having a C content of 0.0010% and an N content of 0.0028% is melted and hot-rolled to a thickness of 2.5 mm, and the scale is removed by pickling to obtain a thickness of 0.26 mm. Cold rolled until After recrystallizing annealing at 720 ° C. and sufficiently softening, a second cold rolling was performed at a rolling reduction of 31% to obtain a steel sheet having a tensile strength of 52 kg / mm 2 in C direction (width direction of sheet) (0 mm). .18 mm).
[0016]
After electric tin plating coating weight 2.8 g / m 2 on both sides of the steel plate, starting from the blank dimensions 150 mm, and a cup of 85mmφ at the first stage of the drawing, by drawing in the second stage 65mmφ , And the thickness of the side wall was reduced to 0.065 mm by ironing three times in total. After ironing the side walls, the bottom of the can was processed into a shape as shown in FIG. 1 to withstand the internal pressure and to form a can body capable of stacking cans.
[0017]
After degreasing and chemical conversion treatment, the cans were subjected to an outer surface coating and an inner surface coating and subjected to a performance test for practical quality.
As a practical test, when the internal pressure resistance of the can body and the buckling strength in the vertical direction were measured, the internal pressure resistance showed a strength of 7.5 kg / cm 2 or more, and the buckling strength was 100 kg or more. Buckling strength was confirmed.
[0018]
On the other hand, a can filled with tap water was placed in a heating furnace set at a temperature of 130 ° C., and the time-temperature curve was measured at the center of the can body and near the bottom of the can to find the maximum value of the temperature difference, It was a measure of heatability. In the can of this example, the maximum temperature difference was 6 ° C. or less, indicating good uniform heating.
[0019]
[Example 2]
A steel having a C content of 0.0006%, an N content of 0.0026%, and a B content of 0.0006% was melted, hot-rolled to a thickness of 2.3 mm, and scale was removed by pickling. And cold-rolled to a sheet thickness of 0.18 mm. This steel sheet has a hardness (HR30T conversion) of 77, and the ratio of the major axis to the minor axis of the crystal grains is difficult to measure accurately with a microscope, but is theoretically estimated to be about 160.
Moreover, the tensile strength was 78-80 kg / mm 2 , which was a considerably high strength steel plate.
[0020]
After degreasing and pickling the steel sheet, the front and back sides were subjected to electrotin plating with an adhesion amount of 2.8 g / m 2 , starting from a blank size of 150 mm, forming a 85 mmφ cup by the first stage drawing, and forming the second stage. After forming into a 65 mmφ cup by drawing, the thickness of the side wall was reduced to 0.065 mm by three times of ironing. After ironing the side walls, the bottom of the can was processed into a shape as shown in FIG. 1 to withstand the internal pressure and to form a can body capable of stacking cans.
[0021]
After degreasing and chemical conversion treatment, the cans were subjected to an outer surface coating and an inner surface coating and subjected to a performance test for practical quality.
As a practical test, when the internal pressure resistance of the can body and the buckling strength in the vertical direction were measured, the internal pressure resistance showed a strength of 8.0 kg / cm 2 or more, and the buckling strength of the empty can was 100 kg or more. It was confirmed that it had sufficient practical strength.
When a uniform heating property test similar to that in Example 1 was performed, the maximum temperature difference was 6 ° C. or less in the can body of the present example, indicating good uniform heating property.
[0022]
[Comparative Example 1]
A steel having a C content of 0.056% and an N content of 0.0032% is melted and hot-rolled to a thickness of 2.5 mm, and the scale is removed by pickling to obtain a thickness of 0.26 mm. Cold rolled until After performing recrystallization annealing at 680 ° C. and sufficiently softening, temper rolling was performed at a rolling reduction of 1.3% to produce a steel sheet having a tensile strength in the C direction of 40 kg / mm 2 .
[0023]
After performing electro-tin plating of 2.8 g / m 2 on the front and back of the steel sheet, starting from a blank size of 139 mm, a cup of 85 mmφ was formed by the first stage drawing, and a 65 mmφ cup was formed by the second stage drawing. , And the thickness of the side wall was reduced to 0.080 mm by a total of three times of ironing. After ironing of the side wall, the can bottom was processed into a shape as shown in FIG. 1 to withstand the internal pressure and a can body capable of stacking cans was obtained.
[0024]
After degreasing and chemical conversion treatment, the can was subjected to an outer surface coating and an inner surface coating, and a performance test for practical quality was performed.
As a practical test, the internal pressure resistance of the can body and the buckling strength in the vertical direction were measured. The internal pressure resistance was 7.5 kg / cm 2 or more, and the empty can buckling strength was 100 kg or more. It was confirmed that the resin had sufficient buckling strength.
In the uniformity test in the heating furnace, a temperature difference of 10 ° C. or more was generated between the center of the can body and the vicinity of the bottom of the can, and the uniform heating property was poor.
[0025]
[Comparative Example 2]
A steel having a C content of 0.063% and an N content of 0.0035% is melted, hot-rolled to a thickness of 2.3 mm, and scale is removed by pickling to obtain a thickness of 0.18 mm. Cold rolled until The tensile strength of this steel sheet was 93 to 96 kg / mm 2 , which was a considerably high strength.
After degreasing and pickling the steel sheet, the front and back sides were subjected to electrotin plating with an adhesion amount of 2.8 g / m 2 , starting from a blank size of 150 mm, forming a cup of 85 mmφ by the first stage drawing, and forming the second stage. After forming into a 65 mmφ cup by drawing, the thickness of the side wall was reduced to 0.065 mm by a total of three times of ironing.
After ironing of the side wall, the bottom of the can and the top of the can were flanged in the same manner as in Example 1. "Wrinkles" frequently occurred at the bottom of the can, and "cracks" frequently occurred at the flange, and a normal can was prepared. I could not do it.
[0026]
【The invention's effect】
The can body of the present invention uses an ultra-thin material to reduce the weight of the can body and pursue the limit of economic efficiency. Furthermore, by minimizing the difference in plate thickness in the can body, the problem of non-uniform heating in retort treatment and the like is eliminated, and a valuable effect that non-inner pressure foods including solid contents can be filled into lightweight two-piece cans. Demonstrate.
[Brief description of the drawings]
FIG. 1 is a view showing a bottom shape of a molded can.

Claims (2)

CとNの含有量が(C+N)で0.02%以下、かつ厚みが0.22mm以下の高純度鋼板を素材とし、缶体の底部板厚と側壁最薄肉部板厚との差が0.15mm以下であることを特徴とする強度と均一加熱性に優れ電気錫めっきを施した軽量2ピースDI缶。Using a high-purity steel sheet having a C and N content of (C + N) of 0.02% or less and a thickness of 0.22 mm or less, the difference between the bottom plate thickness of the can body and the side wall thinnest part plate thickness is zero. A lightweight two-piece DI can that has excellent strength and uniform heating characteristics and is electrotin-plated, characterized in that it is 15 mm or less. 缶底部における鋼板が、硬度(HR30T換算)74以上、結晶粒の長軸と短軸の比率が4.0以上であることを特徴とする請求項1記載の強度と均一加熱性に優れ電気錫めっきを施した軽量2ピースDI缶。Steel at the can bottom, the hardness (HR30T basis) 74 or more, the crystal grains of the major axis to the excellent electrical tin strength and uniform heating of claim 1, wherein the ratio of the minor axis is 4.0 or more Lightweight 2-piece DI can with plating .
JP21507294A 1994-09-08 1994-09-08 Lightweight 2-piece DI can with excellent strength and uniform heating properties and electro-tin plating Expired - Fee Related JP3553149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21507294A JP3553149B2 (en) 1994-09-08 1994-09-08 Lightweight 2-piece DI can with excellent strength and uniform heating properties and electro-tin plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21507294A JP3553149B2 (en) 1994-09-08 1994-09-08 Lightweight 2-piece DI can with excellent strength and uniform heating properties and electro-tin plating

Publications (2)

Publication Number Publication Date
JPH0871674A JPH0871674A (en) 1996-03-19
JP3553149B2 true JP3553149B2 (en) 2004-08-11

Family

ID=16666296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21507294A Expired - Fee Related JP3553149B2 (en) 1994-09-08 1994-09-08 Lightweight 2-piece DI can with excellent strength and uniform heating properties and electro-tin plating

Country Status (1)

Country Link
JP (1) JP3553149B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518723A (en) 2010-02-04 2013-05-23 クラウン パッケイジング テクノロジー インコーポレイテッド Can manufacturing
US8313003B2 (en) 2010-02-04 2012-11-20 Crown Packaging Technology, Inc. Can manufacture
AU2011240029B2 (en) 2010-04-12 2016-07-07 Crown Packaging Technology, Inc. Can manufacture

Also Published As

Publication number Publication date
JPH0871674A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
JP5794004B2 (en) Steel sheet for high strength can excellent in flange workability and manufacturing method thereof
JP5858208B1 (en) Steel plate for high-strength container and manufacturing method thereof
JP5958630B2 (en) Crown steel plate and manufacturing method thereof
CN108796381B (en) Steel plate with high axial bearing capacity and excellent formability for tank and manufacturing method thereof
JP2009108421A (en) Aluminum alloy sheet for packing vessel cover
WO2013183274A1 (en) Three-piece can and method for producing same
EP2098312B1 (en) Process for manufacturing deep drawn can for aerosol
JP2761594B2 (en) Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy
JP3553149B2 (en) Lightweight 2-piece DI can with excellent strength and uniform heating properties and electro-tin plating
JPH0533159A (en) Production of surface treated steel sheet for di can
WO2016056239A1 (en) Steel plate for cap and method for producing same
TWI661053B (en) Steel plate and manufacturing method thereof, crown cover and deep-drawing tank
WO2016084353A1 (en) Steel sheet for crown cap, manufacturing method therefor, and crown cap
KR102026001B1 (en) Steel sheet for crown cap, method for manufacturing steel sheet for crown cap, and crown cap
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
JP4291642B2 (en) Method for manufacturing aluminum alloy plate for packaging container lid
KR102288712B1 (en) Steel sheet, method of manufacturing same, crown cap, and drawing and redrawing(drd) can
JPH0890119A (en) Lightweight steel can having excellent flange formability and strength
JPH0892695A (en) Steel sheet for two-piece can excellent in can making workability and flanging workability and its production
KR100369233B1 (en) a method of manufacturing a packaging steel for 2-piece can with high internal buckle resistance
JPH05345925A (en) Production of extra thin steel sheet for dwi can excellent in flange workability
JPH08229623A (en) Steel two-piece can having superior formability and strength and its manufacture
JPH0827519A (en) Production of steel sheet for extra thin-wall vessel, excellent in can formability
JPH0739617B2 (en) Aluminum alloy plate for negative pressure can, manufacturing method thereof, and negative pressure can body
JPH07316719A (en) Extra thin steel sheet for two piece di can, excellent in flange workability

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees