JP3552594B2 - Measurement method of water saturation in tunnel excavation - Google Patents

Measurement method of water saturation in tunnel excavation Download PDF

Info

Publication number
JP3552594B2
JP3552594B2 JP17816099A JP17816099A JP3552594B2 JP 3552594 B2 JP3552594 B2 JP 3552594B2 JP 17816099 A JP17816099 A JP 17816099A JP 17816099 A JP17816099 A JP 17816099A JP 3552594 B2 JP3552594 B2 JP 3552594B2
Authority
JP
Japan
Prior art keywords
tunnel
water
specific resistance
saturation
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17816099A
Other languages
Japanese (ja)
Other versions
JP2001004576A (en
Inventor
健一郎 鈴木
和人 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP17816099A priority Critical patent/JP3552594B2/en
Publication of JP2001004576A publication Critical patent/JP2001004576A/en
Application granted granted Critical
Publication of JP3552594B2 publication Critical patent/JP3552594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、岩盤内貯槽用トンネルなどのトンネル掘削における水分飽和度の計測方法に関するものである。
【0002】
【従来の技術】
LPGなどの液化石油ガスを貯蔵する設備として、水封式の岩盤内貯槽が知られている。この種の岩盤内貯槽は、液化石油ガスを貯蔵するタンク本体の外方から内部に向けて流れる自然または人工の水流を創成することにより水封方式として、貯蔵する石油ガスの液密および気密を確保している。
【0003】
このような水封式の岩盤内貯槽では、施工時においても一旦岩盤を水分の不飽和状態にすると、再飽和させることが難しいので、飽和状態を維持しながら施工する必要がある。
【0004】
ところが、従来は、岩盤の水分飽和度を直接計測することができないので、例えば、岩盤内貯槽を構築する現場地層において高透水帯が存在し、湧水が多く、地下水低下が著しい個所では、地下水位が限界地下水位を下回り、水分の不飽和状態になる可能性が非常に高いので、このような個所をさぐりボーリングにより検出することで、不飽和になるのを防いでいた。
【0005】
つまり、高透水帯があると、施工時においても岩盤が不飽和状態になるので、水封トンネルやタンク本体トンネルの施工時に、さぐりボーリングを行い、湧水状態を確認し、高透水帯が存在すると、水分の不飽和状態になるものと推定して、グラウト処理などにより対処していた。
【0006】
しかしながら、このような従来の水分飽和度の推定方法には、以下に説明する技術的な課題があった。
【0007】
【発明が解決しようとする課題】
すなわち、トンネルの施工時にさぐりボーリングにより高透水帯を見つけ出すことは、かなり難しい上に、従来の水分飽和度の計測方法では、タンク本体トンネル内に石油ガスなどを収納して、供用を開始した後に、水封状態を監視することができなかった。
【0008】
ところで、このようなトンネル掘削時における水分飽和度の計測は、通常の山岳トンネルの掘削時に実施すると、多量の湧水発生個所を事前に知ることができるなどのメリットがあるが、前述した従来の水分飽和度の推定方法では、水分飽和度よりも、岩盤の含水状態の推定が主たる目的になっていて、正確に水分飽和度を推定することが難しかった。
【0009】
本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、トンネル施工時に、経時的に計測することで、正確に水分飽和度を相対的に推定すること、および、岩盤内貯槽において、施工時および供用時の双方において水封状態を簡便に監視することができる水分飽和度の計測方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明は、トンネルを掘削する際の、掘削断面外周の岩盤の水分飽和度を計測する方法において、前記トンネルは、LPG , LNGなどの液化ガスを貯蔵するタンク本体トンネルの上部側に所定の間隔を隔てて設けられ、前記タンク本体トンネルの外側から内部に向けて流れる水流を創成する岩盤内貯槽用の水封トンネルであって、前記水封トンネルを掘削する際に、掘削の進行に伴って、前記水封トンネルのトンネル軸方向に沿った測線上に複数の比抵抗測定用電極を順次設置し、前記電極を介して前記測線上の比抵抗を測定し、測定された前記比抵抗に基づいて前記水封トンネルの下方部分の岩盤の水分飽和度を推定する方法であり、前記岩盤の水分飽和度は、前記タンク本体トンネルの施工中を含み、前記タンク本体トンネルに液化ガスを貯蔵した後にも、前記水封トンネルに設置した前記電極を介して測定された前記比抵抗に基づいて推定するようにした。
このように構成した水分飽和度の計測方法によれば、岩盤の水分飽和度を推定するための比抵抗測定用電極を水封トンネルの掘削に伴って設置することで、水封トンネルを施工する時の水分飽和度の管理が可能になり、施工時に岩盤が不飽和状態になることを避けられる。
この場合、通常の比抵抗の測定では、計測深度が深くなると、測線を長く確保しなければならないが、本発明では、タンク本体トンネルの上方数十メートル程度の位置に設置される水封トンネル内に電極を設置して、タンク本体トンネルの岩盤飽和度を推定するので、地表に設置した電極からタンク本体トンネルの岩盤の飽和度を推定する場合のように、長い測線は、必要とせず、水封トンネルの長さだけで十分高精度の推定が可能なる。
また、岩盤の水分飽和度は、タンク本体トンネルに液化石油ガスを貯蔵した後にも、水封トンネルに設置した電極を介して測定された比抵抗に基づいて推定するので、タンク本体トンネル内に液化石油ガスを貯蔵した供用状態においても水封状態を監視することができる。
また、本発明では、前記タンク本体トンネルを掘削する際に、掘削断面上に複数の比抵抗測定用電極を設置し、前記電極を介して前記掘削断面上の比抵抗を測定し、測定された前記比抵抗に基づいて前記タンク本体トンネルの外周部分の岩盤の水分飽和度を推定することができる。
このように構成した水分飽和度の計測方法によれば、タンク本体トンネルの掘削断面上に複数の比抵抗測定用電極を設置して、掘削断面上の水分飽和度を推定するので、タンク本体トンネル近傍の不飽和度の管理精度が向上する。
前記比抵抗測定用電極は、一対の電流電極および一対の電圧電極を備えた4極式電極を用いることができる。
【0011】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。図1は、本発明にかかるトンネル掘削における水分飽和度の計測方法の計測の基本構成を示している
【0012】
同図に示した計測方法は、通常のトンネル1に適用した計測例であり、トンネル1の掘削時に、掘削断面2の外周側の岩盤の水分飽和度を計測する際には、同図に示すように、掘削断面2の周方向に沿って、複数の比抵抗測定用電極20が設置される。
【0013】
図1に示した例では、合計4組の測定用電極20が、同一掘削断面2上に所定の間隔を隔てて、設置されていて、測定用電極20は、リード線を介して端子ボックス3に接続され、端子ボックス3は、比抵抗測定装置4に接続されている。
【0014】
本実施例の比抵抗測定用電極20は、図2に示すように、4極1組の構造のものが用いられ、等間隔を隔てて設置される一対の電流電極C,Cと、一対の電圧電極P,Pとを備えている。
【0015】
そして、一対の電流電極C,Cが両側に配置され、この電流電極C,C間に電圧電極P,Pが配置される。
【0016】
電流および電圧電極C,C,P,Pの配列方向刃、本実施例の場合には、掘削断面2の周方向に沿って、C,C,P,Pの順に配置しているが、掘削断面2を中心にして、トンネル軸方向にC,C,P,Pの順に配置してもよい。
【0017】
比抵抗測定用電極20が設置されると、この電極20間に順次比抵抗測定装置4を接続して、電流および電圧電極C,C,P,P間に通電して、岩盤の比抵抗ρが測定される。
【0018】
この測定は、図2に示すように、一対の電流電極C,C間に直流電流Iを流したときに、一対の電圧電極P,P間に現れる電圧Vを測定する。
【0019】
電圧Vと電流Iとが求められると、比抵抗ρ=2πaV/Iにより、演算される。なお、ここでaは、電流および電圧電極C,C,P,Pの配置間隔である。
【0020】
岩盤の比抵抗ρは、図3に示すように、岩盤の水分飽和度に依存した値になるので、岩盤の比抵抗ρがわかると、その値から岩盤の水分飽和度を推定することができる。
【0021】
この場合、岩盤の比抵抗ρは、構成される岩石などにより影響を受け、また、地下水の電気抵抗もその成分によって異なるので、予め、トンネル1を構築する個所の岩盤を採取して、水分の飽和度に対する比抵抗の校正曲線を作成しておくことが望ましい。
【0022】
以上のようにして、岩盤の比抵抗ρに基づいて、岩盤の水分飽和度を推定しながらトンネル1の掘削を行うと、掘削断面2の外周部分の岩盤の水分飽和度から、例えば、多量の湧水発生個所が事前にわかるので、湧水対策を早期に策定することができる。
【0023】
図4から図8は、本発明にかかるトンネル掘削における水分飽和度の計測方法の一実施例を示しており、これらの図に示した実施例は、本発明を岩盤内貯槽用のトンネルの掘削に適用した場合を例示している。
【0024】
岩盤内貯槽は、図4にその構造例を示すように、タンク本体トンネル10と、水封トンネル12とを有している。
【0025】
タンク本体トンネル10は、その内部にLPG,LNGなどの液化石油ガスを貯蔵する。水封トンネル12は、本体トンネル12よりも直径が小さく、タンク本体トンネル10とほぼ同じ長さを有し、その上方約数十メートルの同軸上に位置していて、内部から外方に向けて穿設された複数のボーリング孔14を有している。各ボーリング孔14は、水封トンネル12のトンネル軸方向に沿って所定の間隔を隔てて複数配置され、先端側が下方に向かって傾斜している。
【0026】
この水封トンネル12には、タンク本体トンネル10の施工掘削前から内部に注水が行われ、タンク本体トンネル10との間に水頭圧差があるので、水封トンネル12から流出した水は、タンク本体トンネル10の外側から内部に向けて流れる水流16となり、このような水流16を創成することにより、タンク本体10の施工中および供用開始後の液密および気密が確保されている。
【0028】
このような構成の岩盤内貯槽は、通常、タンク本体トンネル10よりも断面積の小さい水封トンネル12が先行して施工される。本実施例の場合には、図5に示すように、水封トンネル12を先行施工する際に、その掘削の進行に伴って、水封トンネル12のトンネル軸線に沿って想定された測線18上に上記と同じ構成の比抵抗測定用電極20が所定の間隔を置いて複数設置される。
【0029】
なお、各電極20の設置個所は、掘削直後の地山に直接接触するように設置してもよいし、吹付けコンクリート施工後にその表面に接触するように設置してもよい。
【0030】
側線18は、水封トンネル12のトンネル軸線に沿って、一直線状に設定されるものであって、例えば、水封トンネル12の左右の側面に一対平行に設定したり、あるいは、水封トンネル12のトンネル軸と同軸上に位置する底面ないしは天井面に1箇所設定することができる。
【0031】
各電極20(後述するタンク本体トンネル10内に設置する電極20aも同じ)は、本実施例の場合にも、上記実施例と同様に、4極1組の構造のものが用いられ、電極20は、等間隔を隔てて設置される一対の電流電極C,Cと、一対の電圧電極P,Pとを備えている。
【0032】
電流および電圧電極C,C,P,Pの配列方向と側線18の延長方向との間の関係は、側線18と同じ方向に電極20を配列してもよいし、測線18と電極20の配列方向とが直交するようにしてもよい。
【0033】
電極20が設置されると、この電極20間に、端子ボックス3を介して比抵抗測定装置4を接続して、岩盤の比抵抗ρが測定される。
【0034】
岩盤の比抵抗ρは、図3に示すように、岩盤の水分飽和度に依存した値になるので、岩盤の比抵抗ρがわかると、その値から岩盤の水分飽和度を推定することができる。
【0035】
このようにして、岩盤の比抵抗ρに基づいて、岩盤の水分飽和度を推定しながら掘削を行うと、水封トンネル12を施工する際に、岩盤が不飽和状態になることを避けることができ、また、不飽和状態が確認された場合にも、さぐりボーリングの精度を向上させることができ、ボーリングの精度が向上すると、プレグラウトも正確に実施することが可能になる。
【0036】
水封トンネル12内に設置した電極20は、そのまま設置されていて、図6に示すように、水封トンネル12の完成後に、水封トンネル12内に水を注入して、水流16を創成して水封を開始を介した後にも、測線18に沿った岩盤の比抵抗ρを測定する。そして、測定された比抵抗ρに基づいて、水封トンネル12の下方部分の岩盤の水分飽和度を推定し、この水分飽和度に基づいて、水封状態の監視が継続される。
【0037】
一方、本実施例の場合には、水封トンネル12内に水を注入して、水封を開始した後に、タンク本体トンネル10を掘削形成する岩盤の水分飽和度を確保した状態で、図7に示すように、タンク本体トンネル10の掘削施工が行われる。
【0038】
このとき、このタンク本体トンネル10の掘削の進行に伴って、トンネル10内に、水封トンネル12内に設置した電極20と、実質的に同じ電極20aが設置され、比抵抗ρを測定して、その測定値に基づいて、岩盤の水分飽和度が推定される。
【0039】
この場合の電極20aは、タンク本体トンネル10の1掘削断面上において、その断面外周に沿って、所定の間隔を隔てて複数設置される。この場合の設置個所は、タンク本体トンネル10の側面と天井面とに設定される。
【0040】
また、掘削が進行すると、トンネル軸方向に所定の間隔をあけて、同じ掘削断面上に複数の電極20aが同様に設置され、タンク本体トンネル10の側面および天井面の外側の岩盤の比抵抗ρを測定する。
【0041】
そして、測定された比抵抗ρに基づいて、タンク本体トンネル10の側面および天井面の外側の岩盤の水分飽和度を推定し、飽和していない個所があれば、その個所にプレグラウト処理などを行う。
【0042】
このようなタンク本体トンネル10の掘削時にも、水封トンネル12内に設置されている電極20による比抵抗ρの測定は、継続して行われ、そしてさらに、図8に示すように、タンク本体トンネル10が完成して、その内部に液化石油ガスを収容して供用を開始した後にも、水封トンネル12内に設置されている電極20による比抵抗ρの測定は、継続して行われ、測定された比抵抗ρに基づいて岩盤の水分飽和度が推定される。
【0043】
さて、以上のように構成されたトンネル掘削における水分飽和度の計測方法では、比抵抗測定用電極20を水封トンネル12の掘削に伴って設置するので、水封トンネル12の施工時の水分飽和度の管理が可能になる。
【0044】
また、本実施例では、タンク本体トンネル10の掘削断面上に複数の比抵抗測定用電極20aを設置して、掘削断面上の水分飽和度を推定するので、タンク本体トンネル10近傍の不飽和度の管理精度が向上し、水分飽和度を高精度に管理しながらタンク本体トンネル10の施工を行うことができる。
【0045】
さらに、本実施例では、岩盤の水分飽和度は、タンク本体トンネル10に液化石油ガスを貯蔵した後にも、水封トンネル12に設置した電極20を介して測定された比抵抗ρに基づいて推定することができ、タンク本体トンネル10内に液化石油ガスを貯蔵した供用状態においても水封状態を監視することができる。
【0046】
なお、上記実施例では、電極20を水封トンネル12およびタンク本体トンネル10の双方に設置する場合を例示したが、本発明の計測方法では、水封トンネル12側にだけに設置しても、水封状態を監視することができる。
【0048】
【発明の効果】
以上、実施例で詳細に説明したように、本発明にかかるトンネル掘削における水分飽和度の計測方法によれば、トンネル施工時に、正確に水分飽和度を推定することができると共に、岩盤内貯槽において、施工時および供用時の双方において水封状態を簡便に監視することができる。
【図面の簡単な説明】
【図1】本発明にかかるトンネル掘削における水分飽和度の計測方法の実施状態の説明図である。
【図2】本発明において、岩盤の比抵抗を測定する際の電極の配置状態説明図である。
【図3】比抵抗値と水分飽和度との関係を示すグラフである。
【図4】本発明にかかる水分飽和度の計測方法を適用する岩盤内貯槽の一例を示す説明図である。
【図5】図4の岩盤内貯槽で水封トンネルを施工する際の説明図である。
【図6】図4の岩盤内貯槽において水封を開始する際の説明図である。
【図7】図4の岩盤内貯槽において水封を開始後、タンク本体トンネルを施工する際の説明図である。
【図8】図4の岩盤内貯槽において供用開始後の説明図である。
【符号の説明】
10 タンク本体トンネル
12 水封トンネル
14 ボーリング孔
16 水流
18 測線
20 電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring water saturation in excavation of a tunnel for a storage tank in a bedrock or the like.
[0002]
[Prior art]
As a facility for storing liquefied petroleum gas such as LPG, a water-sealed storage tank in rock is known. This type of storage tank in rock is used to create a natural or artificial water flow that flows from the outside to the inside of the tank body that stores liquefied petroleum gas. Have secured.
[0003]
In such a water-sealed storage tank in rock, it is difficult to re-saturate the rock once it is in an unsaturated state even at the time of construction, so it is necessary to construct while maintaining the saturated state.
[0004]
However, conventionally, it has not been possible to directly measure the water saturation of the bedrock.For example, in places where there is a high permeability zone on the site where Since the water level is below the critical groundwater level and the possibility of water unsaturated condition is very high, it was prevented to become unsaturated by detecting such locations by drilling.
[0005]
In other words, if there is a high permeability zone, the bedrock will be in an unsaturated state even at the time of construction. Then, it is presumed that the water will be in an unsaturated state, and measures have been taken by grouting or the like.
[0006]
However, such a conventional method for estimating the water saturation has the following technical problems.
[0007]
[Problems to be solved by the invention]
In other words, it is quite difficult to find a high water permeability zone by drilling during construction of the tunnel, and in addition to the conventional method of measuring water saturation, after storing oil gas etc. in the tank body tunnel and starting operation , Could not monitor the water seal.
[0008]
By the way, such a measurement of the water saturation at the time of excavation of a tunnel has an advantage that when it is carried out at the time of excavation of a normal mountain tunnel, a place where a large amount of spring water is generated can be known in advance. In the method of estimating the water saturation, the main purpose is to estimate the water content of the rock mass rather than the water saturation, and it has been difficult to accurately estimate the water saturation.
[0009]
The present invention has been made in view of such a conventional problem, and an object thereof is to estimate the water saturation relatively accurately by measuring over time at the time of tunnel construction. Another object of the present invention is to provide a method for measuring a water saturation, which can easily monitor a water seal state in a storage tank in a bedrock both during construction and operation.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method of measuring the water saturation of rock mass around an excavation cross section when excavating a tunnel , wherein the tunnel is a tank body for storing a liquefied gas such as LPG and LNG. A water ring tunnel for a storage tank in a rock mass, which is provided at a predetermined interval on an upper side of the tunnel and creates a water flow flowing from the outside to the inside of the tank body tunnel, wherein the water ring tunnel is excavated. In accordance with the progress of the excavation, a plurality of specific resistance measurement electrodes are sequentially installed on a measurement line along the tunnel axis direction of the water seal tunnel, and the specific resistance on the measurement line is measured through the electrode, A method for estimating the water saturation of rock in the lower part of the water seal tunnel based on the measured specific resistance, wherein the water saturation of the rock includes during construction of the tank body tunnel, Even after storage of the liquefied gas in the tank body tunnel, and so estimated that based on the specific resistance measured through the electrode installed in the water seal tunnel.
According to the water saturation measurement method configured as described above, the water resistance tunnel for estimating the water saturation of the rock is installed along with the excavation of the water seal tunnel, thereby constructing the water seal tunnel. It is possible to control the moisture saturation at the time of the construction, and to prevent the rock mass from becoming unsaturated during construction.
In this case, in the normal measurement of the specific resistance, when the measurement depth becomes deep, the measurement line must be secured long, but in the present invention, the inside of the water seal tunnel installed at a position of about several tens of meters above the tank body tunnel. Since the electrodes are installed on the tank and the rock saturation of the tank body tunnel is estimated, a long survey line is not required as in the case of estimating the rock saturation of the tank body tunnel from the electrodes installed on the ground surface. A sufficiently high-precision estimation is possible only by the length of the sealed tunnel.
In addition, even after storing liquefied petroleum gas in the tank body tunnel, the water saturation of the bedrock is estimated based on the specific resistance measured through the electrodes installed in the water ring tunnel, so the liquefied The water seal state can be monitored even in the service state where the petroleum gas is stored.
In the present invention, when excavating the tank body tunnel, a plurality of specific resistance measurement electrodes are installed on the excavated cross section, and the specific resistance on the excavated cross section is measured via the electrode, and the measured resistance is measured. Based on the specific resistance, it is possible to estimate the water saturation of the rock at the outer peripheral portion of the tank body tunnel.
According to the water saturation measurement method configured as described above, a plurality of electrodes for measuring specific resistance are installed on the excavation section of the tank body tunnel, and the water saturation on the excavation section is estimated. The accuracy of management of the degree of unsaturation in the vicinity is improved.
As the specific resistance measurement electrode, a quadrupole electrode including a pair of current electrodes and a pair of voltage electrodes can be used.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a basic configuration of measurement of a method for measuring water saturation in tunnel excavation according to the present invention.
[0012]
The measurement method shown in the figure is a measurement example applied to a normal tunnel 1. When measuring the water saturation of the rock mass on the outer peripheral side of the excavation section 2 during excavation of the tunnel 1, the measurement method shown in the figure is used. As described above, a plurality of specific resistance measurement electrodes 20 are provided along the circumferential direction of the excavation section 2.
[0013]
In the example shown in FIG. 1, a total of four sets of measurement electrodes 20 are installed on the same excavation section 2 at predetermined intervals, and the measurement electrodes 20 are connected to the terminal box 3 via lead wires. , And the terminal box 3 is connected to a specific resistance measuring device 4.
[0014]
As shown in FIG. 2, the specific resistance measuring electrode 20 of the present embodiment has a structure of a set of four poles, and a pair of current electrodes C 1 and C 2 installed at equal intervals. It has a pair of voltage electrodes P 1 and P 2 .
[0015]
Then, a pair of current electrodes C 1 and C 2 are arranged on both sides, and voltage electrodes P 1 and P 2 are arranged between the current electrodes C 1 and C 2 .
[0016]
In the arrangement direction blades of the current and voltage electrodes C 1 , C 2 , P 1 , and P 2 , in the case of the present embodiment, along the circumferential direction of the excavation section 2, the C 1 , C 2 , P 1 , and P 2 Although they are arranged in this order, they may be arranged in the order of C 1 , C 2 , P 1 , P 2 in the tunnel axis direction with the excavation section 2 as the center.
[0017]
If the specific resistance measurement electrode 20 is placed, by connecting sequentially the resistivity measuring device 4 between the electrodes 20, by energizing the current and voltage electrodes C 1, C 2, P 1 , between P 2, bedrock Is measured.
[0018]
In this measurement, as shown in FIG. 2, when a DC current I flows between the pair of current electrodes C 1 and C 2 , a voltage V appearing between the pair of voltage electrodes P 1 and P 2 is measured.
[0019]
When the voltage V and the current I are obtained, they are calculated by the specific resistance ρ = 2πaV / I. Here, a is an arrangement interval of the current and voltage electrodes C 1 , C 2 , P 1 , and P 2 .
[0020]
As shown in FIG. 3, the resistivity ρ of the bedrock depends on the moisture saturation of the bedrock, so if the resistivity ρ of the bedrock is known, the moisture saturation of the bedrock can be estimated from the value. .
[0021]
In this case, the specific resistance ρ of the bedrock is affected by the rocks and the like, and the electric resistance of the groundwater also varies depending on its components. It is desirable to prepare a calibration curve of specific resistance with respect to saturation.
[0022]
As described above, when the tunnel 1 is excavated while estimating the water saturation of the rock based on the specific resistance ρ of the rock, the amount of water saturation of the rock at the outer peripheral portion of the excavation section 2 becomes, for example, a large amount. Since the location of spring generation is known in advance, spring countermeasures can be formulated at an early stage.
[0023]
4 to 8 show one embodiment of a method of measuring the moisture saturation in tunnel excavation according to the present invention. In the embodiments shown in these figures, the present invention relates to the excavation of a tunnel for a storage tank in a bedrock. Is applied.
[0024]
The storage tank in the bedrock has a tank main body tunnel 10 and a water seal tunnel 12 as shown in FIG.
[0025]
The tank main body tunnel 10 stores liquefied petroleum gas such as LPG and LNG therein. The water seal tunnel 12 is smaller in diameter than the main body tunnel 12, has almost the same length as the tank main body tunnel 10, is located coaxially about several tens of meters above, and extends from the inside to the outside. It has a plurality of drilled holes 14. A plurality of the boring holes 14 are arranged at predetermined intervals along the tunnel axis direction of the water seal tunnel 12, and the tip side is inclined downward.
[0026]
Water is injected into the water seal tunnel 12 before the construction excavation of the tank body tunnel 10, and there is a head pressure difference between the water seal tunnel 12 and the tank body tunnel 10. The water flow 16 flows from the outside of the tunnel 10 toward the inside. By creating such a water flow 16, liquid tightness and air tightness during the construction of the tank body 10 and after the start of operation of the tank body 10 are secured.
[0028]
In the storage tank in the bedrock having such a configuration, a water seal tunnel 12 having a smaller sectional area than that of the tank main body tunnel 10 is usually constructed in advance. In the case of the present embodiment, as shown in FIG. 5, when the water sealing tunnel 12 is pre-constructed, along the tunnel axis of the water sealing tunnel 12 along the tunnel axis of the water sealing tunnel 12 as the excavation proceeds. A plurality of electrodes 20 for measuring the specific resistance having the same configuration as above are provided at predetermined intervals.
[0029]
In addition, the installation location of each electrode 20 may be installed so as to directly contact the ground immediately after excavation, or may be installed so as to come into contact with the surface after construction of the shotcrete.
[0030]
The side line 18 is set in a straight line along the tunnel axis of the water seal tunnel 12. For example, the side line 18 may be set in parallel with the left and right side surfaces of the water seal tunnel 12, or may be set in parallel. Can be set at one position on the bottom surface or the ceiling surface located on the same axis as the tunnel axis.
[0031]
Each of the electrodes 20 (the same applies to the electrodes 20a installed in the tank main body tunnel 10 to be described later) also has a four-pole, one-piece structure in the present embodiment, similarly to the above-described embodiment. Includes a pair of current electrodes C 1 and C 2 installed at equal intervals and a pair of voltage electrodes P 1 and P 2 .
[0032]
The relationship between the arrangement direction of the current and voltage electrodes C 1 , C 2 , P 1 , P 2 and the extension direction of the side line 18 may be such that the electrodes 20 may be arranged in the same direction as the side line 18, The arrangement direction of the electrodes 20 may be orthogonal.
[0033]
When the electrodes 20 are installed, the specific resistance measuring device 4 is connected between the electrodes 20 via the terminal box 3, and the specific resistance ρ of the rock is measured.
[0034]
As shown in FIG. 3, the resistivity ρ of the bedrock depends on the moisture saturation of the bedrock, so if the resistivity ρ of the bedrock is known, the moisture saturation of the bedrock can be estimated from the value. .
[0035]
In this way, when the excavation is performed while estimating the water saturation of the rock based on the resistivity ρ of the rock, it is possible to avoid the rock from becoming unsaturated when the water seal tunnel 12 is constructed. In addition, even when an unsaturated state is confirmed, it is possible to improve the accuracy of drill boring. If the accuracy of boring is improved, it is possible to accurately perform pre-out.
[0036]
The electrode 20 installed in the water seal tunnel 12 is installed as it is, and as shown in FIG. 6, after the completion of the water seal tunnel 12, water is injected into the water seal tunnel 12 to create a water flow 16. After the start of water sealing, the specific resistance ρ of the rock along the survey line 18 is measured. Then, based on the measured specific resistance ρ, the water saturation of the bedrock under the water seal tunnel 12 is estimated, and based on the water saturation, monitoring of the water seal state is continued.
[0037]
On the other hand, in the case of the present embodiment, water is injected into the water seal tunnel 12, and after the water seal is started, the water saturation of the bedrock excavating and forming the tank main body tunnel 10 is ensured. As shown in (1), excavation of the tank body tunnel 10 is performed.
[0038]
At this time, as the excavation of the tank main body tunnel 10 progresses, the electrode 20 installed in the water seal tunnel 12 and the electrode 20a substantially the same as those installed in the water seal tunnel 12 are installed, and the specific resistance ρ is measured. The water saturation of the rock mass is estimated based on the measured value.
[0039]
In this case, a plurality of electrodes 20a are provided at a predetermined interval along one cross section of the tank main body tunnel 10 on the excavation cross section. The installation location in this case is set on the side surface and the ceiling surface of the tank main body tunnel 10.
[0040]
As the excavation progresses, a plurality of electrodes 20a are similarly installed on the same excavation section at predetermined intervals in the tunnel axis direction, and the specific resistance ρ of the rock outside the side surface and the ceiling surface of the tank body tunnel 10 is increased. Is measured.
[0041]
Then, based on the measured specific resistance ρ, the water saturation of the bedrock outside the side surface and the ceiling surface of the tank body tunnel 10 is estimated, and if there is a non-saturated portion, a pre-grouting process is performed on the portion. .
[0042]
Even when such a tank body tunnel 10 is excavated, the measurement of the specific resistance ρ by the electrode 20 installed in the water seal tunnel 12 is continuously performed, and further, as shown in FIG. Even after the tunnel 10 is completed and the liquefied petroleum gas is accommodated therein and the service is started, the measurement of the specific resistance ρ by the electrodes 20 installed in the water ring tunnel 12 is continuously performed, The moisture saturation of the rock is estimated based on the measured specific resistance ρ.
[0043]
In the water saturation measurement method for tunnel excavation configured as described above, since the specific resistance measurement electrode 20 is installed along with the excavation of the water seal tunnel 12, the water saturation during the construction of the water seal tunnel 12 is set. Degree management becomes possible.
[0044]
Further, in the present embodiment, a plurality of electrodes 20a for measuring specific resistance are installed on the excavated cross section of the tank main body tunnel 10, and the water saturation on the excavated cross section is estimated. Of the tank main body tunnel 10 can be performed while controlling the water saturation with high accuracy.
[0045]
Further, in the present embodiment, the moisture saturation of the bedrock is estimated based on the specific resistance ρ measured via the electrode 20 installed in the water ring tunnel 12 even after the liquefied petroleum gas is stored in the tank body tunnel 10. The water seal state can be monitored even in the service state where the liquefied petroleum gas is stored in the tank body tunnel 10.
[0046]
In the above embodiment, the case where the electrode 20 is installed in both the water seal tunnel 12 and the tank main body tunnel 10 is illustrated. However, in the measurement method of the present invention, even if the electrode 20 is installed only on the water seal tunnel 12 side, Water seal condition can be monitored.
[0048]
【The invention's effect】
As described above in detail in the examples, according to the method for measuring the water saturation in tunnel excavation according to the present invention, during the construction of the tunnel, it is possible to accurately estimate the water saturation, and in the storage tank in the bedrock In addition, the state of the water seal can be easily monitored both during construction and during operation.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a method for measuring a water saturation in tunnel excavation according to the present invention.
FIG. 2 is an explanatory view of an arrangement state of electrodes when measuring a specific resistance of a rock in the present invention.
FIG. 3 is a graph showing a relationship between a specific resistance value and a water saturation.
FIG. 4 is an explanatory diagram showing an example of a storage tank in rock to which the method for measuring a water saturation according to the present invention is applied.
FIG. 5 is an explanatory view when a water sealing tunnel is constructed in the storage tank in the bedrock of FIG. 4;
FIG. 6 is an explanatory diagram when water sealing is started in the storage tank in the bedrock of FIG. 4;
FIG. 7 is an explanatory view when a tank main body tunnel is constructed after water sealing is started in the storage tank in the bedrock of FIG. 4;
8 is an explanatory view of the storage tank in the bedrock of FIG. 4 after the start of service.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Tank main body tunnel 12 Water sealing tunnel 14 Boring hole 16 Water flow 18 Measurement line 20 Electrode

Claims (3)

トンネルを掘削する際の、掘削断面外周の岩盤の水分飽和度を計測する方法において、
前記トンネルは、LPG , LNGなどの液化ガスを貯蔵するタンク本体トンネルの上部側に所定の間隔を隔てて設けられ、前記タンク本体トンネルの外側から内部に向けて流れる水流を創成する岩盤内貯槽用の水封トンネルであって、
前記水封トンネルを掘削する際に、掘削の進行に伴って、前記水封トンネルのトンネル軸方向に沿った測線上に複数の比抵抗測定用電極を順次設置し、
前記電極を介して前記測線上の比抵抗を測定し、測定された前記比抵抗に基づいて前記水封トンネルの下方部分の岩盤の水分飽和度を推定する方法であり、
前記岩盤の水分飽和度は、前記タンク本体トンネルの施工中を含み、前記タンク本体トンネルに液化ガスを貯蔵した後にも、前記水封トンネルに設置した前記電極を介して測定された前記比抵抗に基づいて推定することを特徴とするトンネル掘削における水分飽和度の計測方法。
In the method of measuring the moisture saturation of the rock around the excavation cross section when excavating a tunnel,
The tunnel is provided at a predetermined interval above a tank body tunnel for storing a liquefied gas such as LPG , LNG, etc., and is used for a rock storage tank for creating a water flow flowing from the outside to the inside of the tank body tunnel. Water seal tunnel,
When excavating the water seal tunnel, with the progress of the excavation, a plurality of specific resistance measurement electrodes are sequentially installed on a measurement line along the tunnel axis direction of the water seal tunnel,
A method of measuring the specific resistance on the measurement line through the electrode, and estimating the water saturation of the rock in the lower part of the water seal tunnel based on the measured specific resistance,
Moisture saturation of the rock mass, including during the construction of the tank body tunnel, even after storing the liquefied gas in the tank body tunnel, the specific resistance measured via the electrode installed in the water ring tunnel A method for measuring moisture saturation in tunnel excavation, characterized in that the estimation is based on the following .
前記タンク本体トンネルを掘削する際に、掘削断面上に複数の比抵抗測定用電極を設置し、When excavating the tank body tunnel, installing a plurality of specific resistance measurement electrodes on the excavation cross section,
前記電極を介して前記掘削断面上の比抵抗を測定し、測定された前記比抵抗に基づいて前記タンク本体トンネルの外周部分の岩盤の水分飽和度を推定することを特徴とする請求項1記載のトンネル掘削における水分飽和度の計測方法。  2. The method according to claim 1, further comprising: measuring a specific resistance on the excavated cross section through the electrode, and estimating a water saturation of rock in an outer peripheral portion of the tank body tunnel based on the measured specific resistance. Method for measuring water saturation in tunnel excavation in Japan.
前記比抵抗測定用電極は、一対の電流電極および一対の電圧電極を備えた4極式電極であることを特徴とする請求項1または2項記載のトンネル掘削における水分飽和度の計測方法。The method according to claim 1, wherein the specific resistance measurement electrode is a quadrupole electrode including a pair of current electrodes and a pair of voltage electrodes.
JP17816099A 1999-06-24 1999-06-24 Measurement method of water saturation in tunnel excavation Expired - Fee Related JP3552594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17816099A JP3552594B2 (en) 1999-06-24 1999-06-24 Measurement method of water saturation in tunnel excavation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17816099A JP3552594B2 (en) 1999-06-24 1999-06-24 Measurement method of water saturation in tunnel excavation

Publications (2)

Publication Number Publication Date
JP2001004576A JP2001004576A (en) 2001-01-12
JP3552594B2 true JP3552594B2 (en) 2004-08-11

Family

ID=16043687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17816099A Expired - Fee Related JP3552594B2 (en) 1999-06-24 1999-06-24 Measurement method of water saturation in tunnel excavation

Country Status (1)

Country Link
JP (1) JP3552594B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291556A (en) * 2005-04-11 2006-10-26 Shimizu Corp Saturation measurement method of in situ ground
JP2011022032A (en) * 2009-07-16 2011-02-03 Tohoku Univ Measuring method of concrete volume resistivity and device therefor
CN102778480A (en) * 2012-07-23 2012-11-14 中国神华能源股份有限公司 Electrically identifying method for aquosity of earth surface of mining-induced fissure zone of mining area under dry condition
JP6944092B2 (en) * 2016-08-25 2021-10-06 中日本高速道路株式会社 Corrosion environment measurement method for structures, corrosion environment measurement system, repair plan formulation method and inspection plan formulation method using corrosion environment measurement results
CN112763142B (en) * 2020-12-29 2021-10-22 河南大学 Underground water sealed cave depot construction roadway refined water storage test method

Also Published As

Publication number Publication date
JP2001004576A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
US12043906B2 (en) Assemblies and methods for monitoring cathodic protection of structures
KR101043746B1 (en) Ground monitoring unit and ground reinforcement device including the same
CN108844684A (en) A method of monitoring diaphram wall seam crossing leakage scenarios
JP3552594B2 (en) Measurement method of water saturation in tunnel excavation
RU2571104C1 (en) Cathodic protection for casing strings and oilfield pipelines against corrosion and device for method implementation
JP2008186748A (en) Grounding structure and grounding method for concrete structure in ground
RU2248019C2 (en) Method of measuring column diameter
CA2370034A1 (en) A method and apparatus for determining the resistivity of a formation through which a cased well passes
JP2009122010A (en) Method of exploration for groundwater in tunnel ahead ground
JP4196279B2 (en) Estimated amount of spring water and tunnel excavation method
JP4514946B2 (en) Repair method of impermeable layer
JP2002180276A (en) Electrode for monitoring corrosion prevention and method of monitoring corrosion prevention
JP2004037257A (en) Gas leak detector for intra-bedrock gas storage facility and gas leak detecting method
CN218882212U (en) Electrode tube device
CN219691510U (en) Drilling grouting and plugging structure of multipoint displacement meter under complex geological conditions
JPH09297115A (en) Method of probing ground, and ground probing electrode
JP4423628B2 (en) High pressure gas storage facility and leak detection method in high pressure gas storage facility
CN115726817B (en) Targeted water stopping method for mountain tunnel construction
CN108625374A (en) A kind of homogeneous earth dam and wear dam culvert pipe contact scour antiseepage grouting construction method and detection of grouting effects method
JP2948743B2 (en) Measuring method of water content in rock around the underground storage tank
JP2948742B2 (en) Leak prevention method for underground storage tanks
JPH0881792A (en) Electrolytic protective method for outside surface of existing iron tunnel and electrode device for electrolytic corrosion protection therefor
US6712139B1 (en) Method of well casing cathodic protection optimization using the drill stem data
JP2626456B2 (en) Rock permeability test equipment
JP2668188B2 (en) In-ground groundwater pressure measuring device and in-ground groundwater pressure measuring method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees