JP2001004576A - Measuring method for degree of saturation of moisture in excavation of tunnel, - Google Patents

Measuring method for degree of saturation of moisture in excavation of tunnel,

Info

Publication number
JP2001004576A
JP2001004576A JP11178160A JP17816099A JP2001004576A JP 2001004576 A JP2001004576 A JP 2001004576A JP 11178160 A JP11178160 A JP 11178160A JP 17816099 A JP17816099 A JP 17816099A JP 2001004576 A JP2001004576 A JP 2001004576A
Authority
JP
Japan
Prior art keywords
tunnel
specific resistance
water
saturation
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11178160A
Other languages
Japanese (ja)
Other versions
JP3552594B2 (en
Inventor
Kenichiro Suzuki
健一郎 鈴木
Kazuto Namiki
和人 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP17816099A priority Critical patent/JP3552594B2/en
Publication of JP2001004576A publication Critical patent/JP2001004576A/en
Application granted granted Critical
Publication of JP3552594B2 publication Critical patent/JP3552594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a method in which a water sealing state can be controlled simply both when a tunnel is constructed and when the tunnel is used. SOLUTION: In a control method for a water sealing state, when a water sealing tunnel 12 is constructed in advance, a plurality of electrodes 20 for sensitivity measurement are installed at prescribed intervals on a measuring line 18 which is assumed along the tunnel axial line of the water sealing tunnel 12 as its excavating operation advances. The measuring line 18 is set in a straight-line shape. A pair of measuring lines can be set on the left side and the right side of the water sealing tunnel 1 or one measuring line can be set on the bottom face of the water sealing tunnel 12. When the electrodes 20 are installed, the electrodes 20 are electrified, and the sensitivity ρof a bedrock is measured. The sensitivity ρof the bedrock has a value which dependes on the degree of saturation of moisture in the bedrock. When the sensitivity ρof the bedrock is found, the degree of saturation of the moisture in the bedrock can be estimated on the basis of its value. When the excavating operation is performed while the degree of saturation of the moisture in the bedrock is being estimated, it is possible to prevent the bedrock from becoming an unsaturated state when the water sealing tunnel 12 is constructed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、岩盤内貯槽用ト
ンネルなどのトンネル掘削における水分飽和度の計測方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring water saturation in excavating a tunnel such as a storage tank tunnel in rock.

【0002】[0002]

【従来の技術】LPGなどの液化石油ガスを貯蔵する設
備として、水封式の岩盤内貯槽が知られている。この種
の岩盤内貯槽は、液化石油ガスを貯蔵するタンク本体の
外方から内部に向けて流れる自然または人工の水流を創
成することにより水封方式として、貯蔵する石油ガスの
液密および気密を確保している。
2. Description of the Related Art As a facility for storing liquefied petroleum gas such as LPG, a water-sealed storage tank in rock is known. This type of storage tank in rock is used to create a natural or artificial water flow that flows from the outside to the inside of the tank body that stores liquefied petroleum gas. Is secured.

【0003】このような水封式の岩盤内貯槽では、施工
時においても一旦岩盤を水分の不飽和状態にすると、再
飽和させることが難しいので、飽和状態を維持しながら
施工する必要がある。
In such a water-sealed rock storage tank, it is difficult to re-saturate the rock once the rock has been brought into an unsaturated state even at the time of construction. Therefore, it is necessary to carry out the construction while maintaining the saturated state.

【0004】ところが、従来は、岩盤の水分飽和度を直
接計測することができないので、例えば、岩盤内貯槽を
構築する現場地層において高透水帯が存在し、湧水が多
く、地下水低下が著しい個所では、地下水位が限界地下
水位を下回り、水分の不飽和状態になる可能性が非常に
高いので、このような個所をさぐりボーリングにより検
出することで、不飽和になるのを防いでいた。
However, conventionally, it is not possible to directly measure the water saturation of the bedrock. For example, in a site where a storage tank in the bedrock is constructed, there is a high permeability zone, where there is a lot of spring water and the groundwater drop is remarkable. Since the possibility that the groundwater level falls below the critical groundwater level and the water becomes unsaturated is very high, by detecting such locations by boring, they were prevented from becoming unsaturated.

【0005】つまり、高透水帯があると、施工時におい
ても岩盤が不飽和状態になるので、水封トンネルやタン
ク本体トンネルの施工時に、さぐりボーリングを行い、
湧水状態を確認し、高透水帯が存在すると、水分の不飽
和状態になるものと推定して、グラウト処理などにより
対処していた。
[0005] In other words, if there is a high permeability zone, the bedrock will be in an unsaturated state even at the time of construction.
The state of spring water was confirmed, and if a high permeability zone was present, it was presumed that the water would be in an unsaturated state, and measures were taken by grouting or the like.

【0006】しかしながら、このような従来の水分飽和
度の推定方法には、以下に説明する技術的な課題があっ
た。
However, such a conventional method of estimating the water saturation has the following technical problems.

【0007】[0007]

【発明が解決しようとする課題】すなわち、トンネルの
施工時にさぐりボーリングにより高透水帯を見つけ出す
ことは、かなり難しい上に、従来の水分飽和度の計測方
法では、タンク本体トンネル内に石油ガスなどを収納し
て、供用を開始した後に、水封状態を監視することがで
きなかった。
That is, it is quite difficult to find a high water permeability zone by drilling when drilling a tunnel. In addition, in the conventional method of measuring the water saturation, oil gas or the like is introduced into the tank body tunnel. After storing and starting operation, the state of the water seal could not be monitored.

【0008】ところで、このようなトンネル掘削時にお
ける水分飽和度の計測は、通常の山岳トンネルの掘削時
に実施すると、多量の湧水発生個所を事前に知ることが
できるなどのメリットがあるが、前述した従来の水分飽
和度の推定方法では、水分飽和度よりも、岩盤の含水状
態の推定が主たる目的になっていて、正確に水分飽和度
を推定することが難しかった。
[0008] By the way, when such a measurement of the water saturation at the time of excavating a tunnel is carried out at the time of excavating a normal mountain tunnel, there is an advantage that a place where a large amount of spring water is generated can be known in advance. In the conventional method for estimating the water saturation, the main purpose is to estimate the water-containing state of the bedrock rather than the water saturation, and it has been difficult to accurately estimate the water saturation.

【0009】本発明は、このような従来の問題点に鑑み
てなされたものであって、その目的とするところは、ト
ンネル施工時に、経時的に計測することで、正確に水分
飽和度を相対的に推定すること、および、岩盤内貯槽に
おいて、施工時および供用時の双方において水封状態を
簡便に監視することができる水分飽和度の計測方法を提
供することにある。
The present invention has been made in view of such conventional problems, and an object of the present invention is to accurately measure the water saturation by measuring the time over time when constructing a tunnel. Another object of the present invention is to provide a method for measuring the degree of water saturation, in which the state of the water seal can be easily monitored both during construction and operation in a storage tank in a bedrock.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、トンネルを掘削する際の、掘削断面外周
の岩盤の水分飽和度を計測する方法において、前記トン
ネル掘削断面に比抵抗測定用電極を設置し、前記電極を
介して当該電極設置部位の比抵抗を測定し、測定された
前記比抵抗に基づいて前記トンネルの外周部分の岩盤の
水分飽和度を推定するようにした。このように構成した
トンネル掘削における水分飽和度の計測方法によれば、
岩盤の比抵抗を測定して、この比抵抗に基づいて、トン
ネルの外周部分の岩盤の水分飽和度を推定する。この場
合、岩盤の比抵抗は、水分の飽和度に依存しており、飽
和度が大きくなると比抵抗値が低下するので、例えば、
予めトンネルを構築する個所の岩盤を採取して、水分の
飽和度に対する比抵抗の校正曲線を作成しておくと、岩
盤の比抵抗を実際に測定して、校正曲線に照合すること
により、測定現場で、比抵抗測定個所の水分飽和度の状
態が簡単に判る。前記比抵抗計測用電極は、前記掘削断
面の周方向に沿って複数設置することができる。この構
成を採用すると、トンネル掘削断面の外周部の水分飽和
度を高精度に推定することができ、特に、例えば、4極
式電極方式の場合に、各段極間の間隔を15cm程度に
設定し、電極間の設置間隔を小さくすると、より一層推
定精度が高くなる。前記トンネルは、LPG,LNGな
どの液化ガスを貯蔵するタンク本体トンネルの上部側に
設けられ、前記タンク本体トンネルの外側から内部に向
けて流れる水流を創成する岩盤内貯槽用の水封トンネル
であって、前記水封トンネルを掘削する際に、掘削の進
行に伴って、前記水封トンネルのトンネル軸方向に沿っ
た測線上に複数の比抵抗測定用電極を順次設置し、前記
電極を介して前記測線上の比抵抗を測定し、測定された
前記比抵抗に基づいて前記水封トンネルの下方部分の岩
盤の水分飽和度を推定することができる。このように構
成した水分飽和度の計測方法によれば、岩盤の水分飽和
度を推定するための比抵抗測定用電極を水封トンネルの
掘削に伴って設置することで、水封トンネルを施工する
時の水分飽和度の管理が可能になり、施工時に岩盤が不
飽和状態になることを避けられる。前記岩盤の水分飽和
度は、前記タンク本体トンネルに液化石油ガスを貯蔵し
た後にも、前記水封トンネルまたは前記本体トンネルに
設置した前記電極を介して測定された前記比抵抗に基づ
いて推定することができる。この構成によれば、タンク
本体トンネル内に液化石油ガスを貯蔵した供用状態にお
いても水封状態を監視することができる。なお、通常の
比抵抗の測定では、計測深度が深くなると、測線を長く
確保しなければならないが、本発明では、タンク本体ト
ンネルの上方数十メートル程度の位置に設置される水封
トンネル内に電極を設置して、タンク本体トンネルの岩
盤飽和度を推定するので、地表に設置した電極からタン
ク本体トンネルの岩盤の飽和度を推定する場合のよう
に、長い測線は、必要とせず、水封トンネルの長さだけ
で十分高精度の推定が可能なる。また、本発明では、前
記タンク本体トンネルを掘削する際に、掘削断面上に複
数の比抵抗測定用電極を設置し、前記電極を介して前記
掘削断面上の比抵抗を測定し、測定された前記比抵抗に
基づいて前記タンク本体トンネルの外周部分の岩盤の水
分飽和度を推定することができる。このように構成した
水分飽和度の計測方法によれば、タンク本体トンネルの
掘削断面上に複数の比抵抗測定用電極を設置して、掘削
断面上の水分飽和度を推定するので、タンク本体トンネ
ル近傍の不飽和度の管理精度が向上する。前記比抵抗測
定用電極は、一対の電流電極および一対の電圧電極を備
えた4極式電極を用いることができる。
In order to achieve the above object, the present invention provides a method for measuring the water saturation of rock around the excavation section when excavating a tunnel. An electrode for measurement was installed, the specific resistance of the electrode installation site was measured via the electrode, and the water saturation of rock in the outer peripheral portion of the tunnel was estimated based on the measured specific resistance. According to the method for measuring moisture saturation in tunnel excavation configured as described above,
The specific resistance of the rock is measured, and the water saturation of the rock at the outer peripheral portion of the tunnel is estimated based on the specific resistance. In this case, the specific resistance of the bedrock depends on the saturation of water, and as the saturation increases, the specific resistance decreases.
If the rock mass at the place where the tunnel is to be constructed is collected in advance and a calibration curve of the specific resistance to water saturation is created, the specific resistance of the rock mass is actually measured and measured by comparing it with the calibration curve. At the site, the state of the water saturation at the specific resistance measuring point can be easily understood. A plurality of the specific resistance measurement electrodes may be provided along a circumferential direction of the excavation section. When this configuration is adopted, the water saturation of the outer peripheral portion of the tunnel excavation cross section can be estimated with high accuracy. In particular, for example, in the case of a quadrupole electrode system, the interval between each step pole is set to about 15 cm. However, when the installation interval between the electrodes is reduced, the estimation accuracy is further increased. The tunnel is a water-sealed tunnel for a storage tank in a rock, which is provided on an upper side of a tank body tunnel for storing liquefied gas such as LPG and LNG, and creates a water flow flowing from the outside of the tank body tunnel to the inside. When excavating the water seal tunnel, as the excavation proceeds, a plurality of specific resistance measurement electrodes are sequentially installed on a measurement line along the tunnel axis direction of the water seal tunnel, and The specific resistance on the measurement line may be measured, and the water saturation of the rock in the lower part of the water seal tunnel may be estimated based on the measured specific resistance. According to the water saturation measurement method configured in this manner, the water seal tunnel is constructed by installing a specific resistance measurement electrode for estimating the water saturation of the rock with the excavation of the water seal tunnel. It is possible to control the degree of moisture saturation at the time, and to avoid rocks becoming unsaturated during construction. The moisture saturation of the rock mass is estimated based on the specific resistance measured via the electrodes installed in the water ring tunnel or the main body tunnel even after liquefied petroleum gas is stored in the tank main body tunnel. Can be. According to this configuration, the water seal state can be monitored even in the service state where the liquefied petroleum gas is stored in the tank body tunnel. In the normal measurement of the specific resistance, when the measurement depth becomes deep, it is necessary to secure a long measurement line.However, in the present invention, in the water seal tunnel installed at a position of about several tens of meters above the tank body tunnel. Since the electrodes are installed and the rock saturation of the tank body tunnel is estimated, a long survey line is not required as in the case of estimating the rock body saturation of the tank body tunnel from the electrodes installed on the ground surface. Sufficiently accurate estimation is possible only by the length of the tunnel. In the present invention, when excavating the tank body tunnel, a plurality of specific resistance measurement electrodes are installed on the excavated cross section, and the specific resistance on the excavated cross section is measured via the electrode, and the measured resistance is measured. Based on the specific resistance, it is possible to estimate the water saturation of the rock at the outer peripheral portion of the tank body tunnel. According to the moisture saturation measuring method configured as described above, a plurality of electrodes for measuring specific resistance are installed on the excavated cross section of the tank main body tunnel, and the moisture saturation on the excavated cross section is estimated. The accuracy of management of the degree of unsaturation in the vicinity is improved. As the specific resistance measuring electrode, a quadrupole electrode including a pair of current electrodes and a pair of voltage electrodes can be used.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適な実施の形態
について、添付図面に基づいて詳細に説明する。図1
は、本発明にかかるトンネル掘削における水分飽和度の
計測方法の一実施例を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG.
1 shows an embodiment of a method for measuring water saturation in tunnel excavation according to the present invention.

【0012】同図に示した計測方法は、本発明を通常の
トンネル1に適用した場合を例示している。トンネル1
の掘削時に、掘削断面2の外周側の岩盤の水分飽和度を
計測する際には、同図に示すように、掘削断面2の周方
向に沿って、複数の比抵抗測定用電極20が設置され
る。
The measuring method shown in FIG. 1 exemplifies a case where the present invention is applied to a normal tunnel 1. Tunnel 1
At the time of excavation, when measuring the moisture saturation of the rock mass on the outer peripheral side of the excavation section 2, a plurality of specific resistance measuring electrodes 20 are installed along the circumferential direction of the excavation section 2 as shown in FIG. Is done.

【0013】図1に示した例では、合計4組の測定用電
極20が、同一掘削断面2上に所定の間隔を隔てて、設
置されていて、測定用電極20は、リード線を介して端
子ボックス3に接続され、端子ボックス3は、比抵抗測
定装置4に接続されている。
In the example shown in FIG. 1, a total of four sets of measuring electrodes 20 are installed on the same excavation section 2 at predetermined intervals, and the measuring electrodes 20 are connected via lead wires. The terminal box 3 is connected to a terminal box 3, and the terminal box 3 is connected to a specific resistance measuring device 4.

【0014】本実施例の比抵抗測定用電極20は、図2
に示すように、4極1組の構造のものが用いられ、等間隔
を隔てて設置される一対の電流電極C1,C2と、一対の
電圧電極P1,P2とを備えている。
The electrode 20 for measuring the specific resistance of this embodiment is shown in FIG.
As shown in FIG. 1, a structure having a pair of four poles is used and includes a pair of current electrodes C 1 and C 2 installed at equal intervals and a pair of voltage electrodes P 1 and P 2 . .

【0015】そして、一対の電流電極C1,C2が両側に
配置され、この電流電極C1,C2間に電圧電極P1,P2
配置される。
A pair of current electrodes C 1 and C 2 are arranged on both sides, and voltage electrodes P 1 and P 2 are arranged between the current electrodes C 1 and C 2 .

【0016】電流および電圧電極C1,C2,P1,P2の配
列方向刃、本実施例の場合には、掘削断面2の周方向に
沿って、C1,C2,P1,P2の順に配置しているが、掘削
断面2を中心にして、トンネル軸方向にC1,C2,P1,P
2の順に配置してもよい。
The blades in the direction of arrangement of the current and voltage electrodes C 1 , C 2 , P 1 , P 2. In this embodiment, C 1 , C 2 , P 1 , P 1 , It is arranged in the order of P 2 , but C 1 , C 2 , P 1 , P
They may be arranged in the order of 2 .

【0017】比抵抗測定用電極20が設置されると、こ
の電極20間に順次比抵抗測定装置4を接続して、電流
および電圧電極C1,C2,P1,P2間に通電して、岩盤の
比抵抗ρが測定される。
When the specific resistance measuring electrode 20 is installed, the specific resistance measuring device 4 is sequentially connected between the electrodes 20 to supply a current between the current and voltage electrodes C 1 , C 2 , P 1 and P 2. Then, the resistivity ρ of the rock is measured.

【0018】この測定は、図2に示すように、一対の電
流電極C1,C2間に直流電流Iを流したときに、一対の
電圧電極P1,P2間に現れる電圧Vを測定する。
In this measurement, as shown in FIG. 2, when a DC current I is passed between the pair of current electrodes C 1 and C 2 , the voltage V appearing between the pair of voltage electrodes P 1 and P 2 is measured. I do.

【0019】電圧Vと電流Iとが求められると、比抵抗
ρ=2πaV/Iにより、演算される。なお、ここでa
は、電流および電圧電極C1,C2,P1,P2の配置間隔で
ある。
When the voltage V and the current I are obtained, they are calculated according to the specific resistance ρ = 2πaV / I. Here, a
Is the arrangement interval of the current and voltage electrodes C 1 , C 2 , P 1 , P 2 .

【0020】岩盤の比抵抗ρは、図3に示すように、岩
盤の水分飽和度に依存した値になるので、岩盤の比抵抗
ρがわかると、その値から岩盤の水分飽和度を推定する
ことができる。
As shown in FIG. 3, the specific resistance ρ of the bedrock depends on the moisture saturation of the bedrock. Therefore, when the resistivity ρ of the bedrock is known, the moisture saturation of the bedrock is estimated from the value. be able to.

【0021】この場合、岩盤の比抵抗ρは、構成される
岩石などにより影響を受け、また、地下水の電気抵抗も
その成分によって異なるので、予め、トンネル1を構築
する個所の岩盤を採取して、水分の飽和度に対する比抵
抗の校正曲線を作成しておくことが望ましい。
In this case, the specific resistance ρ of the rock is affected by the rocks and the like, and the electric resistance of the groundwater is also different depending on its component. Therefore, the rock at the place where the tunnel 1 is constructed is sampled in advance. It is desirable to prepare a calibration curve of the specific resistance with respect to the saturation of water.

【0022】以上のようにして、岩盤の比抵抗ρに基づ
いて、岩盤の水分飽和度を推定しながらトンネル1の掘
削を行うと、掘削断面2の外周部分の岩盤の水分飽和度
から、例えば、多量の湧水発生個所が事前にわかるの
で、湧水対策を早期に策定することができる。
As described above, when the tunnel 1 is excavated while estimating the water saturation of the rock based on the specific resistance ρ of the rock, the water saturation of the rock at the outer peripheral portion of the excavation section 2 is calculated based on, for example, Since the locations where a large amount of spring water occurs can be known in advance, spring water measures can be formulated at an early stage.

【0023】図4から図8は、本発明にかかるトンネル
掘削における水分飽和度の計測方法の他の実施例を示し
ており、これらの図に示した実施例は、本発明を岩盤内
貯槽用のトンネルの掘削に適用した場合を例示してい
る。
FIGS. 4 to 8 show another embodiment of the method of measuring the water saturation in tunnel excavation according to the present invention. In the embodiments shown in these figures, the present invention is applied to a storage tank in a bedrock. The case where the present invention is applied to the excavation of a tunnel is illustrated.

【0024】岩盤内貯槽は、図4にその構造例を示すよ
うに、タンク本体トンネル10と、水封トンネル12と
を有している。
The storage tank in the bedrock has a tank main body tunnel 10 and a water ring tunnel 12 as shown in FIG.

【0025】タンク本体トンネル10は、その内部にL
PG,LNGなどの液化石油ガスを貯蔵する。水封トン
ネル12は、本体トンネル12よりも直径が小さく、タ
ンク本体トンネル10とほぼ同じ長さを有し、その上方
約数十メートルの同軸上に位置していて、内部から外方
に向けて穿設された複数のボーリング孔14を有してい
る。各ボーリング孔14は、水封トンネル12のトンネ
ル軸方向に沿って所定の間隔を隔てて複数配置され、先
端側が下方に向かって傾斜している。
The tank body tunnel 10 has an L inside.
Stores liquefied petroleum gas such as PG and LNG. The water seal tunnel 12 is smaller in diameter than the main body tunnel 12, has substantially the same length as the tank main body tunnel 10, is located coaxially about several tens of meters above the main body tunnel 12, and extends from the inside to the outside. It has a plurality of drilled holes 14. A plurality of the boring holes 14 are arranged at predetermined intervals along the tunnel axis direction of the water seal tunnel 12, and the tip side is inclined downward.

【0026】この水封トンネル12には、タンク本体ト
ンネル10の施工掘削前から内部に注水が行われ、タン
ク本体トンネル10との間に水頭圧差があるので、水封
トンネル12から流出した水は、タンク本体トンネル1
0の外側から内部に向けて流れる水流16となり、この
ような水流16を創成することにより、タンク本体10
の施工中および供用開始後の液密および気密が確保され
ている。
Water is injected into the water seal tunnel 12 before the tank body tunnel 10 is excavated, and there is a water head pressure difference between the water seal tunnel 12 and the tank body tunnel 10. , Tank body tunnel 1
The water flow 16 flows from the outside to the inside of the tank body 10.
Liquid tightness and air tightness during construction and after the start of operation are ensured.

【0027】なお、自然状態において地下水の恒常的な
供給が十分あって、タンク本体トンネル10の外側から
内部に向けて流れる水流16が確保されるのであれば、
水封トンネル12は、必ずしも必要としない。
It should be noted that if there is a sufficient supply of groundwater in the natural state, and a water flow 16 flowing from the outside to the inside of the tank body tunnel 10 is ensured,
The water ring tunnel 12 is not always necessary.

【0028】このような構成の岩盤内貯槽は、通常、タ
ンク本体トンネル10よりも断面積の小さい水封トンネ
ル12が先行して施工される。本実施例の水封状態の管
理方法では、図5に示すように、水封トンネル12を先
行施工する際に、その掘削の進行に伴って、水封トンネ
ル12のトンネル軸線に沿って想定された測線18上に
上記実施例と同じ構成の比抵抗測定用電極20が所定の
間隔を置いて複数設置される。
In the storage tank in the bedrock having such a configuration, a water seal tunnel 12 having a smaller sectional area than that of the tank main body tunnel 10 is usually constructed in advance. In the method of managing the water-sealed state of the present embodiment, as shown in FIG. 5, when the water-sealed tunnel 12 is pre-constructed, it is assumed along the tunnel axis of the water-sealed tunnel 12 as the excavation progresses. A plurality of electrodes 20 for measuring the specific resistance having the same configuration as in the above embodiment are provided on the measurement line 18 at predetermined intervals.

【0029】なお、各電極20の設置個所は、掘削直後
の地山に直接接触するように設置してもよいし、吹付け
コンクリート施工後にその表面に接触するように設置し
てもよい。
The place where each electrode 20 is installed may be installed so as to directly contact the ground immediately after excavation, or may be installed so as to come into contact with the surface after construction of the shotcrete.

【0030】側線18は、水封トンネル12のトンネル
軸線に沿って、一直線状に設定されるものであって、例
えば、水封トンネル12の左右の側面に一対平行に設定
したり、あるいは、水封トンネル12のトンネル軸と同
軸上に位置する底面ないしは天井面に1箇所設定するこ
とができる。
The side lines 18 are set in a straight line along the tunnel axis of the water seal tunnel 12. For example, the side lines 18 may be set in parallel on the left and right side surfaces of the water seal tunnel 12, or may be set in parallel. One point can be set on the bottom surface or the ceiling surface located coaxially with the tunnel axis of the sealed tunnel 12.

【0031】各電極20(後述するタンク本体トンネル
10内に設置する電極20aも同じ)は、本実施例の場
合にも、上記実施例と同様に、4極1組の構造のものが用
いられ、電極20は、等間隔を隔てて設置される一対の
電流電極C1,C2と、一対の電圧電極P1,P2とを備えて
いる。
Each of the electrodes 20 (the same applies to the electrodes 20a installed in the tank body tunnel 10 to be described later) also has a structure of one set of four poles in the present embodiment, similarly to the above embodiment. The electrode 20 includes a pair of current electrodes C 1 and C 2 installed at equal intervals and a pair of voltage electrodes P 1 and P 2 .

【0032】電流および電圧電極C1,C2,P1,P2の配
列方向と側線18の延長方向との間の関係は、側線18
と同じ方向に電極20を配列してもよいし、測線18と
電極20の配列方向とが直交するようにしてもよい。
The relationship between the arrangement direction of the current and voltage electrodes C 1 , C 2 , P 1 , P 2 and the extension direction of the side line 18 is as follows.
The electrodes 20 may be arranged in the same direction as above, or the measurement line 18 and the arrangement direction of the electrodes 20 may be orthogonal to each other.

【0033】電極20が設置されると、この電極20間
に、端子ボックス3を介して比抵抗測定装置4を接続し
て、岩盤の比抵抗ρが測定される。
When the electrodes 20 are installed, the specific resistance measuring device 4 is connected between the electrodes 20 via the terminal box 3, and the specific resistance ρ of the rock is measured.

【0034】岩盤の比抵抗ρは、図3に示すように、岩
盤の水分飽和度に依存した値になるので、岩盤の比抵抗
ρがわかると、その値から岩盤の水分飽和度を推定する
ことができる。
As shown in FIG. 3, since the specific resistance ρ of the bedrock depends on the moisture saturation of the bedrock, when the resistivity ρ of the bedrock is known, the moisture saturation of the bedrock is estimated from the value. be able to.

【0035】このようにして、岩盤の比抵抗ρに基づい
て、岩盤の水分飽和度を推定しながら掘削を行うと、水
封トンネル12を施工する際に、岩盤が不飽和状態にな
ることを避けることができ、また、不飽和状態が確認さ
れた場合にも、さぐりボーリングの精度を向上させるこ
とができ、ボーリングの精度が向上すると、プレグラウ
トも正確に実施することが可能になる。
As described above, when the excavation is performed while estimating the water saturation of the rock based on the resistivity ρ of the rock, the rock becomes unsaturated when the water seal tunnel 12 is constructed. It can be avoided, and even when an unsaturated state is confirmed, it is possible to improve the accuracy of drill boring, and if the accuracy of boring is improved, it becomes possible to accurately perform pre-out.

【0036】水封トンネル12内に設置した電極20
は、そのまま設置されていて、図6に示すように、水封
トンネル12の完成後に、水封トンネル12内に水を注
入して、水流16を創成して水封を開始を介した後に
も、測線18に沿った岩盤の比抵抗ρを測定する。そし
て、測定された比抵抗ρに基づいて、水封トンネル12
の下方部分の岩盤の水分飽和度を推定し、この水分飽和
度に基づいて、水封状態の監視が継続される。
Electrode 20 installed in water seal tunnel 12
Is installed as it is, as shown in FIG. 6, after completion of the water seal tunnel 12, water is injected into the water seal tunnel 12, and the water flow 16 is created and the water seal is started. , The resistivity ρ of the rock along the survey line 18 is measured. Then, based on the measured specific resistance ρ, the water seal tunnel 12
Estimate the water saturation of the rock below the, and based on this water saturation, the monitoring of the water seal state is continued.

【0037】一方、本実施例の場合には、水封トンネル
12内に水を注入して、水封を開始した後に、タンク本
体トンネル10を掘削形成する岩盤の水分飽和度を確保
した状態で、図7に示すように、タンク本体トンネル1
0の掘削施工が行われる。
On the other hand, in the case of the present embodiment, water is injected into the water seal tunnel 12, and after the water seal is started, the tank body tunnel 10 is excavated and formed in a state where the water saturation of the rock is secured. As shown in FIG.
Zero excavation work is performed.

【0038】このとき、このタンク本体トンネル10の
掘削の進行に伴って、トンネル10内に、水封トンネル
12内に設置した電極20と、実質的に同じ電極20a
が設置され、比抵抗ρを測定して、その測定値に基づい
て、岩盤の水分飽和度が推定される。
At this time, as the excavation of the tank main body tunnel 10 progresses, the same electrode 20 a as the electrode 20 installed in the water seal tunnel 12 is provided in the tunnel 10.
Is installed, and the specific resistance ρ is measured, and the water saturation of the bedrock is estimated based on the measured value.

【0039】この場合の電極20aは、タンク本体トン
ネル10の1掘削断面上において、その断面外周に沿っ
て、所定の間隔を隔てて複数設置される。この場合の設
置個所は、タンク本体トンネル10の側面と天井面とに
設定される。
In this case, a plurality of electrodes 20a are provided at a predetermined interval along the outer circumference of one excavation section of the tank body tunnel 10. The installation location in this case is set on the side surface and the ceiling surface of the tank main body tunnel 10.

【0040】また、掘削が進行すると、トンネル軸方向
に所定の間隔をあけて、同じ掘削断面上に複数の電極2
0aが同様に設置され、タンク本体トンネル10の側面
および天井面の外側の岩盤の比抵抗ρを測定する。
As the excavation proceeds, a plurality of electrodes 2 are placed on the same excavation section at predetermined intervals in the tunnel axis direction.
0a is similarly installed, and the specific resistance ρ of the bedrock outside the side surface and the ceiling surface of the tank body tunnel 10 is measured.

【0041】そして、測定された比抵抗ρに基づいて、
タンク本体トンネル10の側面および天井面の外側の岩
盤の水分飽和度を推定し、飽和していない個所があれ
ば、その個所にプレグラウト処理などを行う。
Then, based on the measured specific resistance ρ,
The water saturation of the bedrock outside the side surface and the ceiling surface of the tank body tunnel 10 is estimated, and if there is a non-saturated portion, a pre-grouting process is performed on the portion.

【0042】このようなタンク本体トンネル10の掘削
時にも、水封トンネル12内に設置されている電極20
による比抵抗ρの測定は、継続して行われ、そしてさら
に、図8に示すように、タンク本体トンネル10が完成
して、その内部に液化石油ガスを収容して供用を開始し
た後にも、水封トンネル12内に設置されている電極2
0、およびまたは、タンク本体トンネル10内に設置さ
れている電極20aによる比抵抗ρの測定は、継続して
行われ、測定された比抵抗ρに基づいて岩盤の水分飽和
度が推定される。
Even when such a tank body tunnel 10 is excavated, the electrode 20 installed in the water seal tunnel 12 is excavated.
The measurement of the specific resistance ρ is continuously performed, and further, as shown in FIG. 8, even after the tank body tunnel 10 is completed and the liquefied petroleum gas is accommodated therein and the service is started, Electrode 2 installed in water seal tunnel 12
0 and / or the measurement of the specific resistance ρ by the electrode 20a installed in the tank main body tunnel 10 is continuously performed, and the water saturation of the rock is estimated based on the measured specific resistance ρ.

【0043】さて、以上のように構成されたトンネル掘
削における水分飽和度の計測方法では、比抵抗測定用電
極20を水封トンネル12の掘削に伴って設置するの
で、水封トンネル12の施工時の水分飽和度の管理が可
能になる。
In the water saturation measurement method for tunnel excavation configured as described above, the specific resistance measurement electrode 20 is installed along with the excavation of the water seal tunnel 12, so that the Of water saturation can be controlled.

【0044】また、本実施例では、タンク本体トンネル
10の掘削断面上に複数の比抵抗測定用電極20aを設
置して、掘削断面上の水分飽和度を推定するので、タン
ク本体トンネル10近傍の不飽和度の管理精度が向上
し、水分飽和度を高精度に管理しながらタンク本体トン
ネル10の施工を行うことができる。
In this embodiment, a plurality of electrodes 20a for measuring specific resistance are installed on the cross section of the excavation section of the tank body 10 to estimate the water saturation on the excavation section. The management accuracy of the degree of unsaturation is improved, and the construction of the tank main body tunnel 10 can be performed while controlling the degree of water saturation with high accuracy.

【0045】さらに、本実施例では、岩盤の水分飽和度
は、タンク本体トンネル10に液化石油ガスを貯蔵した
後にも、水封トンネル12に設置した電極20、および
または、タンク本体トンネル10内に設置されている電
極20aを介して測定された比抵抗ρに基づいて推定す
ることができ、タンク本体トンネル10内に液化石油ガ
スを貯蔵した供用状態においても水封状態を監視するこ
とができる。
Further, in the present embodiment, the water saturation of the bedrock can be measured even after the liquefied petroleum gas is stored in the tank main body tunnel 10, even after the electrode 20 installed in the water seal tunnel 12 and / or inside the tank main body tunnel 10. It can be estimated based on the specific resistance ρ measured via the installed electrode 20a, and the water seal state can be monitored even in the service state where the liquefied petroleum gas is stored in the tank main body tunnel 10.

【0046】なお、上記実施例では、電極20を水封ト
ンネル12およびタンク本体トンネル10の双方に設置
する場合を例示したが、本発明の計測方法では、水封ト
ンネル12側にだけに設置しても、水封状態を監視する
ことができる。
In the above embodiment, the case where the electrode 20 is installed in both the water seal tunnel 12 and the tank main body tunnel 10 is exemplified. However, in the measuring method of the present invention, the electrode 20 is installed only on the water seal tunnel 12 side. However, the state of the water seal can be monitored.

【0047】また、例えば、自然状態において地下水の
恒常的な供給が十分あって、タンク本体トンネル10の
外側から内部に向けて流れる水流16が確保されるので
あれば、水封トンネル12は、必ずしも必要としないの
で、このような条件下では、タンク本体トンネル10側
だけに電極20aを設置して、水封状態を管理すること
もできる。
For example, if there is a sufficient supply of groundwater in a natural state and a water flow 16 flowing from the outside to the inside of the tank main body tunnel 10 is ensured, the water seal tunnel 12 is not necessarily provided. Since it is not necessary, the electrode 20a can be installed only on the tank main body tunnel 10 side under such conditions to control the water sealing state.

【0048】[0048]

【発明の効果】以上、実施例で詳細に説明したように、
本発明にかかるトンネル掘削における水分飽和度の計測
方法によれば、トンネル施工時に、正確に水分飽和度を
推定することができると共に、岩盤内貯槽において、施
工時および供用時の双方において水封状態を簡便に監視
することができる。
As described above in detail in the embodiments,
According to the method for measuring the water saturation in tunnel excavation according to the present invention, the water saturation can be accurately estimated at the time of tunnel construction, and in the storage tank in the bedrock, the water sealing state at both the time of construction and operation. Can be easily monitored.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかるトンネル掘削における水分飽和
度の計測方法の実施状態の説明図である。
FIG. 1 is an explanatory diagram of an embodiment of a method of measuring a water saturation in tunnel excavation according to the present invention.

【図2】本発明において、岩盤の比抵抗を測定する際の
電極の配置状態説明図である。
FIG. 2 is an explanatory diagram of an arrangement state of electrodes when measuring the specific resistance of rock in the present invention.

【図3】比抵抗値と水分飽和度との関係を示すグラフで
ある。
FIG. 3 is a graph showing a relationship between a specific resistance value and a water saturation.

【図4】本発明にかかる水分飽和度の計測方法を適用す
る岩盤内貯槽の一例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of a storage tank in rock to which the method for measuring a water saturation according to the present invention is applied.

【図5】図4の岩盤内貯槽で水封トンネルを施工する際
の説明図である。
FIG. 5 is an explanatory view when a water seal tunnel is constructed in the storage tank in the bedrock of FIG. 4;

【図6】図4の岩盤内貯槽において水封を開始する際の
説明図である。
6 is an explanatory diagram when water sealing is started in the storage tank in the bedrock of FIG. 4;

【図7】図4の岩盤内貯槽において水封を開始後、タン
ク本体トンネルを施工する際の説明図である。
FIG. 7 is an explanatory diagram when a tank main body tunnel is constructed after water sealing is started in the storage tank in the bedrock of FIG. 4;

【図8】図4の岩盤内貯槽において供用開始後の説明図
である。
FIG. 8 is an explanatory view of the storage tank in the bedrock of FIG. 4 after the start of operation.

【符号の説明】[Explanation of symbols]

10 タンク本体トンネル 12 水封トンネル 14 ボーリング孔 16 水流 18 測線 20 電極 DESCRIPTION OF SYMBOLS 10 Tank main body tunnel 12 Water sealing tunnel 14 Boring hole 16 Water flow 18 Measurement line 20 Electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G060 AC01 AD02 AE40 AF20 AG04 CA02 CB01 FA01 HC08 3E070 AA02 AA13 AB32 CA20 CB20 JA10 VA30 3E073 AB05 BB01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G060 AC01 AD02 AE40 AF20 AG04 CA02 CB01 FA01 HC08 3E070 AA02 AA13 AB32 CA20 CB20 JA10 VA30 3E073 AB05 BB01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 トンネルを掘削する際の、掘削断面外周
の岩盤の水分飽和度を計測する方法において、 前記トンネル掘削断面に比抵抗測定用電極を設置し、前
記電極を介して当該電極設置部位の比抵抗を測定し、測
定された前記比抵抗に基づいて前記トンネルの外周部分
の岩盤の水分飽和度を推定することを特徴とするトンネ
ル掘削における水分飽和度の計測方法。
1. A method for measuring the water saturation of rock around an excavation section when excavating a tunnel, comprising: installing an electrode for resistivity measurement on the tunnel excavation section; Measuring the specific resistance of the rock in the outer periphery of the tunnel based on the measured specific resistance.
【請求項2】 前記比抵抗計測用電極は、前記掘削断面
の周方向に沿って複数設置することを特徴とする請求項
1記載のトンネル掘削における水分飽和度の計測方法。
2. The method for measuring moisture saturation in tunnel excavation according to claim 1, wherein a plurality of said specific resistance measuring electrodes are provided along a circumferential direction of said excavation section.
【請求項3】 前記トンネルは、LPG,LNGなどの
液化ガスを貯蔵するタンク本体トンネルの上部側に設け
られ、前記タンク本体トンネルの外側から内部に向けて
流れる水流を創成する岩盤内貯槽用の水封トンネルであ
って、 前記水封トンネルを掘削する際に、掘削の進行に伴っ
て、前記水封トンネルのトンネル軸方向に沿った測線上
に複数の比抵抗測定用電極を順次設置し、 前記電極を介して前記測線上の比抵抗を測定し、測定さ
れた前記比抵抗に基づいて前記水封トンネルの下方部分
の岩盤の水分飽和度を推定することを特徴とする請求項
1記載のトンネル掘削における水分飽和度の計測方法。
3. The tunnel according to claim 1, wherein the tunnel is provided on an upper side of a tank main body tunnel for storing a liquefied gas such as LPG, LNG, etc., and is used for a storage tank in a bedrock for creating a water flow flowing from the outside to the inside of the tank main body tunnel. In a water seal tunnel, when excavating the water seal tunnel, with the progress of the excavation, a plurality of specific resistance measurement electrodes are sequentially installed on a measurement line along the tunnel axis direction of the water seal tunnel, 2. The method according to claim 1, further comprising: measuring a specific resistance on the measurement line via the electrode, and estimating a water saturation of rock in a lower part of the water seal tunnel based on the measured specific resistance. Measurement method of water saturation in tunnel excavation.
【請求項4】 前記岩盤の水分飽和度は、前記タンク本
体トンネルに液化ガスを貯蔵した後にも、前記水封トン
ネルまたは前記タンク本体トンネルに設置した前記電極
を介して測定された前記比抵抗に基づいて推定すること
を特徴とする請求項3記載のトンネル掘削における水分
飽和度の計測方法。
4. The water saturation of the bedrock is determined by the specific resistance measured through the electrode installed in the water ring tunnel or the tank body tunnel even after the liquefied gas is stored in the tank body tunnel. 4. The method according to claim 3, wherein the estimation is based on the water saturation.
【請求項5】 前記タンク本体トンネルを掘削する際
に、掘削断面上に複数の比抵抗測定用電極を設置し、 前記電極を介して前記掘削断面上の比抵抗を測定し、測
定された前記比抵抗に基づいて前記タンク本体トンネル
の外周部分の岩盤の水分飽和度を推定することを特徴と
する請求項3記載のトンネル掘削における水分飽和度の
計測方法。
5. When excavating the tank body tunnel, a plurality of specific resistance measuring electrodes are installed on the excavated cross section, and the specific resistance on the excavated cross section is measured via the electrodes, and the measured resistance is measured. 4. The method according to claim 3, further comprising: estimating a water saturation of rock in an outer peripheral portion of the tank body tunnel based on a specific resistance.
【請求項6】 前記比抵抗測定用電極は、一対の電流電
極および一対の電圧電極を備えた4極式電極であること
を特徴とする請求項1〜5のいずれか1項記載のトンネ
ル掘削における水分飽和度の計測方法。
6. The tunnel excavation according to claim 1, wherein the specific resistance measuring electrode is a quadrupole electrode including a pair of current electrodes and a pair of voltage electrodes. Method of measuring water saturation in Japan.
JP17816099A 1999-06-24 1999-06-24 Measurement method of water saturation in tunnel excavation Expired - Fee Related JP3552594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17816099A JP3552594B2 (en) 1999-06-24 1999-06-24 Measurement method of water saturation in tunnel excavation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17816099A JP3552594B2 (en) 1999-06-24 1999-06-24 Measurement method of water saturation in tunnel excavation

Publications (2)

Publication Number Publication Date
JP2001004576A true JP2001004576A (en) 2001-01-12
JP3552594B2 JP3552594B2 (en) 2004-08-11

Family

ID=16043687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17816099A Expired - Fee Related JP3552594B2 (en) 1999-06-24 1999-06-24 Measurement method of water saturation in tunnel excavation

Country Status (1)

Country Link
JP (1) JP3552594B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291556A (en) * 2005-04-11 2006-10-26 Shimizu Corp Saturation measurement method of in situ ground
JP2011022032A (en) * 2009-07-16 2011-02-03 Tohoku Univ Measuring method of concrete volume resistivity and device therefor
CN102778480A (en) * 2012-07-23 2012-11-14 中国神华能源股份有限公司 Electrically identifying method for aquosity of earth surface of mining-induced fissure zone of mining area under dry condition
JP2018031703A (en) * 2016-08-25 2018-03-01 中日本高速道路株式会社 Corrosive environment measurement method and corrosive environment measurement system for structure, and repair plan formulation method and inspection plan formulation method using result of corrosive environment measurement
CN112763142A (en) * 2020-12-29 2021-05-07 河南大学 Underground water sealed cave depot construction roadway refined water storage test method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291556A (en) * 2005-04-11 2006-10-26 Shimizu Corp Saturation measurement method of in situ ground
JP2011022032A (en) * 2009-07-16 2011-02-03 Tohoku Univ Measuring method of concrete volume resistivity and device therefor
CN102778480A (en) * 2012-07-23 2012-11-14 中国神华能源股份有限公司 Electrically identifying method for aquosity of earth surface of mining-induced fissure zone of mining area under dry condition
JP2018031703A (en) * 2016-08-25 2018-03-01 中日本高速道路株式会社 Corrosive environment measurement method and corrosive environment measurement system for structure, and repair plan formulation method and inspection plan formulation method using result of corrosive environment measurement
CN112763142A (en) * 2020-12-29 2021-05-07 河南大学 Underground water sealed cave depot construction roadway refined water storage test method
CN112763142B (en) * 2020-12-29 2021-10-22 河南大学 Underground water sealed cave depot construction roadway refined water storage test method

Also Published As

Publication number Publication date
JP3552594B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
CN108368684B (en) Bedrock grouting monitoring method using resistivity
US5725059A (en) Method and apparatus for producing parallel boreholes
JP6211049B2 (en) Grout material detection method
RU2248019C2 (en) Method of measuring column diameter
US2376878A (en) Method of determining the permeability of earth formations
JP2008051502A (en) Multi-electrode electrical logging method for small diameter
JP2001004576A (en) Measuring method for degree of saturation of moisture in excavation of tunnel,
CN108663408A (en) A kind of steel oil-gas pipeline Directional Drilling erosion resistant coating breakage rate determines method
JP2009122010A (en) Method of exploration for groundwater in tunnel ahead ground
JP2002267764A (en) Electric logging method for tunnel horizontal boring
CN108387444B (en) Cased well fracturing continuous monitoring control method based on well-to-ground potential imaging
JPS6283685A (en) Method for measuring ae in ground
JP4514946B2 (en) Repair method of impermeable layer
JP5559660B2 (en) Measuring method of soil saturation
JP2005083124A (en) Spring water quantity estimating method, permeability coefficient estimating method and tunnel excavating method
JPH09297115A (en) Method of probing ground, and ground probing electrode
JPH09222377A (en) Method and device for measuring drilling hole water leakage position
JP2004037257A (en) Gas leak detector for intra-bedrock gas storage facility and gas leak detecting method
CN112855251B (en) Method for determining range of plastic region of hydraulic punching surrounding rock based on gas extraction amount
CN218882212U (en) Electrode tube device
JP2002181953A (en) Ground inspecting method
US6712139B1 (en) Method of well casing cathodic protection optimization using the drill stem data
CN115726817B (en) Targeted water stopping method for mountain tunnel construction
JPS6248040B2 (en)
JPS59122618A (en) Confirmation of improvement of ground

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees