JP3550679B2 - Substation failure section determination device - Google Patents

Substation failure section determination device Download PDF

Info

Publication number
JP3550679B2
JP3550679B2 JP18163099A JP18163099A JP3550679B2 JP 3550679 B2 JP3550679 B2 JP 3550679B2 JP 18163099 A JP18163099 A JP 18163099A JP 18163099 A JP18163099 A JP 18163099A JP 3550679 B2 JP3550679 B2 JP 3550679B2
Authority
JP
Japan
Prior art keywords
phase
bus
accident
relay
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18163099A
Other languages
Japanese (ja)
Other versions
JP2001016767A (en
Inventor
敏晴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Electric Mfg Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP18163099A priority Critical patent/JP3550679B2/en
Publication of JP2001016767A publication Critical patent/JP2001016767A/en
Application granted granted Critical
Publication of JP3550679B2 publication Critical patent/JP3550679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、送電用変電所の内部で地絡または短絡事故が発生した際に、故障区間を自動的に検出することができる変電所の故障区間判定装置に関する。
【0002】
【従来の技術】
2重母線方式の送電用変電所の故障区間を検出する装置は、例えば、特開平2−223334号公報に記載されている。図12は従来の変電所故障区間検出システムの一例を示したものである。
図12において、1は第1の母線(以下、甲母線とする。)、2は第2の母線(以下、乙母線とする。)、5,6は第1および第2の変圧器バンク(以下、バンクとする。)、10,11は第1および第2の負荷線路である。各バンク5,6および各負荷線路10,11は、甲母線1と乙母線2の中央にある人形部と呼ばれる部分からそれぞれの甲母線側断路器3a〜6a、および乙母線側断路器3b〜6bによって、甲母線1および乙母線2の両方に接続できる構造となっているが、通常は甲母線側断路器3a〜6aあるいは乙母線側断路器3b〜6bのいずれか一方を閉じ、他方を開くことによって、甲母線1あるいは乙母線2のいずれかに選択的に接続されている。図12はその標準的な接続を示し、甲母線1は第1のバンク5から給電され、乙母線2は第2のバンク6から給電されるようになっている。また、第1の負荷線路10は甲母線1に接続され、第2の負荷線路11は乙母線2に接続されている。
【0003】
3c〜6cはバンク5,6の人形部および負荷線路10,11の人形部の甲母線側断路器3a〜6aの近傍にそれぞれ取り付けた光CTであり、各人形部から甲母線1へ出入する電流を検出するための電流センサである。同様に、3d〜6dはバンク5,6の人形部および負荷線路10,11の人形部の乙母線側断路器3b〜6bの近傍にそれぞれ取り付けた光CTであり、各人形部から乙母線2へ出入りする電流を検出するための電流センサである。また、7は甲母線1の計器用変圧器、8は乙母線2の計器用変圧器である。9は光CT3c〜6cおよび光CT3d〜6dの出力信号を伝達する光ファイバケーブルである。
【0004】
3g〜6gは光CT3c〜6cで検出した電流に応動する方向継電器であり、甲母線1の母線電圧を基準に各人形部の甲母線1側を通過する事故電流の方向を判別する。3h〜6hは光CT3d〜6dで検出した電流に応動する方向継電器であり、乙母線2の母線電圧を基準に各人形部の乙母線2側を通過する事故電流の方向を判別する。
このように2つの母線1,2に複数のバンク5,6と複数の負荷線路10,11とを接続した変電所の各バンク側人形部および各線路側人形部の母線断路器3a〜6a,3b〜6bの近傍に、光CT3c〜6c,3d〜6dを取り付けるとともに、光CT3c〜6c,3d〜6dからの事故電流の方向を検出できる方向継電器3g〜6g,3h〜6hを設け、母線事故発生時の事故電流を光CT3c〜6c,3d〜6dによって検出し、その電流から方向継電器3g〜6g,3h〜6hによって事故電流の流れる方向を判別し、その結果を判定部16に入力して事故が発生した区間を自動的に検出していた。
【0005】
ここで、上記従来の故障区間判定装置において、光CT3c〜6c,3d〜6dからの事故電流の流れる方向を判別するための方向継電器3g〜6g,3h〜6hについて説明する。
従来の故障区間判定装置の方向継電器3g〜6g,3h〜6hとしては、短絡電流の方向判別には短絡方向継電器を、地絡電流の方向判別には地絡方向継電器をそれぞれ用いていた。
【0006】
なお、図7は短絡方向継電器および地絡方向継電器の動作特性の一例を示したものである。短絡方向継電器RYは、同図(a)に示すように、線間電圧Vを基準に相電流Iの位相差が所定範囲内の時に動作する継電器であり、3相短絡および2相短絡に応動できるように、例えば、90°進み接続方式の場合には、A相電流はBC線間電圧を基準に、B相電流はCA線間電圧を基準に、C相電流はAB線間電圧を基準に位相差判定を行い、それら3相毎の位相差判定のOR条件で動作信号を出力する構成とし、継電器設置点から見た短絡電流の方向、即ち、短絡事故発生点の方向を判別する継電器である。
同様に、地絡方向継電器RYは、同図(b)に示すように、零相電圧Voを基準に零相電流Ioの位相差が所定範囲内の時に動作する継電器であり、継電器設置点から見た地絡電流の方向、即ち、地絡発生点の方向を判別する継電器である。
【0007】
【発明が解決しようとする課題】
次に、上記従来の変電所故障区間判定装置を直接接地方式の変電所に適用する場合の問題点について説明する。
直接接地方式の変電所では、各受電線の送電端にある電源変圧器および各バンク変圧器の中性点が直接接地されているため、零相インピーダンスが小さく、そのため、地絡電流は短絡電流と同程度の非常に大きな事故電流となるが、零相電圧は殆ど発生しない。
したがって、零相電圧を基準に地絡電流の方向判別を行う地絡方向継電器では、基準となる零相電圧が十分に得られないことから地絡電流の方向判別が困難となる。即ち、従来の変電所故障区間判定装置は、直接接地方式の変電所における地絡時の故障区間判定が困難となる問題がある。
【0008】
この問題に対応するため、地絡電流が短絡電流と同程度の非常に大きな電流になることを利用して、地絡電流の方向判別も短絡電流の方向判別と同様に前述の短絡方向継電器で行うことが考えられるが、直接接地方式の変電所の母線の地絡事故では、地絡相だけでなく、直接接地されたバンク変圧器中性点を通して地絡の発生していない健全相にも地絡電流が分流して流れるため、短絡方向継電器の健全相側の位相差判定が不要動作する問題がある。
【0009】
以下に、直接接地方式の変電所において地絡が発生した場合の地絡相および健全相に流れる地絡電流と、その地絡電流に対する短絡方向継電器の応動について説明する。
図8は、直接接地系統にA相1線地絡が発生した場合を例に、地絡電流Igの流れる方向を示したものである。同図に示すように、直接接地系統では電源変圧器TR1およびバンク変圧器TR2の中性点E1,E2が共に直接接地されているため、地絡電流Igは電源変圧器TR1の中性点E1とバンク変圧器TR2の中性点E2に向かって分流して流れ、それぞれの中性点E1,E2から系統に流入する。この分流比は地絡点Pから見た電源側の零相インピーダンスとバンク側を見た零相インピーダンスの逆比となる。
【0010】
バンク変圧器TR2の中性点E2から系統に流入した地絡電流の分流分Ig2は、更にバンク変圧器TR2の各相コイルに1/3ずつ分流し、地絡点Pよりバンク変圧器TR2側の地絡相電流Ia2と地絡の発生していない健全相の相電流であるB相電流IbおよびC相電流Ic(以下、健全相電流Ib,Icとする。)となる。地絡相電流Ia2は地絡点Pまで流れ、健全相電流Ib,Icは、電源変圧器TR1のb相,c相のコイルを通り、電源変圧器TR1の中性点E1から流入してくるもう一方の地絡電流Igの分流分Ig1と合成されて、地絡点Pより電源変圧器TR1側の地絡相電流Ia1となり、電源変圧器TR1のa相コイルを経由して地絡点Pまで流れる。
【0011】
このような直接接地系統の1線地絡電流Igは、対称座標法によって(1)式のように求めることができる。
Ig=3Ea/(Z+Z+Z) ・・・・・・・・(1)
但し、Ea=地絡発生前の地絡点の対地電圧
=地絡点から見た系統全体の零相インピーダンス
=地絡点から見た系統全体の正相インピーダンス
=地絡点から見た系統全体の逆相インピーダンス
【0012】
また、図9は直接接地系統の零相回路である。同図より、地絡点Pから見た系統全体の零相インピーダンスZは、地絡点Pから電源変圧器TR1側の零相インピーダンスZ01および地絡点Pからバンク変圧器TR2側の零相インピーダンスZ02の並列回路であるため、(2)式のように表すことができる。
=Z01・Z02/(Z01+Z02) ・・・・(2)
但し、 Z01 =地絡点Pから電源変圧器TR1側の零相インピーダンス
02 =地絡点Pからバンク変圧器TR2側の零相インピーダンス
【0013】
更に、地絡点Pから電源変圧器TR1側の零相インピーダンスZ01および地絡点Pからバンク変圧器TR2側の零相インピーダンスZ02は(3)式および(4)式となる。
01=ZL01+jXt1 ・・・(3)
02=ZL02+jXt2 ・・・(4)
但し、ZL01 =地絡点Pから電源変圧器TR1までの線路の
零相インピーダンス
L02 =地絡点Pからバンク変圧器TR2までの線路の
零相インピーダンス
t1 =電源変圧器TR1の零相インピーダンス(リアクタンス)
t2 =バンク変圧器TR2の零相インピーダンス(リアクタンス)
【0014】
同様に、地絡点Pから見た系統全体の正相インピーダンスZおよび逆相インピーダンスZについても、地絡点Pから電源変圧器TR1側の正相および逆相インピーダンスZ11,Z21と地絡点Pからバンク変圧器TR2側の正相および逆相インピーダンスZ12,Z22 の並列回路であるため、(5)式および(6)式のように表すことができる。
=Z11・Z12/(Z11+Z12) ・・・・・(5)
=Z21・Z22/(Z21+Z22) ・・・・・(6)
但し、 Z11 =地絡点Pから電源変圧器TR1側の正相インピーダンス
21 =地絡点Pから電源変圧器TR1側の逆相インピーダンス
12 =地絡点Pからバンク変圧器TR2側の正相インピーダンス
22 =地絡点Pからバンク変圧器TR2側の逆相インピーダンス
【0015】
ここで、計算簡略化のため、地絡点Pから見た系統全体の正相インピーダンスZおよび地絡点Pから見た系統全体の逆相インピーダンスZは小さいので無視すると、(2)式を(1)式に代入して、地絡電流Igを(7)式のように求めることができる。

Figure 0003550679
【0016】
また、電源変圧器TR1およびバンク変圧器TR2のそれそれの中性点E1,E2に分流する地絡電流は地絡点Pから電源変圧器TR1側を見た零相インピーダンスZ01と地絡点Pからバンク変圧器TR2側を見た零相インピーダンスZ02の逆比になるため、電源変圧器TR1側の中性点E1に分流する地絡電流Igの分流電流Ig1は、(8)式で求めることができる。
Figure 0003550679
【0017】
同様にして、バンク変圧器TR2側の中性点E2に分流する地絡電流Igの分流電流Ig2は、(9)式で求めることができる。
Figure 0003550679
【0018】
したがって、地絡点Pよりバンク変圧器TR2側の地絡相電流Ia2、および健全相電流Ib,Icは分流電流Ig2の1/3であるので、(10)式の通りとなる。
Ia2=Ib=Ic=Ea/(ZL02+jXt2)・・(10)
【0019】
地絡点Pよりバンク変圧器TR2側の地絡相電流Ia2および健全相電流Ib,Icは、前記(10)式で表すことができるが、地絡点Pからバンク変圧器TR2までの線路の零相インピーダンスZL02は短距離のため非常に小さく、バンク変圧器TR2の零相リアクタンスのみを考慮すると、これらの電流は地絡発生前のA相対地電圧Eaに対し、ほぼ90°遅れ位相で、バンク変圧器TR2側から電源変圧器TR1に向かって流れる電流である。しかし、これらの電流の方向を電源変圧器TR1側からバンク変圧器TR2側に向かって流れる方向を‘正’とした場合には、地絡点Pよりバンク変圧器TR2側の地絡相電流Ia2および健全相電流Ib,Icは、電源変圧器TR1側からバンク変圧器TR2側に向かって流れる、地絡発生前のA相対地電圧Eaに対しほぼ90°進み位相の電流と言える。即ち、前出の(10)式は(11)式となる。
Ia2=Ib=Ic=−Ea/(ZL02+jXt2)・・(11)
【0020】
また、地絡点Pより電源変圧器TR1側の地絡相電流Ia1は、分流電流Ig1と健全相電流Ib,Icのベクトル合成電流であるので、(12)式となる。
Figure 0003550679
(12)式より、地絡点Pより電源変圧器TR1側の地絡相電流Ia1は、
地絡発生前のA相対地電圧に対し、ほぼ90°遅れ位相の電流である。
【0021】
図10(a)は、地絡点Pより電源変圧器TR1側の各相電流Ia1,Ib,Icと母線電圧Va,Vb,Vcの位相関係を示したベクトル図であり、図10(b)は、地絡点Pよりバンク変圧器TR2側の各相電流Ia2,Ib,Icと母線電圧Va,Vb,Vcの位相関係を示したベクトル図である。
同図(a)に示すように、直接接地方式の変電所の母線で1線地絡が発生した場合には、地絡点Pより電源変圧器TR1側では、地絡相に地絡発生前のA相電圧Vaに対しほぼ90°の遅れ電流Ia1が流れ、健全相には地絡発生前のA相電圧Vaに対しほぼ90°進み位相の電流I,Icが流れる。
また、同図(b)に示すように地絡点Pよりバンク変圧器TR2側では、地絡相および健全相には同じ大きさで地絡発生前のA相電圧Vaに対しほぼ90°進み位相の電流Ia2,Ib,Icが流れる。
【0022】
次に、このような直接接地方式の変電所の地絡電流に対する短絡方向継電器の応動について説明する。
図11は、直接接地方式の変電所の母線において、A相1線地絡が発生した場合に受電線側人形部の短絡方向継電器RY1とバンク側人形部の短絡方向継電器RY2とにそれぞれ入力される相電流と母線電圧の位相関係を示したベクトル図と、それらの入力に対する各短絡方向継電器RY1,RY2の応動を各相毎に示した図である。なお、受電線側人形部の短絡方向継電器RY1は、継電器設置点から電源側の事故に対して動作し、バンク側人形部の短絡方向継電器RY2は継電器設置点からバンク側の事故に対して動作するものであり、同図中に示した短絡方向継電器RY1,RY2へのそれぞれの入力電流のベクトル図は、当該継電器RY1,RY2の設置点から動作すべき事故点に向かって流れる事故電流の方向を‘正’としたものである。
【0023】
したがって、受電線側の短絡方向継電器RY1は人形部から電源側に向かって流れる方向が動作すべき事故電流の方向であり、同図中の当該継電器RY1の入力電流のベクトル図は人形部から電源側の向かって流れる方向を‘正’としている。よって、前出の図10(a)に示した地絡点Pより電源側の電流ベクトルIa1,Ib,Icとは電流の極性が逆極性になっている。
同図より、受電線側の短絡方向継電器RY1は各相とも不動作であるが、地絡点が母線であることから、これらの応動は事故点方向を正しく判別した正規応動である。これに対し、バンク変圧器側の短絡方向継電器RY2は、地絡相であるa相は不動作であるが、健全相であるb相およびc相が動作することになり、地絡点が母線であることを考慮すると、当該継電器RY2の不動作側の事故であるにも関わらず健全相の継電器が不要動作していることになる。
【0024】
この現象は、前述で説明したように直接接地方式変電所の母線で1線地絡事故が発生した場合の地絡電流は、地絡点よりバンク変圧器側では地絡相、健全相とも同じ大きさで、地絡相電圧Vaに対しほぼ90°進み位相の電流が流れることによるものである。また、これまでA相1線地絡の場合について説明してきたが、他相の1線地絡および2線地絡の場合も同様に健全相の継電器が不要動作する現象となる。
したがって、直接接地方式の変電所において、短絡方向継電器によって人形部に流れる短絡電流および地絡電流の方向を判別し、その結果から故障区間を判定する場合、前記のような地絡時の健全相電流によって短絡方向継電器の健全相が不要動作するため、正確な故障区間判定ができないことになる。
【0025】
また、この問題に対し、短絡方向継電器の動作電流値を高整定にすることで、地絡時の健全相電流では動作しないように対策することは、直接接地系統における地絡電流は短絡電流と同程度に大きく、前記のような地絡時の健全相電流の大きさも数千Aとなり、当該系統の最小短絡電流と接近した電流値であるため、短絡事故検出性能の低下を招く可能性があり、採用困難である。
【0026】
本発明は、直接接地方式の変電所の故障区間判定を短絡、地絡とも短絡方向継電器の動作結果から行うこととし、その場合に課題となる前述のような地絡時の健全相電流による誤判定を防止し、正しく故障区間判定できる故障区間判定装置を提供するためになされたものである。
【0027】
【課題を解決するための手段】
請求項1の発明の故障区間判定装置では、複数の受電線と複数の変圧器バンクと複数の送電線とを接続した2つの母線から成る直接接地方式変電所の前記各受電線、各変圧器バンク、および各送電線のそれぞれの人形部から前記第1の母線に出入りする事故電流の方向を判定する第1の短絡方向継電器群と、前記それぞれの人形部から前記第2の母線に出入りする事故電流の方向を判定する第2の短絡方向継電器群と、前記第1の母線の各線間電圧低下を検出する第1の不足電圧継電器と、前記第1の母線の各相電圧低下を検出する第2の不足電圧継電器と、前記第2の母線の各線間電圧低下を検出する第3の不足電圧継電器と、前記第2の母線の各相電圧低下を検出する第4の不足電圧継電器と、前記第1の不足電圧継電器の各相動作信号と前記第2の不足電圧継電器の各相動作信号とから前記第1の母線の係わる母線事故の事故相を検出し、前記第1の短絡方向継電器群の各相動作信号のうち事故相の動作信号を選択する第1の事故相選択部群と、前記第3の不足電圧継電器の各相動作信号と前記第4の不足電圧継電器の各相動作信号とから前記第2の母線の係わる母線事故の事故相を検出し、前記第2の短絡方向継電器群の各相動作信号のうち事故相の動作信号を選択する第2の事故相選択部群と、前記第1の事故相選択部群の出力と前記第2の事故相選択部群の出力とから母線事故の事故区間を検出する判定部とを備える。
【0028】
請求項2の発明の故障区間判定装置では、複数の受電線と複数の変圧器バンクと複数の送電線とを接続した2つの母線から成る直接接地方式変電所の前記各受電線、各変圧器バンク、および各送電線のそれぞれの人形部から前記第1の母線に出入りする事故電流の方向を判定する第1の短絡方向継電器群と、前記それぞれの人形部から前記第2の母線に出入りする事故電流の方向を判定する第2の短絡方向継電器群と、前記第1の母線の係わる母線事故の保護を行う各相電流差動方式母線保護継電器の各相動作信号を用いて、前記第1の短絡方向継電器群の各相動作信号のうち事故相の動作信号を選択する第1の事故相選択部群と、前記第2の母線の係わる母線事故の保護を行う各相電流差動方式母線保護継電器の各相動作信号を用いて、前記第2の短絡方向継電器群の各相動作信号のうち事故相の動作信号を選択する第2の事故相選択部群と、前記第1の事故相選択部群の出力と前記第2の事故相選択部群の出力とから母線事故の事故区間を検出する判定部とを備える。
【0029】
【発明の実施の形態】
図1は請求項1の発明の故障区間判定装置を2つの受電線と2つのバンク変圧器を有する2重母線構成の直接接地方式変電所に適用した場合の実施の形態の一例である。
図1において、1は甲母線、2は乙母線、3,4は第1および第2の受電線、5,6は第1および第2のバンクである。各受電線3,4の送電端の電源変圧器の中性点および各バンク変圧器5,6の中性点は直接接地されている。
【0030】
各受電線3,4および各バンク5,6は、甲母線1と乙母線2の中央にある人形部と呼ばれる部分からそれぞれの甲母線側断路器3a〜6a、および乙母線側断路器3b〜6bによって、甲母線1および乙母線2の両方に接続できる構造となっているが、通常は甲母線側断路器3a〜6aあるいは乙母線側断路器3b〜6bのいずれか一方を閉じ、他方を開くことによって甲母線1あるいは乙母線2のいずれかに選択的に接続されている。図1はその標準的な接続を示し、甲母線1は第1の受電線3から給電され、乙母線2は第2の受電線4から給電されるようになっている。また、第1のバンク5は甲母線1に接続され、第2のバンク6は乙母線2に接続されている。
【0031】
3c〜6cは受電線3,4の人形部およびバンク5,6の人形部の甲母線側断路器3a〜6aの近傍に取り付けた光CTであり、各人形部から甲母線1へ出入する電流を検出するための電流センサである。同様に、3d〜6dは受電線3,4の人形部およびバンク5,6の人形部の乙母線側断路器3b〜6bの近傍に取り付けた光CTであり、各人形部から乙母線2へ出入りする電流を検出するための電流センサである。また、7は甲母線1の計器用変圧器、8は乙母線2の計器用変圧器である。9は光CT3c〜6cおよび光CT3d〜6dの出力信号を伝達する光ファイバケーブルである。
【0032】
3g〜6gは光CT3c〜6cで検出した電流に応動する短絡方向継電器であり、甲母線1の母線電圧を基準に各人形部の甲母線1側を通過する事故電流の方向を判別する。3h〜6hは光CT3d〜6dで検出した電流に応動する短絡方向継電器であり、乙母線2の母線電圧を基準に各人形部の乙母線2側を通過する事故電流の方向を判別する。
【0033】
12は甲母線1の各線間電圧の低下を検出する第1の不足電圧継電器であり、13は甲母線1の各相電圧の低下を検出する第2の不足電圧継電器である。14は乙母線2のの各線間電圧の低下を検出する第3の不足電圧継電器であり、15は乙母線2の各相電圧の低下を検出する第4の不足電圧継電器である。
また、3i〜6iは第1の不足電圧継電器12と第2の不足電圧継電器13の各相動作信号から甲母線1と甲母線1に接続された受電線3、およびバンク5の短絡事故および地絡事故の事故発生相を検出し、短絡方向継電器3g〜6gのそれぞれの各相動作信号のうち、事故発生相のみを選択出力する第1の事故相選択部である。
【0034】
同様に、3j〜6jは第3の不足電圧継電器14と第4の不足電圧継電器15の各相動作信号から乙母線2と乙母線2に接続された受電線4、およびバンク6の短絡事故および地絡事故の事故発生相を検出し、短絡方向継電器3h〜6hのそれぞれの各相動作信号のうち、事故発生相のみを選択出力する第2の事故相選択部である。
16は第1の事故相選択部3i〜6iおよび第2の事故相選択部3j〜6jの出力から母線事故の事故区間を自動判定する判定部である。
【0035】
なお、図1は2つの受電線3,4と2つのバンク5,6を有する2重母線構成の変電所への適用例であるが、受電線数およびバンク数の増減に対しては、その数に対応した前記光CT、短絡方向継電器、事故相選択部を有する構成とすることで対応できる。また、図1は各人形部から甲母線1および乙母線2に出入りする電流を検出する電流センサに光CTを適用した事例であるが、本発明による故障区間判定装置では計器用変流器などの電流センサの適用も可能である。
【0036】
ここで、第1の不足電圧継電器12と第2の不足電圧継電器13の作用について説明する。
図3は3相短絡、BC相2相短絡、A相1線地絡、およびBC相2線地絡の場合を例に母線事故時の母線電圧のベクトル表示とその時の第1の不足電圧継電器12と第2の不足電圧継電器13の応動を示すものである。なお、同図中の数字は事故点抵抗を零とした完全短絡、完全地絡の場合の母線電圧の各線間電圧値および各相電圧値(計器用変圧器7の2次電圧換算)である。なお、各母線事故様相に対する第1および第2の不足電圧継電器12,13の応動を説明する上での各不足電圧継電器12,13の検出感度は、その適用の一例として事故様相の50%検出を目途に第1の不足電圧継電器12は55V、第2の不足電圧継電器13は32Vにしたものである。
【0037】
同図より、3相短絡が発生すると、A−B線間電圧、B−C線間電圧、C−A線間電圧が共に殆ど零に低下し、2相短絡の場合には、短絡発生相の線間電圧が殆ど零に低下する。したがって、線間電圧の低下を検出する第1の不足電圧継電器12の動作相から短絡相を検出することができる。また、1線地絡が発生した場合には、地絡相の相電圧が殆ど零になるのに対し、健全相の相電圧は殆ど変化しない。よって、相電圧の低下を検出する第2の不足電圧継電器13の動作相から地絡相を検出することができる。また、2線地絡は2相が大地を経由して短絡することであり、事故相の線間電圧は殆ど零となると共に、相電圧も殆ど零になるため、第1の不足電圧継電器12および第2の不足電圧継電器13が共に動作することになり、それらの動作相から事故相を検出できる。
【0038】
このように、甲母線1の線間電圧の低下を検出する第1の不足電圧継電器12と相電圧の低下を検出する第2の不足電圧継電器13の動作相から、甲母線1および甲母線1に接続された受電線3、バンク5の短絡事故および地絡事故の事故相を検出することができる。なお、第3の不足電圧継電器14と第4の不足電圧継電器15の作用についても同様であり、それらの動作相から乙母線2および乙母線2に接続された受電線4、バンク6の短絡事故および地絡事故の事故相を検出できる。
【0039】
次に、第1の事故相選択部3iの作用について説明する。
図4は、第1の事故相選択部3iの具体的な構成の一例である。
事故相選択部3iは第1の不足電圧継電器12のAB相、BC相、CA相の各線間電圧の低下に対するそれぞれの動作信号からORゲート20a、20b、20cによって短絡相を検出し、更に、ORゲート21a、21b、21cによって、第2の不足電圧継電器13のA相、B相およびC相の各相電圧の低下に対するそれぞれの動作信号との論理和をとることによって、甲母線1および甲母線1に接続された受電線3やバンク5の短絡および地絡の事故相を検出する。
【0040】
更に、ANDゲート22a、22b、22cによって、これらの事故相条件と前記短絡方向継電器3gのA相、B相、C相の各相電流の方向判定結果である各相の動作信号との論理積を取り、その結果をORゲート23で集約することで、短絡方向継電器3gの各相動作信号のうち事故相のみを選択し、当該人形部の甲母線1側を通過する事故電流の方向判定結果として、判定部16に出力することができる。
【0041】
他の第1の事故相選択部4i〜6iも同様に、対応するそれぞれの短絡方向継電器4g〜6gの各相動作信号のうち事故相のみを選択出力することができる。
また、第2の事故相選択部3j〜6jは、第3の不足電圧継電器14および第4の不足電圧継電器15の動作信号から短絡方向継電器3h〜6hの各相動作信号から事故相のみを選択出力するもので、第1の事故相選択部3i〜6iの作用を乙母線2側に置き換えたものである。
【0042】
このような第1の事故相選択部3i〜6iおよび第2の事故相選択部3j〜6jの作用によって、判定部16では、各人形部における事故相のみの方向判定結果を基に故障区間判定を行うことが可能となり、直接接地方式の変電所における地絡事故時の方向継電器の健全相側不要動作による故障区間の誤判定を防止することができる。
【0043】
次に、請求項2の発明の実施の形態の一例について説明する。
図2は請求項2の発明の故障区間判定装置を2つの受電線と2つのバンク変圧器を有する2重母線構成の直接接地方式変電所に適用した場合の実施の形態の一例である。
図2において、17は甲母線1側の母線保護継電器の各相毎の動作信号、18は乙母線2側の母線保護継電器の各相毎の動作信号である。また、3k〜6kは甲母線1側の母線保護継電器の動作信号17から短絡方向継電器3g〜6gの各相動作信号のうち、事故発生相のみを選択出力する第1の事故相選択部である。同様に、3l〜6lは乙母線2側の母線保護継電器の動作信号18から短絡方向継電器3h〜6hの各相動作信号のうち、事故発生相のみを選択出力する第2の事故相選択部である。また、他の構成は図1と同様に構成されているので、同一部分には同一符号を付して、その重複する説明を省略する。
【0044】
ここで通常直接接地方式変電所の母線保護に適用される電流差動方式の母線保護継電器の動作について説明する。
常時および外部事故時には母線への流入電流は必ず流出電流となるので母線に接続された各受電線、各バンクから母線に出入りする電流をベクトル加算した合計は差し引き零となる。しかし、母線事故時には事故電流が流入するが、通常流出電流はないので、この合計は零とならない。このことから、母線保護継電器は母線に接続された各受電線および各バンクから母線に出入りする電流を各相毎にベクトル加算し、その合計を監視することで母線の内部・外部事故の判別を行うものである。
【0045】
このように、電流差動方式の母線保護継電器は母線に接続された各受電線および各バンクから母線に出入りする電流を各相毎にベクトル加算し、その合計が所定の値を越えた場合に動作するよう構成されているので、短絡事故や地絡事故で事故相に事故電流が流入すると、その事故電流を検出し事故相の母線保護継電器が動作する。しかし、前述で説明した直接接地方式変電所の地絡事故において、直接接地された各バンク変圧器の中性点を通して健全相側に流れる地絡電流は母線を通過し電源変圧器まで流れるため、流入電流=流出電流となり差し引き零となるため、健全相の母線保護継電器が不要動作することは無い。
【0046】
図5は直接接地方式変電所の母線事故様相と電流差動方式の母線保護継電器の各相動作信号の関係を示したものである。同図より、3相短絡の場合には母線保護継電器は3相共動作し、2相短絡および2線地絡の場合にはその事故相である2相が動作する。また、1線地絡の場合には、母線保護継電器は事故相のみの1相が動作することになる。
このように、電流差動方式の母線保護継電器の動作相は母線事故の事故相を一致しており、即ち、電流差動方式の母線保護継電器の動作相から母線事故の事故相を判断することができる。
【0047】
このことから、第1の事故相選択部3kは甲母線1側の母線保護継電器の各相動作信号17から短絡方向継電器3gの各相動作信号のうち事故相のみを選択出力ものであり、図6は、第1の事故相選択部3kの具体的な構成の一例である。
母線保護継電器17の動作相は母線事故の事故相と一致しているので、ANDゲート24a、24b、24cによって母線保護継電器の各相動作信号と短絡方向継電器3gのA相、B相、C相の各相電流の方向判定結果である各相の動作信号との論理積を取り、その結果をORゲート25で集約することで、短絡方向継電器3gの各相動作信号のうち事故相のみを選択し、当該人形部の甲母線1側を通過する事故電流の方向判定結果として、判定部16に出力することができる。
【0048】
また、他の第1の事故相選択部4k〜6kも同様に、対応する短絡方向継電器4g〜6gの各相動作信号のうち事故相のみを選択出力するものである。また、第2の事故相選択部3l〜6lは乙母線2側の母線保護継電器の各相動作信号18から対応する短絡方向継電器3j〜6jの各相動作信号のうち事故相のみを選択出力するものである。
このような第1の事故相選択部3k〜6kおよび第2の事故相選択部3l〜6lの作用によって、判定部16では、各人形部における事故相のみの方向判定結果を基に故障区間判定を行うことが可能となり、直接接地方式変電所における地絡事故時の方向継電器の健全相側不要動作による故障区間の誤判定を防止することができる。
【0049】
【発明の効果】
以上に説明したように、この発明によれば、直接接地方式の変電所における地絡時の健全相の方向継電器の不要動作の影響を受けないため、正確に故障区間判定ができる。
【図面の簡単な説明】
【図1】請求項1の発明の故障区間判定装置の実施の形態の一例を示す説明図である。
【図2】請求項2の発明の故障区間判定装置の実施の形態の一例を示す説明図である。
【図3】請求項1の発明の不足電圧継電器の動作を示す説明図である。
【図4】請求項1の発明の事故相選択部の具体的な構成の一例の説明図である。
【図5】請求項2の発明に関わる母線保護継電器の動作を示す説明図である。
【図6】請求項2の発明の事故相選択部の具体的な構成の一例の説明図である。
【図7】方向継電器の動作特性図である。
【図8】直接接地系統の地絡電流の方向の説明図である。
【図9】直接接地系統の零相回路である。
【図10】直接接地系統の1線地絡時の電流・電圧ベクトル図である。
【図11】直接接地系統の1線地絡時の短絡方向継電器の応動の説明図である。
【図12】従来の故障区間判定装置の説明図である。
【符号の説明】
1,2 母線
3,4 受電線
5,6 変圧器バンク
7,8 計器用変圧器
3g〜6g,3h〜6h 方向継電器
3i〜6i,3j〜6j 請求項1の発明の事故相選択部
3k〜6k,3l〜6l 請求項2の発明の事故相選択部
12,13,14,15 不足電圧継電器
16 判定部
17,18 母線保護継電器の動作信号[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a substation fault zone determination device that can automatically detect a fault zone when a ground fault or short circuit accident occurs inside a power transmission substation.
[0002]
[Prior art]
An apparatus for detecting a failure section of a double-bus power transmission substation is described in, for example, Japanese Patent Application Laid-Open No. 2-223334. FIG. 12 shows an example of a conventional substation failure section detection system.
In FIG. 12, reference numeral 1 denotes a first bus (hereinafter, referred to as an instep bus), 2 denotes a second bus (hereinafter, referred to as an auxiliary bus), and 5, 6 denote first and second transformer banks ( Hereinafter, banks will be used.) Reference numerals 10 and 11 denote first and second load lines. Each of the banks 5 and 6 and each of the load lines 10 and 11 are separated from a part called a doll section at the center of the instep bus 1 and the instep bus 2 to the instep bus side disconnectors 3a to 6a and the instep bus side disconnectors 3b to 3b. 6b, it is configured to be connectable to both the instep bus 1 and the inversion bus 2, but usually one of the instep bus side disconnectors 3a to 6a or the inversion bus side disconnectors 3b to 6b is closed, and the other is closed. By being opened, it is selectively connected to either the instep bus 1 or the inversion bus 2. FIG. 12 shows the standard connection, in which the instep bus 1 is supplied with power from the first bank 5 and the second bus 2 is supplied with power from the second bank 6. Further, the first load line 10 is connected to the instep bus 1, and the second load line 11 is connected to the second bus 2.
[0003]
Reference numerals 3c to 6c denote optical CTs attached to the doll parts of the banks 5 and 6 and the doll parts of the load lines 10 and 11 in the vicinity of the instep bus-side disconnectors 3a to 6a, respectively. It is a current sensor for detecting a current. Similarly, reference numerals 3d to 6d denote optical CTs attached to the doll portions of the banks 5 and 6 and the doll portions of the load lines 10 and 11 in the vicinity of the maiden line disconnectors 3b to 6b, respectively. It is a current sensor for detecting a current flowing into and out of the device. Reference numeral 7 denotes an instrument transformer of the instep bus 1, and reference numeral 8 denotes an instrument transformer of the maiden bus 2. Reference numeral 9 denotes an optical fiber cable for transmitting output signals of the optical CTs 3c to 6c and the optical CTs 3d to 6d.
[0004]
Reference numerals 3g to 6g denote directional relays that respond to the currents detected by the light CTs 3c to 6c, and determine the direction of the fault current passing through the instep bus 1 side of each doll section with reference to the bus voltage of the instep bus 1. Reference numerals 3h to 6h denote directional relays that respond to the currents detected by the light CTs 3d to 6d, and determine the direction of the fault current passing through the doll bus 2 side of each doll section with reference to the bus voltage of the doll bus 2.
As described above, each bank-side doll section of the substation in which the plurality of banks 5, 6 and the plurality of load lines 10, 11 are connected to the two buses 1, 2 and the bus disconnectors 3a to 6a, In the vicinity of 3b to 6b, light CTs 3c to 6c and 3d to 6d are attached, and directional relays 3g to 6g and 3h to 6h that can detect the direction of the fault current from the light CTs 3c to 6c and 3d to 6d are provided. The fault current at the time of occurrence is detected by the light CTs 3c to 6c and 3d to 6d, the direction of the fault current flowing is determined by the direction relays 3g to 6g and 3h to 6h from the current, and the result is input to the determination unit 16. The section where the accident occurred was automatically detected.
[0005]
Here, the directional relays 3g to 6g and 3h to 6h for determining the direction in which the fault current flows from the light CTs 3c to 6c and 3d to 6d in the above-described conventional fault section determination device will be described.
As the direction relays 3g to 6g and 3h to 6h of the conventional failure section determination device, a short-circuit direction relay is used to determine the direction of the short-circuit current, and a ground-fault direction relay is used to determine the direction of the ground fault current.
[0006]
FIG. 7 shows an example of the operation characteristics of the short-circuit direction relay and the ground fault direction relay. The short-circuit direction relay RY is a relay that operates when the phase difference of the phase current I is within a predetermined range based on the line voltage V, as shown in FIG. For example, in the case of a 90 ° lead connection system, the A-phase current is based on the BC line voltage, the B-phase current is based on the CA line voltage, and the C-phase current is based on the AB line voltage. And a relay for determining the direction of the short-circuit current as viewed from the relay installation point, that is, the direction of the short-circuit fault occurrence point, from the OR point of the phase difference determination for each of the three phases. It is.
Similarly, the ground fault direction relay RY is a relay that operates when the phase difference of the zero-phase current Io is within a predetermined range based on the zero-phase voltage Vo, as shown in FIG. The relay determines the direction of the observed ground fault current, that is, the direction of the ground fault occurrence point.
[0007]
[Problems to be solved by the invention]
Next, a problem in a case where the above-described conventional substation failure section determination device is applied to a substation of a direct grounding type will be described.
In a substation of the direct grounding system, the neutral point of the power transformer and the bank transformer at the transmission end of each receiving line is directly grounded, so the zero-phase impedance is small. Although the fault current becomes as large as that of the above, almost no zero-sequence voltage is generated.
Therefore, in a ground fault directional relay that determines the direction of the ground fault current based on the zero-sequence voltage, it is difficult to determine the direction of the ground fault current because a sufficient reference zero-phase voltage cannot be obtained. That is, the conventional substation failure section determination device has a problem that it is difficult to determine a failure section at the time of a ground fault in a substation of the direct grounding type.
[0008]
To cope with this problem, utilizing the fact that the ground fault current becomes a very large current of the same order as the short-circuit current, the direction of the ground fault current is also determined by the above-described short-circuit direction relay in the same manner as the short-circuit current direction. However, in the event of a ground fault at the bus of a substation of the direct grounding type, not only the ground fault phase but also the sound phase where no ground fault occurs through the neutral point of the directly grounded bank transformer Since the ground fault current is divided and flows, there is a problem that the phase difference determination on the sound phase side of the short-circuit direction relay operates unnecessarily.
[0009]
In the following, a description will be given of a ground fault current flowing in a ground fault phase and a healthy phase when a ground fault occurs in a substation of a direct grounding method, and how a short-circuit direction relay responds to the ground fault current.
FIG. 8 shows the direction in which the ground fault current Ig flows, taking as an example a case where an A-phase one-line ground fault occurs in the direct grounding system. As shown in the figure, in the direct grounding system, since the neutral points E1 and E2 of the power transformer TR1 and the bank transformer TR2 are both directly grounded, the ground fault current Ig is changed to the neutral point E1 of the power transformer TR1. And flows toward the neutral point E2 of the bank transformer TR2, and flows into the system from the neutral points E1 and E2. This shunt ratio is the inverse ratio of the zero-phase impedance on the power supply side viewed from the ground fault point P and the zero-phase impedance viewed on the bank side.
[0010]
The shunt portion Ig2 of the ground fault current flowing into the system from the neutral point E2 of the bank transformer TR2 is further shunted to each phase coil of the bank transformer TR2 by 1/3, and the bank transformer TR2 side from the ground fault point P. And the B-phase current Ib and the C-phase current Ic (hereinafter referred to as healthy phase currents Ib and Ic), which are the phase currents of the healthy phase where no ground fault occurs. The ground fault phase current Ia2 flows to the ground fault point P, and the sound phase currents Ib and Ic pass through the b-phase and c-phase coils of the power transformer TR1 and flow from the neutral point E1 of the power transformer TR1. The other ground current Ig is combined with the divided current Ig1 of the other ground fault current Ig to become a ground fault phase current Ia1 on the power transformer TR1 side from the ground fault point P, and the ground fault point P1 via the a-phase coil of the power transformer TR1. Flows up to
[0011]
The one-line ground-fault current Ig of such a direct grounding system can be obtained by the symmetric coordinate method as shown in Expression (1).
Ig = 3Ea / (Z 0 + Z 1 + Z 2 ・ ・ ・ ・ ・ ・ ・ ・ ・ (1)
Here, Ea is the ground voltage at the ground fault point before the occurrence of the ground fault.
Z 0 = Zero-phase impedance of the whole system viewed from the ground fault point
Z 1 = Positive phase impedance of the whole system from the ground fault point
Z 2 = Reverse-phase impedance of the entire system as seen from the ground fault point
[0012]
FIG. 9 shows a zero-phase circuit of a direct grounding system. From the figure, the zero-phase impedance Z of the whole system viewed from the ground fault point P 0 Is the zero-phase impedance Z on the power transformer TR1 side from the ground fault point P. 01 And zero-phase impedance Z on the bank transformer TR2 side from ground fault point P 02 , It can be expressed as in equation (2).
Z 0 = Z 01 ・ Z 02 / (Z 01 + Z 02 ・ ・ ・ ・ ・ (2)
Where Z 01 = Zero-phase impedance from the ground fault point P to the power transformer TR1
Z 02 = Zero-phase impedance from ground fault point P to bank transformer TR2
[0013]
Further, the zero-phase impedance Z on the power transformer TR1 side from the ground fault point P. 01 And zero-phase impedance Z on the bank transformer TR2 side from ground fault point P 02 Are the equations (3) and (4).
Z 01 = Z L01 + JX t1 ... (3)
Z 02 = Z L02 + JX t2 ... (4)
Where Z L01 = Of the line from the ground fault point P to the power transformer TR1
Zero-phase impedance
Z L02 = Of the line from the ground fault point P to the bank transformer TR2
Zero-phase impedance
X t1 = Zero-phase impedance (reactance) of power transformer TR1
X t2 = Zero-phase impedance (reactance) of bank transformer TR2
[0014]
Similarly, the positive impedance Z of the entire system viewed from the ground fault point P 1 And anti-phase impedance Z 2 , The positive and negative phase impedances Z from the ground fault point P to the power transformer TR1 side. 11 , Z 21 And negative phase impedance Z on the bank transformer TR2 side from the ground fault point P 12 , Z 22 , And can be expressed as in equations (5) and (6).
Z 1 = Z 11 ・ Z 12 / (Z 11 + Z 12 ・ ・ ・ ・ ・ (5)
Z 2 = Z 21 ・ Z 22 / (Z 21 + Z 22 ) ・ ・ ・ ・ ・ (6)
Where Z 11 = Positive phase impedance from the ground fault point P to the power transformer TR1 side
Z 21 = Reverse-phase impedance from the ground fault point P to the power transformer TR1
Z 12 = Positive phase impedance from the ground fault point P to the bank transformer TR2 side
Z 22 = Reverse-phase impedance from ground fault point P to bank transformer TR2 side
[0015]
Here, for simplicity of calculation, the positive-phase impedance Z of the entire system viewed from the ground fault point P is shown. 1 And the negative impedance Z of the whole system viewed from the ground fault point P 2 Is ignored because it is small, the equation (2) is substituted into the equation (1), and the ground fault current Ig can be obtained as shown in the equation (7).
Figure 0003550679
[0016]
Further, the ground fault current shunted to the neutral points E1 and E2 of the power transformer TR1 and the bank transformer TR2 is a zero-phase impedance Z when the power transformer TR1 side is viewed from the ground fault point P. 01 And zero-phase impedance Z looking at bank transformer TR2 side from ground fault point P 02 Therefore, the shunt current Ig1 of the ground fault current Ig shunted to the neutral point E1 on the side of the power transformer TR1 can be obtained by Expression (8).
Figure 0003550679
[0017]
Similarly, the shunt current Ig2 of the ground fault current Ig shunting to the neutral point E2 on the side of the bank transformer TR2 can be obtained by equation (9).
Figure 0003550679
[0018]
Therefore, since the ground fault phase current Ia2 and the healthy phase currents Ib and Ic on the bank transformer TR2 side from the ground fault point P are 1 / of the shunt current Ig2, the equation (10) is obtained.
Ia2 = Ib = Ic = Ea / (Z L02 + JX t2 ) ・ ・ (10)
[0019]
The ground fault phase current Ia2 and the sound phase currents Ib and Ic on the bank transformer TR2 side from the ground fault point P can be expressed by the above equation (10), but the line from the ground fault point P to the bank transformer TR2 is Zero-phase impedance Z L02 Is very small due to the short distance, and considering only the zero-phase reactance of the bank transformer TR2, these currents are approximately 90 ° delayed from the A relative ground voltage Ea before the ground fault occurs, and the bank transformer TR2 This is a current flowing from the side toward the power transformer TR1. However, when the direction of these currents is "positive" from the power transformer TR1 toward the bank transformer TR2, the ground fault phase current Ia2 on the bank transformer TR2 side from the ground fault point P is considered. The sound phase currents Ib and Ic can be said to be currents which flow from the power transformer TR1 toward the bank transformer TR2 and have a phase leading by approximately 90 ° with respect to the A relative ground voltage Ea before the occurrence of the ground fault. That is, the equation (10) becomes the equation (11).
Ia2 = Ib = Ic = −Ea / (Z L02 + JX t2 ) ・ ・ (11)
[0020]
Further, since the ground fault phase current Ia1 on the power transformer TR1 side from the ground fault point P is a vector composite current of the shunt current Ig1 and the healthy phase currents Ib and Ic, the equation (12) is obtained.
Figure 0003550679
From equation (12), the ground fault phase current Ia1 on the power transformer TR1 side from the ground fault point P is
This is a current having a phase delayed by about 90 ° with respect to the A relative ground voltage before the occurrence of the ground fault.
[0021]
FIG. 10A is a vector diagram showing a phase relationship between the respective phase currents Ia1, Ib, Ic and the bus voltages Va, Vb, Vc on the power transformer TR1 side from the ground fault point P, and FIG. Is a vector diagram showing a phase relationship between each phase current Ia2, Ib, Ic on the bank transformer TR2 side from the ground fault point P and bus voltages Va, Vb, Vc.
As shown in FIG. 3A, when a single-ground fault occurs in the bus of a substation of the direct grounding type, the ground fault occurs before a ground fault occurs on the power transformer TR1 side from the ground fault point P. Lag current Ia1 of approximately 90 ° flows with respect to the A-phase voltage Va, and currents I and Ic with phases approximately 90 ° ahead of the A-phase voltage Va before the occurrence of ground fault flow in the healthy phase.
Further, as shown in FIG. 3B, on the bank transformer TR2 side from the ground fault point P, the ground fault phase and the sound phase have the same magnitude and lead by approximately 90 ° with respect to the A-phase voltage Va before the occurrence of the ground fault. Phase currents Ia2, Ib, and Ic flow.
[0022]
Next, the response of the short-circuit direction relay to the ground fault current of the substation of the direct grounding type will be described.
FIG. 11 shows a case where an A-phase 1-line ground fault occurs in a bus of a substation of a direct grounding system and is input to the short-circuit direction relay RY1 of the doll section on the receiving line side and the short-circuit direction relay RY2 of the doll section on the bank side. FIG. 4 is a vector diagram showing a phase relationship between a phase current and a bus voltage, and a diagram showing a response of each of the short-circuit direction relays RY1 and RY2 to the input for each phase. In addition, the short-circuit direction relay RY1 of the doll part on the receiving wire side operates for an accident on the power supply side from the relay installation point, and the short-circuit direction relay RY2 of the doll part on the bank side operates for the accident on the bank side from the relay installation point. The vector diagrams of the respective input currents to the short-circuit direction relays RY1 and RY2 shown in the figure show the direction of the fault current flowing from the installation point of the relays RY1 and RY2 to the fault point to be operated. Is 'positive'.
[0023]
Therefore, the short-circuit direction relay RY1 on the receiving wire side is the direction of the fault current to be operated when flowing from the doll section toward the power supply side, and the vector diagram of the input current of the relay RY1 in FIG. The direction flowing toward the side is defined as 'positive'. Therefore, the polarity of the current is opposite to that of the current vectors Ia1, Ib, and Ic on the power supply side from the ground fault point P shown in FIG.
As shown in the figure, the short-circuit direction relay RY1 on the receiving line side does not operate in each phase, but since the ground fault point is the bus, these responses are normal responses that correctly discriminate the direction of the fault point. On the other hand, in the short-circuit direction relay RY2 on the side of the bank transformer, the a-phase which is a ground fault phase is inactive, but the b-phase and the c-phase which are sound phases operate, and the ground fault point is a bus line. Considering that, the relay of the healthy phase is operating unnecessarily despite the accident on the non-operation side of the relay RY2.
[0024]
As described above, the ground fault current when a one-line ground fault occurs at the bus of the direct grounding substation is the same for both the ground fault phase and the sound phase on the bank transformer side from the ground fault point. This is due to the fact that a current having a phase leading by approximately 90 ° with respect to the ground fault phase voltage Va flows. Although the case of the A-phase single-line ground fault has been described so far, the case of the other-phase one-line ground fault and the two-line ground fault also causes a phenomenon in which the healthy-phase relay operates unnecessarily.
Therefore, in a substation of the direct grounding type, when the direction of the short-circuit current and the ground fault current flowing in the doll section is determined by the short-circuit direction relay, and the fault section is determined from the result, the sound phase at the time of the ground fault described above is determined. Since the healthy phase of the short-circuit direction relay operates unnecessarily due to the current, accurate fault section determination cannot be performed.
[0025]
In order to avoid this problem, by setting the operating current value of the short-circuit direction relay to a high setting so that it does not operate with the normal phase current at the time of ground fault, the ground fault current in the direct grounding system is the short-circuit current. As large as the above, the magnitude of the sound phase current at the time of the ground fault as described above is also several thousand A, and since the current value is close to the minimum short-circuit current of the system, there is a possibility that the short-circuit fault detection performance may be reduced. Yes, it is difficult to adopt.
[0026]
According to the present invention, the fault section of the substation of the direct grounding system is determined based on the operation result of the short-circuit direction relay for both the short-circuit and the ground fault. The purpose of the present invention is to provide a failure section determination device that prevents the determination and can correctly determine the failure section.
[0027]
[Means for Solving the Problems]
In the fault section determination device according to the first aspect of the present invention, each of the receiving lines and each transformer of the direct grounding type substation comprising two buses connecting a plurality of receiving lines, a plurality of transformer banks, and a plurality of transmission lines. A first group of short-circuit direction relays for determining the direction of the fault current flowing into and out of the first bus from each of the dolls of the bank and each transmission line; and entering and exiting the second bus from each of the dolls. A second group of short-circuit direction relays for determining the direction of the fault current, a first undervoltage relay for detecting a voltage drop between the first buses, and a phase voltage drop for each of the first buses are detected. A second undervoltage relay, a third undervoltage relay that detects each line voltage drop of the second bus, and a fourth undervoltage relay that detects each phase voltage drop of the second bus, Each phase operation signal of the first undervoltage relay An accident phase of a bus fault involving the first bus is detected from each phase operation signal of the second undervoltage relay, and an operation signal of an accident phase among the phase operation signals of the first short-circuit direction relay group is detected. A first fault phase selecting unit group for selecting a bus fault of the second bus bar based on each phase operation signal of the third undervoltage relay and each phase operation signal of the fourth undervoltage relay. A second fault phase selection unit group for detecting a fault phase and selecting a fault phase operation signal among the phase operation signals of the second short-circuit direction relay group, and an output of the first fault phase selection unit group And a determination unit for detecting an accident section of the bus accident from the output of the second accident phase selection unit group.
[0028]
In the failure section determination device according to the second aspect of the present invention, each of the receiving lines and each transformer of the direct grounding type substation comprising two buses connecting a plurality of receiving lines, a plurality of transformer banks, and a plurality of transmission lines. A first group of short-circuit direction relays for determining the direction of the fault current flowing into and out of the first bus from each of the dolls of the bank and each transmission line; and entering and exiting the second bus from each of the dolls. The first short-circuit direction relay group for determining the direction of the fault current and the phase operation signals of the phase current differential type bus protection relays for protecting the bus fault related to the first bus are used for the first short-circuit direction. A first fault phase selection unit group for selecting a fault phase operation signal among the phase operation signals of the short-circuit direction relay group, and a phase current differential bus for protecting a bus fault involving the second bus. Using each phase operation signal of the protection relay, A second fault phase selector for selecting a fault phase operation signal among the respective phase operation signals of the second short-circuit direction relay group; an output of the first fault phase selector and a second fault phase; A determination unit that detects an accident section of the bus accident from the output of the selection unit group.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an example of an embodiment in which the fault zone judging device according to the first aspect of the present invention is applied to a direct grounding type substation having a double bus configuration having two receiving lines and two bank transformers.
In FIG. 1, reference numeral 1 denotes the instep bus, 2 denotes the second bus, 3, 4 denotes the first and second receiving wires, and 5, 6 denote the first and second banks. The neutral points of the power transformers at the transmitting ends of the receiving lines 3 and 4 and the neutral points of the bank transformers 5 and 6 are directly grounded.
[0030]
Each of the receiving wires 3 and 4 and each of the banks 5 and 6 are separated from a portion called a doll portion at the center of the instep bus 1 and the instep bus 2 to the instep bus side disconnectors 3a to 6a and the instep bus side disconnectors 3b to 3b. 6b, it is configured to be connectable to both the instep bus 1 and the inversion bus 2, but usually one of the instep bus side disconnectors 3a to 6a or the inversion bus side disconnectors 3b to 6b is closed, and the other is closed. By being opened, it is selectively connected to either the instep bus 1 or the instep bus 2. FIG. 1 shows the standard connection, in which the instep bus 1 is supplied with power from a first receiving line 3 and the second bus 2 is supplied with power from a second receiving line 4. The first bank 5 is connected to the instep bus 1, and the second bank 6 is connected to the second bus 2.
[0031]
Reference numerals 3c to 6c denote optical CTs attached to the doll parts of the receiving wires 3 and 4 and the doll parts of the banks 5 and 6 near the instep bus-side disconnectors 3a to 6a. Is a current sensor for detecting. Similarly, reference numerals 3d to 6d denote optical CTs mounted near the doll parts of the receiving wires 3 and 4 and the doll parts of the banks 5 and 6 near the maiden line-side disconnectors 3b to 6b. It is a current sensor for detecting a current flowing in and out. Reference numeral 7 denotes an instrument transformer of the instep bus 1, and reference numeral 8 denotes an instrument transformer of the maiden bus 2. Reference numeral 9 denotes an optical fiber cable for transmitting output signals of the optical CTs 3c to 6c and the optical CTs 3d to 6d.
[0032]
Reference numerals 3g to 6g denote short-circuit direction relays that respond to the currents detected by the light CTs 3c to 6c, and determine the direction of an accident current passing through the instep bus 1 side of each doll section based on the in-line bus voltage. Reference numerals 3h to 6h denote short-circuit direction relays that respond to the currents detected by the light CTs 3d to 6d, and determine the direction of the fault current passing through the doll bus 2 side of each doll section based on the bus voltage of the doll bus 2.
[0033]
Reference numeral 12 denotes a first undervoltage relay that detects a drop in the line voltage of the instep bus 1, and reference numeral 13 denotes a second undervoltage relay that detects a drop in the phase voltage of the instep bus 1. Reference numeral 14 denotes a third undervoltage relay that detects a drop in the line voltage of the maiden bus 2, and reference numeral 15 denotes a fourth undervoltage relay that detects a drop in the phase voltage of the maiden bus 2.
In addition, 3i to 6i are based on the respective phase operation signals of the first undervoltage relay 12 and the second undervoltage relay 13, and the short-circuit accident and ground of the instep bus 1 and the receiving line 3 connected to the instep bus 1 and the bank 5 This is a first fault phase selection unit that detects the fault occurrence phase of a fault and selects and outputs only the fault occurrence phase among the respective phase operation signals of the short-circuit direction relays 3g to 6g.
[0034]
Similarly, 3j to 6j indicate the short-circuit accidents of the sub-bus 2 and the receiving line 4 connected to the sub-bus 2 and the bank 6 from the respective phase operation signals of the third under-voltage relay 14 and the fourth under-voltage relay 15. A second fault phase selector that detects the fault occurrence phase of the ground fault and selects and outputs only the fault occurrence phase among the respective phase operation signals of the short-circuit direction relays 3h to 6h.
Reference numeral 16 denotes a determination unit for automatically determining an accident section of a bus accident from the outputs of the first accident phase selection units 3i to 6i and the second accident phase selection units 3j to 6j.
[0035]
FIG. 1 shows an example of application to a substation having a double-bus configuration having two receiving lines 3 and 4 and two banks 5 and 6. This can be dealt with by providing a configuration having the optical CTs, the short-circuit direction relays, and the fault phase selection units corresponding to the numbers. FIG. 1 shows an example in which optical CT is applied to a current sensor for detecting a current flowing into and out of each of the doll parts to the instep bus 1 and the inversion bus 2. In the failure section determination device according to the present invention, a current transformer for an instrument or the like is used. Application of the current sensor described above is also possible.
[0036]
Here, the operation of the first undervoltage relay 12 and the second undervoltage relay 13 will be described.
FIG. 3 shows, as an example, a three-phase short-circuit, a BC-phase two-phase short-circuit, an A-phase one-wire ground fault, and a BC-phase two-wire ground fault. 12 shows the response of the second undervoltage relay 12 and the second undervoltage relay 13. The figures in the figure are the line voltage values and the phase voltage values (converted to the secondary voltage of the transformer 7 for the instrument) of the bus voltage in the case of a complete short circuit or a complete ground fault with the fault point resistance set to zero. . Note that the detection sensitivity of each of the undervoltage relays 12 and 13 for explaining the response of the first and second undervoltage relays 12 and 13 to each bus accident mode is, for example, 50% detection of the accident mode. The first undervoltage relay 12 is set to 55V, and the second undervoltage relay 13 is set to 32V.
[0037]
As shown in the figure, when a three-phase short circuit occurs, the voltage between the A-B line, the voltage between the B-C line, and the voltage between the C-A lines all decrease to almost zero. Is almost zero. Therefore, a short-circuit phase can be detected from the operating phase of the first undervoltage relay 12 that detects a drop in line voltage. When a one-line ground fault occurs, the phase voltage of the ground fault phase becomes almost zero, whereas the phase voltage of the sound phase hardly changes. Therefore, a ground fault phase can be detected from the operating phase of the second undervoltage relay 13 that detects a decrease in phase voltage. A two-wire ground fault is a short-circuit between two phases via the ground. The line voltage in the accident phase becomes almost zero and the phase voltage also becomes almost zero. The second undervoltage relay 13 and the second undervoltage relay 13 operate together, and an accident phase can be detected from their operation phases.
[0038]
As described above, from the operating phases of the first undervoltage relay 12 for detecting a decrease in the line voltage of the instep bus 1 and the second undervoltage relay 13 for detecting a drop in the phase voltage, the instep bus 1 and the instep 1 In this case, an accident phase of a short circuit accident and a ground fault accident of the receiving line 3 and the bank 5 connected to the power line 3 can be detected. The same applies to the operation of the third undervoltage relay 14 and the fourth undervoltage relay 15, and from the operation phases thereof, a short circuit accident occurs between the second bus 2, the receiving wire 4 connected to the second bus 2, and the bank 6. And the fault phase of a ground fault can be detected.
[0039]
Next, the operation of the first accident phase selector 3i will be described.
FIG. 4 is an example of a specific configuration of the first accident phase selection unit 3i.
The fault phase selection unit 3i detects a short-circuit phase from the respective operation signals corresponding to the drop in the line voltage of each of the AB, BC, and CA phases of the first undervoltage relay 12 by the OR gates 20a, 20b, and 20c. OR gates 21a, 21b, and 21c OR the respective operating signals with respect to the reduction in the phase voltages of the A, B, and C phases of the second undervoltage relay 13 to obtain the buses 1 and 2 The fault phase of the short circuit and ground fault of the receiving line 3 and the bank 5 connected to the bus 1 is detected.
[0040]
Further, the AND gates 22a, 22b, and 22c perform a logical product of the fault phase conditions and the operation signals of the respective phases, which are the results of the direction determination of the respective phase currents of the phases A, B, and C of the short-circuit direction relay 3g. And summing up the results by the OR gate 23, thereby selecting only the faulty phase among the respective phase operation signals of the short-circuit direction relay 3g, and determining the direction of the fault current passing through the instep bus 1 side of the doll part. Can be output to the determination unit 16.
[0041]
Similarly, the other first fault phase selectors 4i to 6i can selectively output only the fault phase among the phase operation signals of the corresponding short-circuit direction relays 4g to 6g.
Further, the second fault phase selection units 3j to 6j select only fault phases from the operation signals of the short-circuit direction relays 3h to 6h from the operation signals of the third undervoltage relay 14 and the fourth undervoltage relay 15. This is an output, in which the operation of the first accident phase selection units 3i to 6i is replaced with the maiden bus 2 side.
[0042]
By the operation of the first accident phase selection units 3i to 6i and the second accident phase selection units 3j to 6j, the determination unit 16 determines a failure section based on the direction determination result of only the accident phase in each doll. Can be performed, and erroneous determination of a fault section due to unnecessary operation of the directional relay on the sound phase side in the event of a ground fault at a substation of the direct grounding type can be prevented.
[0043]
Next, an example of the embodiment of the invention will be described.
FIG. 2 shows an example of an embodiment in which the fault zone judging device according to the second aspect of the present invention is applied to a double-bus direct-grounding type substation having two receiving lines and two bank transformers.
In FIG. 2, reference numeral 17 denotes an operation signal for each phase of the bus protection relay on the instep bus 1 side, and reference numeral 18 denotes an operation signal for each phase of the bus protection relay on the second bus line 2 side. Reference numerals 3k to 6k denote first fault phase selectors for selectively outputting only the fault occurrence phase among the phase operation signals of the short-circuit direction relays 3g to 6g from the operation signal 17 of the bus protection relay on the instep bus 1 side. . Similarly, reference numerals 3l to 6l denote second fault phase selectors for selectively outputting only the fault occurrence phase among the phase operation signals of the short-circuit direction relays 3h to 6h from the operation signal 18 of the bus protection relay on the second bus 2 side. is there. Further, since the other configuration is the same as that of FIG. 1, the same portions are denoted by the same reference numerals, and the duplicate description thereof will be omitted.
[0044]
Here, the operation of the current differential type bus protection relay normally applied to the bus protection of the direct ground type substation will be described.
At all times and at the time of an external accident, the inflow current to the bus is always the outflow current, so the total obtained by vector addition of the currents flowing into and out of the bus from each receiving line connected to the bus and each bank is zero. However, at the time of a bus fault, the fault current flows in, but since there is usually no flow current, the sum does not become zero. From this, the bus protection relay adds the current flowing into and out of the bus from each receiving line connected to the bus and each bank, and adds the current to each bus for each phase, and monitors the sum to determine whether the bus has an internal or external accident. Is what you do.
[0045]
As described above, the current differential type bus protection relay performs vector addition for each phase of current flowing into and out of the bus from each receiving line and each bank connected to the bus, and when the sum exceeds a predetermined value. Since it is configured to operate, when an accident current flows into the accident phase due to a short circuit accident or a ground fault accident, the accident current is detected and the bus protection relay of the accident phase operates. However, in the ground fault of the direct grounding substation described above, the ground fault current flowing to the healthy phase side through the neutral point of each directly grounded bank transformer flows through the bus and to the power transformer, Since the inflow current is equal to the outflow current and the subtraction becomes zero, the bus protection relay of the sound phase does not needlessly operate.
[0046]
FIG. 5 shows the relationship between the bus fault condition of the direct grounding type substation and each phase operation signal of the current differential type bus protection relay. As shown in the figure, in the case of a three-phase short circuit, the bus protection relay operates in three phases, and in the case of a two-phase short circuit and a two-wire ground fault, two phases, which are the accident phases thereof, operate. In addition, in the case of a one-line ground fault, the bus protection relay operates in only one phase of the fault phase.
As described above, the operating phase of the current-differential bus protection relay matches the fault phase of the bus fault, that is, judging the fault phase of the bus fault from the operating phase of the current differential bus protection relay. Can be.
[0047]
From this, the first fault phase selector 3k selects and outputs only the fault phase from the phase operation signals 17 of the bus protection relay on the instep bus 1 side to the phase operation signals of the short-circuit direction relay 3g. 6 is an example of a specific configuration of the first accident phase selection unit 3k.
Since the operation phase of the bus protection relay 17 coincides with the fault phase of the bus fault, the AND gates 24a, 24b and 24c operate the respective phase operation signals of the bus protection relay and the A phase, B phase and C phase of the short-circuit direction relay 3g. The logical product of each phase current and the operation signal of each phase, which is the direction determination result of each phase current, is obtained, and the result is aggregated by the OR gate 25 to select only the faulty phase among the operation signals of each phase of the short-circuit direction relay 3g. Then, it can be output to the determination unit 16 as a direction determination result of the fault current passing through the instep bus 1 side of the doll section.
[0048]
Similarly, the other first fault phase selectors 4k to 6k selectively output only the fault phase from the phase operation signals of the corresponding short-circuit direction relays 4g to 6g. The second fault phase selectors 31 to 61 select and output only the fault phase from the phase operation signals of the corresponding short-circuit direction relays 3j to 6j from the phase operation signals 18 of the bus protection relays on the second bus 2 side. Things.
By the operation of the first accident phase selection units 3k to 6k and the second accident phase selection units 31 to 61, the determination unit 16 determines the failure section based on the direction determination result of only the accident phase in each doll. This makes it possible to prevent erroneous determination of a fault section due to unnecessary operation of the directional relay on the sound phase side in the event of a ground fault in a direct grounding type substation.
[0049]
【The invention's effect】
As described above, according to the present invention, a faulty section can be accurately determined because there is no influence of unnecessary operation of a healthy-phase directional relay at the time of a ground fault in a substation of a direct grounding system.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of an embodiment of a fault zone determination device according to the present invention;
FIG. 2 is an explanatory diagram showing an example of an embodiment of a failure section determination device according to the invention of claim 2;
FIG. 3 is an explanatory diagram showing an operation of the undervoltage relay according to the first embodiment of the present invention.
FIG. 4 is an explanatory diagram of an example of a specific configuration of the accident phase selection unit according to the first embodiment of the present invention.
FIG. 5 is an explanatory diagram showing the operation of the bus protection relay according to the second aspect of the present invention.
FIG. 6 is an explanatory diagram of an example of a specific configuration of an accident phase selection unit according to the second aspect of the present invention.
FIG. 7 is an operation characteristic diagram of the directional relay.
FIG. 8 is an explanatory diagram of a direction of a ground fault current of a direct grounding system.
FIG. 9 is a zero-phase circuit of a direct grounding system.
FIG. 10 is a current / voltage vector diagram at the time of one-line ground fault of the direct grounding system.
FIG. 11 is an explanatory diagram of a response of a short-circuit direction relay at the time of one-line ground fault of a direct grounding system.
FIG. 12 is an explanatory diagram of a conventional failure section determination device.
[Explanation of symbols]
1,2 busbar
3,4 receiving wire
5,6 transformer bank
7,8 Instrument transformer
3g-6g, 3h-6h Directional relay
3i to 6i, 3j to 6j The accident phase selector according to the invention of claim 1
3k to 6k, 3l to 6l Accident phase selection unit according to the invention of claim 2
12,13,14,15 Undervoltage relay
16 Judgment unit
17, 18 Operation signal of bus protection relay

Claims (2)

複数の受電線と複数の変圧器バンクと複数の送電線とを接続した2つの母線から成る直接接地方式変電所の前記各受電線、各変圧器バンク、および各送電線のそれぞれの人形部から前記第1の母線に出入りする事故電流の方向を判定する第1の短絡方向継電器群と、
前記それぞれの人形部から前記第2の母線に出入りする事故電流の方向を判定する第2の短絡方向継電器群と、
前記第1の母線の各線間電圧低下を検出する第1の不足電圧継電器と、
前記第1の母線の各相電圧低下を検出する第2の不足電圧継電器と、
前記第2の母線の各線間電圧低下を検出する第3の不足電圧継電器と、
前記第2の母線の各相電圧低下を検出する第4の不足電圧継電器と、
前記第1の不足電圧継電器の各相動作信号と前記第2の不足電圧継電器の各相動作信号とから前記第1の母線の係わる母線事故の事故相を検出し、前記第1の短絡方向継電器群の各相動作信号のうち事故相の動作信号を選択する第1の事故相選択部群と、
前記第3の不足電圧継電器の各相動作信号と前記第4の不足電圧継電器の各相動作信号とから前記第2の母線の係わる母線事故の事故相を検出し、前記第2の短絡方向継電器群の各相動作信号のうち事故相の動作信号を選択する第2の事故相選択部群と、
前記第1の事故相選択部群の出力と前記第2の事故相選択部群の出力とから母線事故の事故区間を検出する判定部と、
を備えたことを特徴とする変電所故障区間判定装置。
From each receiving line, each transformer bank, and each figure of each transmission line of a direct grounding substation consisting of two buses connecting a plurality of receiving lines, a plurality of transformer banks, and a plurality of transmission lines. A first group of short-circuit direction relays for determining a direction of an accident current flowing into and out of the first bus;
A second group of short-circuit direction relays for determining a direction of an accident current flowing into and out of the second bus from each of the doll parts;
A first undervoltage relay for detecting each line voltage drop of the first bus,
A second undervoltage relay for detecting each phase voltage drop of the first bus,
A third undervoltage relay for detecting a voltage drop between the lines of the second bus,
A fourth undervoltage relay for detecting each phase voltage drop of the second bus,
Detecting an accident phase of a bus fault involving the first bus from each phase operation signal of the first undervoltage relay and each phase operation signal of the second undervoltage relay; A first accident phase selection unit group for selecting an operation signal of an accident phase among the phase operation signals of the group;
Detecting an accident phase of a bus fault involving the second bus from each phase operation signal of the third undervoltage relay and each phase operation signal of the fourth undervoltage relay; A second accident phase selection unit group for selecting an operation signal of an accident phase among the phase operation signals of the group;
A determination unit that detects an accident section of a bus accident from an output of the first accident phase selection unit group and an output of the second accident phase selection unit group;
A substation failure section determination device, comprising:
複数の受電線と複数の変圧器バンクと複数の送電線とを接続した2つの母線から成る直接接地方式変電所の前記各受電線、各変圧器バンク、および各送電線のそれぞれの人形部から前記第1の母線に出入りする事故電流の方向を判定する第1の短絡方向継電器群と、
前記それぞれの人形部から前記第2の母線に出入りする事故電流の方向を判定する第2の短絡方向継電器群と、
前記第1の母線の係わる母線事故の保護を行う各相電流差動方式母線保護継電器の各相動作信号を用いて、前記第1の短絡方向継電器群の各相動作信号のうち事故相の動作信号を選択する第1の事故相選択部群と、
前記第2の母線の係わる母線事故の保護を行う各相電流差動方式母線保護継電器の各相動作信号を用いて、前記第2の短絡方向継電器群の各相動作信号のうち事故相の動作信号を選択する第2の事故相選択部群と、
前記第1の事故相選択部群の出力と前記第2の事故相選択部群の出力とから母線事故の事故区間を検出する判定部と、
を備えたことを特徴とする変電所故障区間判定装置。
From each receiving line, each transformer bank, and each figure of each transmission line of a direct grounding substation consisting of two buses connecting a plurality of receiving lines, a plurality of transformer banks, and a plurality of transmission lines. A first group of short-circuit direction relays for determining a direction of an accident current flowing into and out of the first bus;
A second group of short-circuit direction relays for determining a direction of an accident current flowing into and out of the second bus from each of the doll parts;
The operation of the fault phase of the phase operation signals of the first group of short-circuit direction relays is performed by using each phase operation signal of each phase current differential type bus protection relay that protects the bus fault involving the first bus. A first accident phase selector group for selecting a signal;
The operation of the fault phase among the phase operation signals of the second short-circuit direction relay group using each phase operation signal of each phase current differential type bus protection relay that protects the bus fault involving the second bus. A second accident phase selector group for selecting a signal;
A determination unit that detects an accident section of a bus accident from an output of the first accident phase selection unit group and an output of the second accident phase selection unit group;
A substation failure section determination device, comprising:
JP18163099A 1999-06-28 1999-06-28 Substation failure section determination device Expired - Fee Related JP3550679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18163099A JP3550679B2 (en) 1999-06-28 1999-06-28 Substation failure section determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18163099A JP3550679B2 (en) 1999-06-28 1999-06-28 Substation failure section determination device

Publications (2)

Publication Number Publication Date
JP2001016767A JP2001016767A (en) 2001-01-19
JP3550679B2 true JP3550679B2 (en) 2004-08-04

Family

ID=16104139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18163099A Expired - Fee Related JP3550679B2 (en) 1999-06-28 1999-06-28 Substation failure section determination device

Country Status (1)

Country Link
JP (1) JP3550679B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101122380B1 (en) 2010-09-29 2012-03-27 한국전력공사 Metering current transformer arrangement system for improvement of electrical equipment
JP7008551B2 (en) 2018-03-20 2022-01-25 三菱電機株式会社 Failure determination device and protective relay device
CN111244907B (en) * 2020-01-17 2022-09-09 中国电力科学研究院有限公司 On-off time sequence control method and system of breaker in transformer substation

Also Published As

Publication number Publication date
JP2001016767A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
CA2295342C (en) Fault-detection for powerlines
CA2463575C (en) Protective relay capable of protection applications without protection settings
US7995315B2 (en) Ground fault protection circuit for multi-source electrical distribution system
JP2000125462A (en) Distance relay
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JP3550679B2 (en) Substation failure section determination device
JP3028179B2 (en) Bidirectional protective relay system and bidirectional protective distance relay in electric line
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP3831945B2 (en) Substation failure section determination device
JPH033451B2 (en)
CN205646770U (en) Adaptive zero line broken string protection device and system
JPH11178199A (en) Distance relay
Yang et al. Setting calculation of the directional relays considering dynamic changes in the network topology
JP2003143747A (en) Monitoring and protection method for power system, and program
JP3075607U (en) Ground fault protection device
JPH0548139Y2 (en)
JPH04161023A (en) Detector of ground fault section of distribution line
JP2561984B2 (en) Substation fault section detection system
JPH05284643A (en) Fault section locating system for substation
JPH09205724A (en) Grounding distance relaying apparatus
JPH0235539B2 (en) ITSUSENCHIRAKUKENSHUTSUKEIDENKI
JPH03243114A (en) Current differential protective relay for transmission line
JPH0283467A (en) Apparatus for detecting distribution line accident section
JPH07231557A (en) Short circuit line selection relay
JPH0580108A (en) Ground shortcircuit sensing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3550679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees