JP3552846B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP3552846B2
JP3552846B2 JP13756696A JP13756696A JP3552846B2 JP 3552846 B2 JP3552846 B2 JP 3552846B2 JP 13756696 A JP13756696 A JP 13756696A JP 13756696 A JP13756696 A JP 13756696A JP 3552846 B2 JP3552846 B2 JP 3552846B2
Authority
JP
Japan
Prior art keywords
oxide film
film
polysilicon
gate electrode
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13756696A
Other languages
Japanese (ja)
Other versions
JPH09205157A (en
Inventor
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP13756696A priority Critical patent/JP3552846B2/en
Publication of JPH09205157A publication Critical patent/JPH09205157A/en
Application granted granted Critical
Publication of JP3552846B2 publication Critical patent/JP3552846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置、殊に、不揮発性半導体メモリ装置およびその製造方法に関する。
【0002】
【従来の技術】
一般的にいえることであるが、ポリシリコン膜は、結晶シリコン基板と比較すると、酸化速度が著しく早いため絶縁膜等の膜厚制御が容易でなかった。特にフローティングゲート型の不揮発性メモリ装置において、フローティングゲート電極と制御ゲート電極間のポリシリコン膜の酸化による絶縁膜(ボトム酸化膜)は膜厚の均一性、絶縁耐性に問題が多かった。
【0003】
【発明が解決しようとする課題】
ポリシリコンの酸化膜は、結晶シリコンの酸化膜に比べ、絶縁耐性が低い。これは、SiO2 /Poly−Si界面における微少な凹凸による電流増大が原因といわれており、この改善のため通常の結晶シリコンの酸化よりもより高温での酸化が必要とされる。これに加えポリシリコン膜は結晶シリコン基板に比べて著しく酸化速度が速いため膜厚制御は容易ではない。特にフローティングゲート型の不揮発性メモリ装置において、フローティングゲート電極と制御ゲート電極間のポリシリコン膜の酸化による絶縁膜(ボトム酸化膜)は膜厚の均一性、絶縁耐性に問題が多かった。本発明は、ポリシリコン上に極薄酸化膜を制御性良く形成する方法を提供することを目的とする。
【000
【課題を解決するための手段】
請求項1に記載の半導体装置の製造方法は、ポリシリコン膜或いはポリシリコン電極に酸化処理を必要とする工程において、その工程の前に、軽い窒化処理を施すことを特徴とする。
【000
請求項2に記載の不揮発性半導体メモリ装置の製造方法は、フローティングゲート電極と制御ゲート電極の間にONO積層構造の絶縁膜を形成する方法において、ポリシリコン膜によりなるフローティング電極上にボトム酸化膜(ONOの下層の酸化膜)を形成する工程の前に、軽い窒化処理を施すことを特徴とする。
【0006】
請求項に記載の半導体装置の製造方法は、不揮発性半導体メモリ装置の製造方法に関し、フローティングゲート電極と制御ゲート電極の間にONO積層構造の絶縁膜を形成する方法において、ポリシリコン膜によりなるフローティングゲート電極上にボトム酸化膜を形成する工程の前に、軽い窒化処理を施し、ボトム酸化膜の形成をRTA(Rapid Thermal Anneal)プロセスで行うことを特徴とする。
【0007】
請求項に記載の不揮発性半導体メモリ装置の製造方法は、スタックゲート構成によりなるメモリ素子部分を形成した後、メモリ保護層を形成する工程において、保護層の最下層となる酸化層の形成の前に、軽い窒化処理を行うことを特徴とする。
【0008】
請求項に記載の半導体装置は、請求項の半導体装置の製造方法により作成した半導体メモリ装置である。
【0009】
請求項1に記載の半導体装置の製造方法は、ポリシリコン膜あるいはポリシリコン電極に酸化処理を必要とする工程において、その工程の前に、軽い窒化処理を施すことを特徴とするものである。ポリシリコンの酸化膜は結晶シリコンの酸化膜に比べて著しく絶縁耐性が低いことが知られており、これはSiO/Poly−Si界面における微少な凹凸により、カソード電界が強められSiO膜中を流れる電流が著しく増大するためといわれている。この改善のため、ポリシリコンの酸化は結晶シリコンのそれよりもより高温での酸化が必要とされる。参考値ではあるが、結晶シリコンの酸化は800〜950℃程度、ポリシリコンの酸化は900〜1100℃程度で行われるのが一般的である。これに加えて、ポリシリコン膜は結晶シリコン基板に比べて酸化速度が著しく速いため膜厚制御は容易ではない。酸化前に軽い窒化処理を行うことにより、ポリシリコン上に極薄酸化膜を制御性良く形成することが可能となる。
【0010】
請求項2に記載の不揮発性半導体メモリ装置の製造方法は、不揮発性半導体メモリ装置におけるフローティングゲート電極と制御ゲート電極の間の絶縁膜の形成方法に関するものである。ポリシリコン膜によりなるフローティングゲート電極上に酸化処理によりボトム酸化膜(ONOの下層の酸化膜)を形成する場合に、軽い窒化処理を予め施しておくことにより、高温下においても容易に10nm以下の極薄酸化膜の形成が可能となるため、微少な凹凸に起因した絶縁耐性の低下を抑制することが出来る。上記の軽い窒化処理並びに酸化処理はべた状のポリシリコン膜表面のみに行う場合もあれば、ある電極パターンを形成した後に行う場合もあり、素子構造並びにそのプロセスにより異なる。窒化の方法並びに窒化の度合いも所望の酸化膜厚や熱履歴、或いは酸化法等により異なり適宜設定される。ただし、窒化の度合いはシリコン結晶に換算して数原子層以下及び/または組成比で数atom%以下の軽い窒化処理に限るものである。これ以上の重い窒化では、酸化防止効果が強すぎるため酸化膜の形成そのものが困難になる。軽い窒化を行うための方法はRTN(Rapid Thermal Nitridation )処理が有効であるが、これに限定されるものではない。
【0011】
不揮発性半導体メモリ装置におけるフローティングゲート電極と制御ゲート電極の間の絶縁膜の形成方法に関、ポリシリコン膜によりなるフローティングゲート電極上のボトム酸化膜(ONOの下層の酸化膜)の形成をRTO(Rapid Thermal Oxidation)処理により行うことが好ましい。ポリシリコンの酸化膜は結晶シリコンの酸化膜に比べ著しく絶縁耐性が低いことが知られており、これはSiO/Poly−Si界面における微少な凹凸が原因と考えられている。従って、ポリシリコンの酸化は結晶シリコンのそれよりもより高温での酸化が有効である。RTA(RTO)処理により制御性良く高温短時間での極薄酸化膜の形成が可能となる。
【0012】
請求項に記載の不揮発性半導体メモリ装置の製造方法は、不揮発性半導体メモリ装置におけるフローティングゲート電極と制御ゲート電極の間の絶縁膜の形成方法に関するものであり、ポリシリコン膜によりなるフローティングゲート電極上に、予め軽い窒化処理を施し、ボトム酸化膜(ONOの下層の酸化膜)の形成をRTO処理により行うことを特徴とする。本項は、請求項2の作用効果のほかに上のRTO処理による作用効果を兼ね備えたものである。
【0013】
請求項に記載の不揮発性半導体メモリ装置の製造方法は、スタックゲート構成によりなる不揮発性半導体メモリの素子部分を形成した後にSRAM、ゲートアレイ、I/O部等の回路部、あるいはメタル配線工程の形成を行う場合に必要とされるメモリ部の保護層の形成方法に関する。この保護層は次工程以降で幾度となく行なわれる洗浄やエッチングの工程等からメモリ部分を保護するもの、あるいは実効チャネル長を調整するためのサイドウォールとして用いるものであり、酸化膜、或いは酸化膜と窒化膜の積層膜等によって構成される。この酸化膜や酸化膜と窒化膜の積層膜はCVD等によるデポジション膜によって形成される場合が少なくないが、基板露出部分への汚染やダメージ等を考慮して、少なくともその最下層は酸化処理により行われる場合が多い。この最下層の酸化工程において強い酸化を行うとスタックゲートの側面部等において異常な酸化が起り素子形状等が損なわれたり、またソース/ドレイン上部(ゲートエッジ部分)のトンネル酸化膜厚が厚くなるためメモリ動作特性が変化してしまう(書き込み/消去をゲートとソースあるいはドレイン間で行う場合等において)場合がある。本項は上記問題を回避するため考案されたものであり、保護層の最下層となる酸化層形成の前に、軽い窒化処理を行うことで、酸化膜厚の均一化、酸化膜の初期及び経時絶縁耐性を向上させることを特徴とする。
【0014】
請求項に記載の発明は、請求項の半導体処理の製造方法により作製した半導体メモリ装置であり、良好で安定な素子形状及びメモリ動作特性を有する。
【0015】
図2に本発明の対象の一例である不揮発性半導体メモリ装置のフローティングゲート電極と制御ゲート電極間の酸化絶縁膜構成例を示す。図2において、1は結晶シリコン基板、2はポリシリコンフローティングゲート電極、3は酸化膜(ボトム酸化膜)、4は窒化膜、5は酸化膜(トップ酸化膜)、6はポリシリコン制御ゲート電極であり、3,4,5がONO積層膜とよばれるものである。
【0016】
【実施例】
次に、実施例を挙げて本発明を更に詳細に説明する。ポリシリコンの酸化膜の信頼性を評価するため、結晶シリコン基板上にゲート酸化膜(トンネル酸化膜)を介して燐ドープされたポリシリコン膜を1500Å成膜し、RTNプロセスを用いて、ポリシリコン表面に950℃−60secで軽い窒化処理を施した後、拡散炉を用いたドライ酸化、拡散炉を用いたウェット酸化、RTAによる酸化(RTO)の3種類の酸化法を用いて容量膜厚90Åの酸化膜(ボトム酸化膜に対応するもの)を形成した。この場合、その絶縁膜構成は酸化膜と窒化膜の積層膜にはならない。酸化は主に界面で進行するため、得られる膜はほぼ完全な酸化膜であり、その酸化膜表面近傍が若干(数%以下)窒化されているだけとなる。次に、その上部に燐ドープされたポリシリコン膜を1500Å成膜し、公知写真製版技術を用いて、キャパシタ試料を形成した。このポリシリコン酸化膜信頼性評価用のキャパシタ試料の概略断面図を図1に示す。図1のキャパシタ試料の層構成は、図2に示された不揮発性半導体メモリ装置の構成に対応しており、11は結晶シリコン基板、12は燐ドープされたポリシリコン膜、13は酸化膜、16は燐ドープされたポリシリコン膜である。上記試料においてインターポリ絶縁膜として、ONO積層膜ではなく、単層の酸化膜を用いた理由は、ONO積層膜のキャリア伝導機構が複雑であるためであり、また、本発明が、ポリシリコン上の酸化膜あるいは、ONO積層膜の下層の酸化膜の形成に関するものであるからである。このキャパシタ試料(電極12と電極16で構成されるキャパシタ)につき、評価のため下記の試験を行った。
【0017】
1)TEM(Transmission Electron Microscopy)、透過電子顕微鏡による試料断面観察。これにより、凹凸や酸化膜厚の微視的均一性の評価が行なわれる。
2)初期耐圧試験による評価。
3)TDDB(Time Dependent Dielectric Breakdown )、経時絶縁破壊耐性評価。
【0018】
以上の1)、2)及び3)の試験により、酸化膜信頼性を検討した。尚比較のためポリシリコン12(図1)の代わりに結晶シリコン基板を用いた場合についても同様な試料を作成し評価を行った。その評価結果を〔表1〕(TEM評価結果)、〔表2〕(初期耐性評価結果)、〔表3〕(定電流TDDB耐性評価結果)に示す。
【0019】
【表1】

Figure 0003552846
【0020】
【表2】
Figure 0003552846
【0021】
【表3】
Figure 0003552846
【0022】
〔表1〕〜〔表3〕によると、結晶シリコン基板上の酸化膜は、軽い窒化の有無にかかわらず、いずれの酸化方法を採用しても、酸化膜のうねり(凹凸)や膜厚の微視的均一性、初期耐圧及びTDDB耐性において良好な信頼性を示している。一方、ポリシリコン上の酸化膜は、軽い窒化を行わない場合に比べ、窒化有の場合の方が、膜厚の微視的均一性、初期耐圧及びTDDB耐性が向上していることが判る。このことから軽い窒化はプロセスの制御性の向上ばかりではなく、酸化膜厚の微視的均一性向上にも効果があることがわかる。また、通常のゲート酸化膜では、拡散炉によるウエット酸化膜の方が、ドライ酸化膜やRTO膜よりTDDB耐性は高いと一般に云われているが、ポリシリコンの酸化の場合は、酸化速度の速いウエット酸化の場合、酸化膜厚の均一性や酸化膜−ポリシリコン膜界面の凹凸が顕著になり信頼性が低下するものと考えられる。RTO膜の場合、処理温度が高いため凹凸を緩和する効果があるものと考えられる。
【0023】
【発明の効果】
以上の説明で明らかなように、請求項1に記載の半導体処理の製造方法によれば、ポリシリコン膜或いは、ポリシリコン電極に酸化処理を必要とする工程において、その工程の前に軽い窒化処理を施すことにより、酸化膜厚の均一性が向上し、しかもポリシリコンの酸化速度の抑制が可能となる。
【0024】
請求項2に記載の不揮発性半導体メモリ装置の製造方法によれば、ポリシリコン膜によりなるフローティングゲート電極上にボトム酸化膜を形成する工程の前に、軽い窒化処理を施すことにより、酸化膜厚の均一性の向上が可能となると共に、初期及び経時絶縁耐性が向上する。従って、酸化絶縁膜の信頼性が増すことになる。
【0025】
ポリシリコン膜によりなるフローティングゲート電極上にボトム酸化膜をRTOプロセスで行うことにより、制御性よく、高温短時間で極薄酸化膜が形成されるため酸化膜とポリシリコン膜の界面の凹凸が緩和される効果がある。このため酸化膜の信頼性が向上する。
【0026】
請求項に記載の不揮発性半導体メモリ装置の製造方法によれば、前述の請求項2により得られた作用効果及びRTOプロセスによる作用効果を得ることができる。
【0027】
請求項に記載の不揮発性半導体メモリ装置の製造方法によれば、スタックゲート構成により、メモリ素子部分を形成して後、メモリ保護層、あるいはサイドウォールを形成する工程において、保護層あるいはサイドウォールの最下層となる酸化層の形成前に、軽い窒化処理を行うことにより、酸化膜厚の均一化、酸化膜の初期及び経時絶縁耐性を向上させることができる。
【0028】
請求項に記載の半導体メモリ装置によれば、良好で安定な素子形状及びメモリ動作特性を得ることができる。
請求項6に記載の不揮発性半導体メモリ装置によれば、良好で安定な素子形状及びメモリ動作特性を得ることができる。
【図面の簡単な説明】
【図1】ポリシリコン膜信頼性評価用試料の概略断面図である。
【図2】半導体装置のフローティングゲート電極と制御ゲート電極間の酸化絶縁膜構成例を示す断面図である。
【符号の説明】
1 結晶シリコン基板
2 ポリシリコンフローティングゲート電極
3 酸化膜(ボトム酸化膜)
4 窒化膜
5 酸化膜(トップ酸化膜)
6 ポリシリコン制御ゲート電極
11 結晶シリコン基板
12 燐ドープされたポリシリコン膜
13 酸化膜
16 燐ドープされたポリシリコン膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device, and more particularly, to a nonvolatile semiconductor memory device and a method for manufacturing the same.
[0002]
[Prior art]
Generally speaking, the polysilicon film has a much higher oxidation rate than the crystalline silicon substrate, so that it is not easy to control the thickness of the insulating film and the like. In particular, in a floating gate type nonvolatile memory device, the insulating film (bottom oxide film) formed by oxidizing the polysilicon film between the floating gate electrode and the control gate electrode has many problems in uniformity of film thickness and insulation resistance.
[0003]
[Problems to be solved by the invention]
The oxide film of polysilicon has lower insulation resistance than the oxide film of crystalline silicon. It is said that this is caused by an increase in current due to minute irregularities at the SiO2 / Poly-Si interface, and for this improvement, oxidation at a higher temperature than ordinary oxidation of crystalline silicon is required. In addition, since the polysilicon film has a significantly higher oxidation rate than the crystalline silicon substrate, it is not easy to control the film thickness. In particular, in a floating gate type nonvolatile memory device, the insulating film (bottom oxide film) formed by oxidizing the polysilicon film between the floating gate electrode and the control gate electrode has many problems in uniformity of film thickness and insulation resistance. An object of the present invention is to provide a method for forming an extremely thin oxide film on polysilicon with good controllability.
[000 4 ]
[Means for Solving the Problems]
The method of manufacturing a semiconductor device according to the first aspect is characterized in that, in a step requiring oxidation treatment of a polysilicon film or a polysilicon electrode, light nitridation treatment is performed before the step.
[000 5 ]
3. The method for manufacturing a nonvolatile semiconductor memory device according to claim 2, wherein the insulating film having the ONO laminated structure is formed between the floating gate electrode and the control gate electrode, wherein the bottom oxide film is formed on the floating electrode made of the polysilicon film. Before the step of forming (the oxide film under the ONO), light nitriding is performed.
[0006]
A method for manufacturing a semiconductor device according to claim 3 relates to a method for manufacturing a non-volatile semiconductor memory device, wherein a method for forming an ONO laminated insulating film between a floating gate electrode and a control gate electrode comprises a polysilicon film. Before the step of forming the bottom oxide film on the floating gate electrode, light nitriding is performed, and the formation of the bottom oxide film is performed by an RTA (Rapid Thermal Anneal) process.
[0007]
According to a fourth aspect of the present invention, in the method of manufacturing a nonvolatile semiconductor memory device, after forming a memory element portion having a stack gate configuration, in a step of forming a memory protection layer, a step of forming an oxide layer to be a lowermost layer of the protection layer is performed. Before that, light nitriding is performed.
[0008]
The semiconductor device according to claim 5 is a semiconductor memory device created by the method of manufacturing a semiconductor device according to claim 1.
[0009]
The method of manufacturing a semiconductor device according to the first aspect is characterized in that in a step requiring oxidation treatment of a polysilicon film or a polysilicon electrode, light nitridation treatment is performed before the step. It is known that the oxide film of polysilicon is much lower in insulation resistance than the oxide film of crystalline silicon. This is because the cathode electric field is strengthened by minute irregularities at the SiO 2 / Poly-Si interface, so that the oxide film in the SiO 2 film is reduced. It is said that the current flowing through the device greatly increases. For this improvement, oxidation of polysilicon requires higher temperature oxidation than that of crystalline silicon. As a reference value, the oxidation of crystalline silicon is generally performed at about 800 to 950 ° C., and the oxidation of polysilicon is generally performed at about 900 to 1100 ° C. In addition to this, the polysilicon film has a much higher oxidation rate than the crystalline silicon substrate, so that it is not easy to control the film thickness. By performing light nitriding before oxidation, it becomes possible to form an extremely thin oxide film on polysilicon with good controllability.
[0010]
The method for manufacturing a nonvolatile semiconductor memory device according to claim 2 relates to a method for forming an insulating film between a floating gate electrode and a control gate electrode in the nonvolatile semiconductor memory device. When a bottom oxide film (an oxide film below the ONO) is formed on a floating gate electrode made of a polysilicon film by an oxidation process, a light nitridation process is performed in advance, so that even a high temperature of 10 nm or less can be easily achieved. Since an extremely thin oxide film can be formed, a decrease in insulation resistance due to minute unevenness can be suppressed. The light nitridation and oxidation may be performed only on the surface of the solid polysilicon film, or may be performed after a certain electrode pattern is formed, depending on the element structure and the process. The method of nitriding and the degree of nitriding also vary depending on the desired oxide film thickness, heat history, oxidation method, etc., and are set as appropriate. However, the degree of nitriding is limited to a light nitriding treatment of several atomic layers or less in terms of silicon crystal and / or several atom% or less in composition ratio. If the nitriding is heavier than this, the formation of an oxide film itself becomes difficult because the effect of preventing oxidation is too strong. As a method for performing light nitriding, RTN (Rapid Thermal Nitridation) processing is effective, but not limited thereto.
[0011]
And regarding the method for forming the insulating film between the floating gate electrode and the control gate electrode in a nonvolatile semiconductor memory device, RTO formation of the bottom oxide film on the floating gate electrode made of polysilicon film (underlying oxide film ONO) it is preferably performed by (Rapid Thermal Oxidation) process. It is known that the oxide film of polysilicon is significantly lower in insulation resistance than the oxide film of crystalline silicon, and this is considered to be caused by minute irregularities at the SiO 2 / Poly-Si interface. Therefore, oxidation of polysilicon at a higher temperature is more effective than that of crystalline silicon. By the RTA (RTO) process, an extremely thin oxide film can be formed at a high temperature and in a short time with good controllability.
[0012]
The method for manufacturing a nonvolatile semiconductor memory device according to claim 3 , relates to a method for forming an insulating film between a floating gate electrode and a control gate electrode in the nonvolatile semiconductor memory device, wherein the floating gate electrode comprises a polysilicon film. On top, light nitriding is performed in advance, and formation of a bottom oxide film (an oxide film below the ONO) is performed by RTO . This aspect has the effect of the above RTO process in addition to the effect of the second aspect .
[0013]
5. The method for manufacturing a nonvolatile semiconductor memory device according to claim 4 , wherein after forming an element portion of the nonvolatile semiconductor memory having a stack gate structure, a circuit portion such as an SRAM, a gate array, an I / O portion, or a metal wiring step is performed. The present invention relates to a method for forming a protective layer of a memory portion required for forming a protective layer. This protective layer protects the memory portion from washing and etching steps which are performed many times in the subsequent steps, or is used as a sidewall for adjusting the effective channel length, and is an oxide film or an oxide film. And a nitride film. In many cases, the oxide film or the stacked film of the oxide film and the nitride film is formed by a deposition film by CVD or the like, but at least the lowermost layer is subjected to an oxidation treatment in consideration of contamination and damage to the exposed portion of the substrate. It is often performed by. If strong oxidation is performed in the oxidation process of the lowermost layer, abnormal oxidation occurs on the side surface of the stack gate and the like, and the element shape and the like are damaged, and the thickness of the tunnel oxide film on the source / drain upper portion (gate edge portion) is increased. Therefore, the memory operation characteristics may change (for example, when writing / erasing is performed between the gate and the source or the drain). This section has been devised in order to avoid the above problem.Before the formation of the oxide layer serving as the lowermost layer of the protective layer, a light nitriding treatment is performed to make the oxide film uniform in thickness, the initial state of the oxide film and It is characterized by improving the insulation resistance with time .
[0014]
The invention of claim 5 is a semiconductor memory device manufactured by the manufacturing method of semiconductor processing according to claim 1, having a good and stable element shape and memory operating characteristics.
[0015]
FIG. 2 shows a configuration example of an oxide insulating film between a floating gate electrode and a control gate electrode of a nonvolatile semiconductor memory device which is an example of the object of the present invention. In FIG. 2, 1 is a crystalline silicon substrate, 2 is a polysilicon floating gate electrode, 3 is an oxide film (bottom oxide film), 4 is a nitride film, 5 is an oxide film (top oxide film), and 6 is a polysilicon control gate electrode. And 3, 4 and 5 are called ONO laminated films.
[0016]
【Example】
Next, the present invention will be described in more detail with reference to examples. In order to evaluate the reliability of the polysilicon oxide film, a 1500 nm thick phosphorus-doped polysilicon film is formed on a crystalline silicon substrate via a gate oxide film (tunnel oxide film), and the polysilicon is formed using an RTN process. After performing a light nitriding treatment on the surface at 950 ° C. for 60 seconds, a capacitance film thickness of 90 ° is obtained by using three kinds of oxidation methods of dry oxidation using a diffusion furnace, wet oxidation using a diffusion furnace, and oxidation by RTA (RTO). (Corresponding to the bottom oxide film) was formed. In this case, the structure of the insulating film does not become a stacked film of the oxide film and the nitride film. Since the oxidation mainly proceeds at the interface, the obtained film is an almost perfect oxide film, and the vicinity of the oxide film surface is slightly nitrided (several percent or less). Next, a phosphorus-doped polysilicon film was formed thereon at 1500 °, and a capacitor sample was formed by using a known photolithography technique. FIG. 1 is a schematic sectional view of a capacitor sample for evaluating the reliability of the polysilicon oxide film. The layer configuration of the capacitor sample of FIG. 1 corresponds to the configuration of the nonvolatile semiconductor memory device shown in FIG. 2, where 11 is a crystalline silicon substrate, 12 is a phosphorus-doped polysilicon film, 13 is an oxide film, Reference numeral 16 denotes a phosphorus-doped polysilicon film. The reason for using a single-layer oxide film instead of the ONO laminated film as the interpoly insulating film in the above sample is that the carrier conduction mechanism of the ONO laminated film is complicated. This is because it relates to the formation of an oxide film or a lower oxide film of the ONO laminated film. The following test was performed on this capacitor sample (a capacitor composed of the electrode 12 and the electrode 16) for evaluation.
[0017]
1) TEM (Transmission Electron Microscopy), observation of sample cross section by transmission electron microscope. Thus, the microscopic uniformity of the unevenness and the oxide film thickness is evaluated.
2) Evaluation by an initial pressure test.
3) TDDB (Time Dependent Dielectric Breakdown), evaluation of dielectric breakdown resistance with time.
[0018]
Through the tests 1), 2) and 3), the reliability of the oxide film was examined. For comparison, a similar sample was prepared and evaluated when a crystalline silicon substrate was used instead of the polysilicon 12 (FIG. 1). The evaluation results are shown in [Table 1] (TEM evaluation results), [Table 2] (initial resistance evaluation results), and [Table 3] (constant current TDDB resistance evaluation results).
[0019]
[Table 1]
Figure 0003552846
[0020]
[Table 2]
Figure 0003552846
[0021]
[Table 3]
Figure 0003552846
[0022]
According to [Table 1] to [Table 3], the oxide film on the crystalline silicon substrate has the waviness (irregularity) and the thickness of the oxide film regardless of the method of oxidation, regardless of the presence or absence of light nitridation. It shows good reliability in microscopic uniformity, initial breakdown voltage and TDDB resistance. On the other hand, it can be seen that the microscopic uniformity of the film thickness, the initial breakdown voltage, and the TDDB resistance of the oxide film on the polysilicon are improved in the presence of nitriding as compared with the case without light nitriding. This indicates that light nitriding is effective not only in improving the controllability of the process but also in improving the microscopic uniformity of the oxide film thickness. It is generally said that in a normal gate oxide film, a wet oxide film formed by a diffusion furnace has higher TDDB resistance than a dry oxide film or an RTO film. However, in the case of polysilicon oxidation, the oxidation rate is higher. In the case of wet oxidation, it is considered that the uniformity of the oxide film thickness and the unevenness at the interface between the oxide film and the polysilicon film become conspicuous, thereby lowering the reliability. In the case of the RTO film, the processing temperature is high, and it is considered that the RTO film has an effect of reducing unevenness.
[0023]
【The invention's effect】
As is apparent from the above description, according to the method of manufacturing a semiconductor device according to claim 1, in a process that requires an oxidation process on a polysilicon film or a polysilicon electrode, a light nitriding process is performed before the process. Is performed, the uniformity of the oxide film thickness is improved, and the oxidation rate of polysilicon can be suppressed.
[0024]
According to the method of manufacturing a non-volatile semiconductor memory device according to claim 2, before the step of forming a bottom oxide film on a floating gate electrode made of a polysilicon film, a light nitridation process is performed, so that the oxide film thickness is reduced. And the insulation resistance at the initial stage and over time are improved. Therefore, the reliability of the oxide insulating film is increased.
[0025]
By performing bottom oxide film on the more becomes the floating gate electrode to the polysilicon film by RTO process, good controllability, the unevenness of the interface between the oxide film and a polysilicon film for very thin oxide film is formed in a short time high temperature Has the effect of being mitigated. Therefore, the reliability of the oxide film is improved.
[0026]
According to the method of manufacturing a nonvolatile semiconductor memory device according to the third aspect , it is possible to obtain the operation and effect obtained by the second aspect and the operation and effect obtained by the RTO process .
[0027]
According to the method of manufacturing a nonvolatile semiconductor memory device according to claim 4 , in the step of forming a memory protection layer or a side wall after forming a memory element portion by a stack gate configuration, the protection layer or the side wall is formed. By performing a light nitriding treatment before forming the lowermost oxide layer, the uniformity of the oxide film thickness and the initial and temporal insulation resistance of the oxide film can be improved.
[0028]
According to the semiconductor memory device of the fifth aspect , a good and stable element shape and memory operation characteristics can be obtained.
According to the nonvolatile semiconductor memory device of the sixth aspect, a good and stable element shape and memory operation characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a sample for evaluating the reliability of a polysilicon film.
FIG. 2 is a cross-sectional view illustrating a configuration example of an oxide insulating film between a floating gate electrode and a control gate electrode of a semiconductor device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crystal silicon substrate 2 Polysilicon floating gate electrode 3 Oxide film (bottom oxide film)
4 Nitride film 5 Oxide film (top oxide film)
6 polysilicon control gate electrode 11 crystalline silicon substrate 12 phosphorus-doped polysilicon film 13 oxide film 16 phosphorus-doped polysilicon film

Claims (6)

ポリシリコン膜或いはポリシリコン電極に膜厚が 1 0nm以下の酸化膜を形成するための酸化処理工程を有する半導体装置の製造方法において、前記酸化処理工程の前に、次工程で前記ポリシリコン膜表面或いは前記ポリシリコン電極表面に直接酸化膜の形成ができる程度の軽い窒化処理を施すことを特徴とする半導体装置の製造方法。In a method for manufacturing a semiconductor device having an oxidation treatment step for forming an oxide film having a thickness of 10 nm or less on a polysilicon film or a polysilicon electrode, the surface of the polysilicon film is formed in the next step before the oxidation treatment step. Alternatively, a method of manufacturing a semiconductor device, wherein a light nitridation process is performed to such an extent that an oxide film can be directly formed on the surface of the polysilicon electrode . 不揮発性半導体メモリ装置の製造方法に関し、フローティングゲート電極と制御ゲート電極の間にONO積層構造の絶縁膜を形成する方法において、ポリシリコン膜によりなるフローティングゲート電極上に酸化処理によりONOの下層酸化膜であるボトム酸化膜を形成する工程の前に、次工程で前記フローティングゲート電極表面に直接ボトム酸化膜の形成ができる程度の軽い窒化処理を施すことを特徴とする不揮発性半導体メモリ装置の製造方法。It relates to a method of manufacturing a nonvolatile semiconductor memory device, floating between the gate electrode and the control gate electrode in a method of forming an insulating film of the ONO stack structure, a polysilicon film lower layer oxide film of the ONO by oxidation on the floating gate electrode made by Prior to the step of forming a bottom oxide film, a method of manufacturing a nonvolatile semiconductor memory device, wherein a light nitridation process is performed on the surface of the floating gate electrode so as to directly form the bottom oxide film in the next step. . 不揮発性半導体メモリ装置の製造方法に関し、フローティングゲート電極と制御ゲート電極の間にONO積層構造の絶縁膜を形成する方法において、ポリシリコン膜によりなるフローティングゲート電極上にボトム酸化膜を形成する工程の前に、次工程で前記フローティングゲート電極表面に直接ボトム酸化膜の形成ができる程度の軽い窒化処理を施し、ボトム酸化膜の形成をRTAプロセスで行うことを特徴とする不揮発性メモリ装置の製造方法。The present invention relates to a method of manufacturing a nonvolatile semiconductor memory device, comprising: forming a bottom oxide film on a floating gate electrode made of a polysilicon film in a method of forming an ONO stacked insulating film between a floating gate electrode and a control gate electrode. Forming a bottom oxide film by an RTA process in a next step, wherein a light nitridation process is performed on the surface of the floating gate electrode so that a bottom oxide film can be formed directly on the surface of the floating gate electrode. . 不揮発性半導体メモリ装置の製造方法に関し、ポリシリコン層が絶縁層を介して積み重なったスタックゲート構成によりなるメモリ素子部分を形成した後、メモリ保護層を形成する工程において、酸化処理による保護層の最下層となる酸化層の形成の前に、次工程で前記ポリシリコン層表面に酸化膜の形成ができる程度の軽い窒化処理を行うことを特徴とする不揮発性半導体メモリ装置の製造方法。In a method of manufacturing a nonvolatile semiconductor memory device, after forming a memory element portion having a stack gate configuration in which a polysilicon layer is stacked via an insulating layer, in a step of forming a memory protection layer, the protection layer is formed by oxidation treatment. A method for manufacturing a non-volatile semiconductor memory device, comprising performing a light nitridation process to a degree that an oxide film can be formed on the surface of the polysilicon layer in a next step before forming a lower oxide layer. 請求項の半導体装置の製造方法により作成した半導体メモリ装置A semiconductor memory device manufactured by the method for manufacturing a semiconductor device according to claim 1 . 請求項2〜4の不揮発性半導体装置の製造方法により作成した不揮発性半導体メモリ装置。A nonvolatile semiconductor memory device manufactured by the method for manufacturing a nonvolatile semiconductor device according to claim 2.
JP13756696A 1995-11-20 1996-05-08 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3552846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13756696A JP3552846B2 (en) 1995-11-20 1996-05-08 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-326495 1995-11-20
JP32649595 1995-11-20
JP13756696A JP3552846B2 (en) 1995-11-20 1996-05-08 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09205157A JPH09205157A (en) 1997-08-05
JP3552846B2 true JP3552846B2 (en) 2004-08-11

Family

ID=26470824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13756696A Expired - Fee Related JP3552846B2 (en) 1995-11-20 1996-05-08 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3552846B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148491B4 (en) 2001-10-01 2006-09-07 Infineon Technologies Ag Method for producing an integrated semiconductor device by means of thermal oxidation and semiconductor device
KR100399940B1 (en) * 2001-12-29 2003-09-29 주식회사 하이닉스반도체 Method of manufacturing capacitor for semiconductor memory device
US7183166B2 (en) * 2003-11-25 2007-02-27 Macronix International Co., Ltd. Method for forming oxide on ONO structure

Also Published As

Publication number Publication date
JPH09205157A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
US6015989A (en) Semiconductor device having a capacitor electrode formed of iridum or ruthenium and a quantity of oxygen
US6096640A (en) Method of making a gate electrode stack with a diffusion barrier
JP3263429B2 (en) Semiconductor device and manufacturing method thereof
JP4538182B2 (en) MOSFET manufacturing method
JP3754234B2 (en) Method for forming oxide film on side wall of gate structure
JP2000058832A (en) Oxyzirconium nitride and/or hafnium gate dielectrics
US6884671B2 (en) Method for fabricating a gate electrode
KR100678632B1 (en) Method for fabricating semiconductor integrated circuit device
US6274429B1 (en) Use of Si-rich oxide film as a chemical potential barrier for controlled oxidation
JP3426170B2 (en) Method for manufacturing semiconductor device
KR20050040582A (en) Method for manufacturing semiconductor device using reverse gate process
JPH08306722A (en) Semiconductor device and its interconnection
JP3552846B2 (en) Semiconductor device and manufacturing method thereof
US6218252B1 (en) Method of forming gate in semiconductor device
US6429109B1 (en) Method to form high k dielectric and silicide to reduce poly depletion by using a sacrificial metal between oxide and gate
KR100655441B1 (en) Method of fabricating trap-type nonvolatile memory device
JPH09223752A (en) Manufacture of nonvolatile semiconductor storage device
JPH06260644A (en) Manufacture of semiconductor device
US6319763B1 (en) Manufacturing method for semiconductor device
JP2000049159A (en) Semiconductor device and manufacture thereof
JPH07297182A (en) Method of forming sin-based insulating film
JP4573653B2 (en) Method for manufacturing gate structure of semiconductor memory device
KR100616500B1 (en) Gate electrode of semiconductor device and method for manufacturing the same
KR100533964B1 (en) Method for fabricating semiconductor devcie having tungsten poly metal gate-electrode
JP2000208645A (en) Forming method for silicon group dielectric film and manufacture of nonvolatile semiconductor storage device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees