JPH03243114A - Current differential protective relay for transmission line - Google Patents

Current differential protective relay for transmission line

Info

Publication number
JPH03243114A
JPH03243114A JP2041568A JP4156890A JPH03243114A JP H03243114 A JPH03243114 A JP H03243114A JP 2041568 A JP2041568 A JP 2041568A JP 4156890 A JP4156890 A JP 4156890A JP H03243114 A JPH03243114 A JP H03243114A
Authority
JP
Japan
Prior art keywords
phase
current
transmission line
zero
operating section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2041568A
Other languages
Japanese (ja)
Other versions
JPH082137B2 (en
Inventor
Toshiki Hattori
俊樹 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2041568A priority Critical patent/JPH082137B2/en
Publication of JPH03243114A publication Critical patent/JPH03243114A/en
Publication of JPH082137B2 publication Critical patent/JPH082137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To surely judge a faulty phase by a method wherein a second operating section judges the phase relation between an output current and a zere-phase voltage and a third operating section judges the one-line ground fault phase in a transmission line based on the logical product of outputs from first and second operating sections. CONSTITUTION:When a one-line ground fault occurs, the phase of differential current in the fault phase is reversed from that of zero-phase voltage whereas it is in-phase for the sound phase, and thereby only second operating section 27A produces an output signal and other second operating sections 27B, 27C do not produce output signal. Since the output level of the second operating section 27B is L even when the first operating section 26B of a sound phase, e.g. phase B, produces an output signal through erroneous operation, output level of a third operating section 28B for taking a logical product goes L, and thereby the sound phase is not erroneously judged as a faulty phase resulting in the improvement of reliability as a protective unit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電流差動演算に基づいて電力系統を保護する
送電線電流差動保護装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power transmission line current differential protection device that protects a power system based on current differential calculation.

〔従来の技術〕[Conventional technology]

第3図は一般的な高抵抗接地電力系統保護システムを示
す構成図である9図において、(1)は保護対象となる
電力系統の送電線であり、便宜上単線で示しているが、
実際はA相、B相およびC相の3相線からなっている。
Figure 3 is a block diagram showing a general high-resistance grounding power system protection system. In Figure 9, (1) is the power transmission line of the power system to be protected, which is shown as a single line for convenience.
Actually, it consists of three phase wires: A phase, B phase, and C phase.

(2)は送電線(1)の一方の端部に設けられた端局で
ある自端、(3)は自端(2)から所定距離前れた送電
線(1)のもう一方の端部に設けられた端局である相手
端、(4)は自端(2)に設置された自端電気所の母線
、(5)は相手端(3)に設置された相手端電気所の母
線、(6)は自端電流11を自端電流情報として検出す
るための自端CT、(7)は相手端電流I2を相手端電
流情報として検出するための相手端CT、(8)は自端
電気所の母線電圧v1を自端電圧情報として検出するた
めの自端母線PT、(9)は相手端電気所の母線電圧■
2を相手端電圧情報として検出するための相手端母線P
T、(10)は送電線(1)を自端(2)において遮断
するための自端遮断器、(11)は送電線(1)を相手
端(3)において遮断するための相手端遮断器である。
(2) is the terminal station installed at one end of the transmission line (1), and (3) is the other end of the transmission line (1) located a predetermined distance ahead of the transmission line (2). The other end is the terminal station installed at the other end, (4) is the busbar of the own end electric station installed at the own end (2), and (5) is the bus bar of the other end electric station installed at the other end (3). Bus bar, (6) is own end CT for detecting own end current 11 as own end current information, (7) is opposite end CT for detecting opposite end current I2 as opposite end current information, (8) is Own-end bus PT for detecting the bus voltage v1 of the own-end electrical station as own-end voltage information, (9) is the bus voltage of the opposite-end electrical station■
The other end bus line P for detecting 2 as the other end voltage information
T, (10) is a self-end circuit breaker for disconnecting the power transmission line (1) at its own end (2), and (11) is a counter-end circuit breaker for disconnecting the power transmission line (1) at the opposite end (3). It is a vessel.

(12)は自端(2)に設けられた送電線電流差動保護
装置としての自端リレー装置、(13)は相手端(3)
に設けられた同しく送電線電流差動保護装置としての相
手端リレー装置で、通常これら各リレー装置(12)お
よび(13)は、それぞれ自端CT(6)、自端母線P
T(8)および相手端CT(7)、相手端母線PT(9
)に接続されている。
(12) is an own-end relay device as a transmission line current differential protection device installed at the own end (2), (13) is the other end (3)
These relay devices (12) and (13) are normally connected to their own end CT (6) and their own end bus P, respectively.
T (8), the other end CT (7), the other end bus PT (9
)It is connected to the.

(]4)は自端リレー装置1ifi(12)に接続され
た自端通信装置、(15)は相手端リレー装置(13)
に接続された相手端通信装置、(16)は自端通信装置
(14)と相手端通信装置(15)とを接続する伝送路
で、自端リレー装置(12)および相手端リレー装置(
13)の電流情報に係るデジタルデータを相互に伝送す
る。
(]4) is the own-end communication device connected to the own-end relay device 1ifi (12), (15) is the other-end relay device (13)
The other end communication device (16) is a transmission path connecting the own end communication device (14) and the other end communication device (15), and the own end relay device (12) and the other end relay device (16) are connected to the other end communication device (16).
13) mutually transmit digital data related to current information.

第4図は従来の自端リレー装! (12)の内部構成を
示す機能ブロック図であり、図示しない相手端リレー装
置(13)も同一の構成を有している。
Figure 4 shows the conventional self-end relay installation! (12) is a functional block diagram showing the internal configuration of the device (12), and the other end relay device (13), not shown, also has the same configuration.

図において、(17)および(18)はそれぞれ自端電
流■、および母線電圧V1か入力される入力変換器、(
19)および(20)はそれぞれ入力変換器(17)お
よび(18)に接続されたフィルター回路、(21)は
フィルター回路(19)(20)からの自端電流電圧情
報を自端デジタルデータに変換するA/D変換器、く2
2)は自端通信装置(14)に接続された伝送インター
フェースで、相手端(3)に対して自端デジタルデータ
を導出するとともに、相手端デジタルデータを導入する
ようになっている。(23)は自端電流丁、と相手端電
流■2とから差電流Idを演算する演算部、(24)は
差電流Idから送電線(1)の事故を判定する比率保護
演算部である。
In the figure, (17) and (18) are the input converter to which the terminal current ■ and the bus voltage V1 are input, respectively, (
19) and (20) are filter circuits connected to input converters (17) and (18), respectively, and (21) converts self-end current and voltage information from the filter circuits (19) and (20) into self-end digital data. A/D converter to convert, ku2
2) is a transmission interface connected to the own end communication device (14), which derives the own end digital data to the other end (3) and introduces the other end digital data. (23) is a calculation unit that calculates the difference current Id from the own end current 2 and the opposite end current 2, and (24) is a ratio protection calculation unit that determines a fault in the transmission line (1) from the difference current Id. .

なお、ここでは電流、電圧と61相分しか図示していな
いが、実際は3相または零相回路がある場合は合計4相
の構成となる。
Although only current, voltage, and 61 phases are shown here, in reality, if there is a three-phase or zero-phase circuit, the configuration will be a total of four phases.

次に、例えば送電線(1)のA相に1線地絡事故が発生
した場合を想定し、この場合の事故電流め流れる状況と
保護検出の動作について第5図により説明する。
Next, assuming that a one-line ground fault occurs in the A phase of the power transmission line (1), for example, the situation in which the fault current flows and the protection detection operation in this case will be explained with reference to FIG.

第5図において、(IA)(IB)(IC>は各相通電
線、(61A>(61B>(61C)は自端CT (6
1の各相2次巻線、(62Aj(62B>(62c )
は自端CT(6)の各相3次巻線で、通常、これら2次
巻線および3次巻線は各相毎に同一鉄心に巻回した一体
形CTの構造として経済性、小形化か図られている。同
様に、(71A)(71B>(71C)は相手端CT(
7)の各相2次巻線、(72A)(72B)(72C)
は相手端CT(7)の各相3次巻線である。
In Fig. 5, (IA) (IB) (IC> is the conductive line for each phase, (61A>(61B>(61C) is the self-end CT (6
1 secondary winding for each phase, (62Aj (62B>(62c)
are the tertiary windings for each phase of the self-end CT (6). Normally, these secondary and tertiary windings are wound around the same core for each phase as an integrated CT structure, which is economical and compact. is being planned. Similarly, (71A) (71B>(71C) means that the other end CT (
7) Secondary windings for each phase, (72A) (72B) (72C)
are the tertiary windings of each phase of the opposite end CT (7).

1線地絡時の事故電流は周知のように事故時の零相分電
流の3倍となる。今、自端(2)側から事故点へ流れ込
む事故電流を3■1、相手端(3)側から事故点へ流れ
込む事故電流を3■2とした場合、両CT(6)(7)
の各巻線に流れる電流は第5図に示す通りとなる。但し
、便宜上、各CT(6)(7)の各巻線の巻数比は1と
している。
As is well known, the fault current at the time of a one-wire ground fault is three times the zero-sequence current at the time of the fault. Now, if the fault current flowing from the own end (2) side to the fault point is 3*1, and the fault current flowing from the opposite end (3) side to the fault point is 3*2, then both CTs (6) (7)
The current flowing through each winding is as shown in FIG. However, for convenience, the turns ratio of each winding of each CT (6) (7) is set to 1.

従って、A相の自端リレー装置(12)の比率保護演算
部(24)に入力される差電流Tdは次式て表わされる
値となる。
Therefore, the difference current Td input to the ratio protection calculation unit (24) of the A-phase self-end relay device (12) has a value expressed by the following equation.

I d= T A、二IA、、 =2 I 、+2 I
2= 2 (T 、+ I 2)≠O 但し、IA+は自端CT(6)の、へ相2次巻線(61
A)から流出する電流、IA2は相手端CT(7)のA
相2次巻線(7tA)から流出する電流である。
I d= T A, 2 I A, =2 I , +2 I
2 = 2 (T, + I 2)≠O However, IA+ is the phase secondary winding (61
The current flowing out from A), IA2 is the A of the other end CT (7)
This is the current flowing out from the phase secondary winding (7 tA).

従って、この差電流Idの大きさを比率保護演算部(2
4)で演算判定して1線地絡の事故相を特定することが
できる訳である。
Therefore, the magnitude of this difference current Id is calculated by the ratio protection calculation unit (2
4) makes it possible to determine the fault phase of a one-wire ground fault.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記の場合における他相、B、C相の動作に
着目してみると、例えばB相の比率保護演算部(24)
に入力される差電流Idは次式で表わされる値となる。
By the way, if we pay attention to the operations of the other phases, B and C phases in the above case, for example, the ratio protection calculation unit (24) of the B phase
The difference current Id input to is a value expressed by the following equation.

I d= I Q、+ I B2=−I l−I 2(
11÷I2)≠0 但し、IB+は自端CT(6)のB相2次巻線(61B
)から流出する電流、IB2は相手端CT(7)のB相
巻線(71B)から流出する電流である。このように自
端CT(6)の事故相以外の相の2次巻線にも電流が流
れるのは以下の理由による。
I d= I Q, + I B2=-I l-I 2 (
11÷I2)≠0 However, IB+ is the B-phase secondary winding (61B
), IB2 is a current flowing out from the B-phase winding (71B) of the other end CT (7). The reason why current also flows through the secondary windings of phases other than the fault phase of the self-end CT (6) is as follows.

即ち、自端CT(6>には零相電流検出用の3次巻線(
62A)(62B)(62C)が巻回されており、これ
ら各相巻線は外部で相互に結線され閉回路が形成されて
いる。従って、各相巻線(62A)(62B)(62C
)には等しく零相電流■1が流れることになる。この結
果、これら3次巻線と同一鉄心に巻回された2次巻線に
は、変圧器のいわゆる等アンペアターンの作用で第5図
に示すように電流が流れる。なお、A相では送電線であ
る1次巻線の電流3I、と2次巻線(61A)の電流2
 I 1および3次巻線(62A)の電流T、とで等ア
ンペア−ターンが成立する。
That is, the self-end CT (6> has a tertiary winding (
62A), (62B), and (62C) are wound, and these phase windings are connected to each other externally to form a closed circuit. Therefore, each phase winding (62A) (62B) (62C
), the zero-sequence current ■1 will equally flow through them. As a result, current flows through the secondary windings wound on the same core as these tertiary windings due to the so-called equal ampere turn of the transformer, as shown in FIG. In addition, in the A phase, the current of the primary winding (3I), which is the power transmission line, and the current of the secondary winding (61A), 2
Equal ampere-turns are established between I1 and the current T of the tertiary winding (62A).

以上のように、事故相であるA相とは逆極性で大きさが
1/2となるが、B相(C相も同様)にも差電流Idが
流れ比率保護演算部(24)がこれで動作することかあ
り、リレー装置として誤動作となる可能性かあるという
問題点があった。
As described above, the polarity is opposite to that of phase A, which is the fault phase, and the magnitude is 1/2, but the difference current Id also flows to phase B (same as phase C), and the ratio protection calculation unit (24) There was a problem that the relay device could malfunction.

この発明は以上のような問題点を解消するためになされ
たもので、誤動作がなく1線地絡事故の事故相を確実に
判定することができる送電線電流差動保護装置を得るこ
とを目的とする。
This invention was made to solve the above-mentioned problems, and the purpose is to obtain a transmission line current differential protection device that does not malfunction and can reliably determine the fault phase of a single-wire ground fault. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る送電線電流差動保護装置は、送電線両端
のCT2次巻線の出力電流の差を各相毎に演算して所定
の設定値以上になったとき出力信号を出す従来からの第
1の演算部に加え、CT2次巻線からの出力電流とPT
からの零相電圧との位相関係を判別する第2の演算部と
、上記両演算部の出力論理積から送電線における1線地
絡事故相を判別する第3の演算部とを備えたものである
The transmission line current differential protection device according to the present invention is a conventional power transmission line current differential protection device that calculates the difference in output current of CT secondary windings at both ends of the transmission line for each phase and outputs an output signal when the difference exceeds a predetermined set value. In addition to the first calculation section, the output current from the CT secondary winding and the PT
A second calculation unit that determines the phase relationship with the zero-phase voltage from the above-mentioned calculation unit, and a third calculation unit that determines the one-line ground fault phase in the power transmission line from the logical product of the outputs of both calculation units. It is.

〔作用〕[Effect]

差電流と零相電圧とはそれぞれ事故相では逆位相になり
、健全相では同位相となり判別対象が明確であるので、
第2の演算部が健全相を事故相と誤って動作することは
ない。従って、第3の演算部は事故相を確実に特定する
The difference current and zero-sequence voltage are in opposite phases in the fault phase and in phase in the healthy phase, so the target for discrimination is clear.
The second arithmetic unit will not mistakenly operate on a healthy phase as a faulty phase. Therefore, the third calculation unit reliably identifies the accident phase.

1実施例〕 第1図はこの発明の一実施例による送電線電流差動保護
装置としての自端リレー装置(25)の内部構成を示す
機能ブロック図である。図において、第4図第5図と同
一符号は従来と同一のもので説明を省略ずろ+  (2
6A)(26B)(26C)は自端電流と相手端電流と
の差Tdを演算してこの差電流Idか所定の設定値以上
となったとき出力信号を出す第1の演算部、(27A)
<27B)(27C)は自端電流■1と自端母線PT(
8)から得られる零相電圧■。との位相関係を判別する
第2の演算部て、具体的には、第2図に示すように、自
端電流T1と零相電圧v0とが逆位相の場合のみ出力信
号を出し、両者が同位相の場合は出力信号を出さない。
1 Embodiment] FIG. 1 is a functional block diagram showing the internal configuration of a self-end relay device (25) as a power transmission line current differential protection device according to an embodiment of the present invention. In the figures, the same reference numerals as those in Figs.
6A) (26B) (26C) is a first calculation unit that calculates the difference Td between the own end current and the opposite end current and outputs an output signal when this difference current Id exceeds a predetermined set value; (27A) )
<27B) (27C) is the own-end current ■1 and the own-end bus PT (
8) Zero-sequence voltage obtained from ■. Specifically, as shown in FIG. 2, the second calculation unit that determines the phase relationship between If they are in phase, no output signal is output.

(28A)(28B>(28C)は第1の演算部(26
A)等と第2の演算部(27A>等との出力の論理積を
演算する第3の演算部である。
(28A) (28B>(28C) is the first calculation unit (26
This is a third calculation unit that calculates the AND of the outputs of A), etc., and the second calculation unit (27A>, etc.).

この実施例においても、2次、3次巻線一体形の自端C
T(6)等を使用しているので、従来技術で説明したと
おり、1線地絡事故発生時には事故相だけでなく、健全
相にも差電流か流れることになる、しかし、第2図に示
した通り、差電流の位相が零相電圧に対し、事故相では
逆位相に、健全相では同位相になり第2の演算部(27
A>等で確実な判別が可能となる。即ち、第2の演算部
(27A)のみが出力信号を出し、他の第2の演算部(
27B>(27C)は出力信号を出さない。
In this embodiment as well, the self-end C of the integrated secondary and tertiary windings is
Since T(6) etc. are used, as explained in the prior art, when a one-wire ground fault occurs, a differential current will flow not only in the faulty phase but also in the healthy phase. As shown, the phase of the difference current is opposite to the zero-sequence voltage in the fault phase, and in the same phase in the healthy phase, and the second calculation unit (27
Reliable discrimination is possible with A> etc. That is, only the second arithmetic unit (27A) outputs an output signal, and the other second arithmetic unit (27A) outputs an output signal.
27B>(27C) does not output an output signal.

従って、差電流の大きさにより、例えば健全相であるB
相の第1の演算部(26B)がたとえ誤動作により出力
信号を出したとしても第2の演算部(27B)の出力レ
ベルが“L ”であるので、論理積をとる第3の演算部
(28B)の出力レベルは“°L°“となり、健全相を
事故相であると誤って判定する可能性がなくなり、保護
装置としての信頼性が大幅に向上する。
Therefore, depending on the magnitude of the difference current, for example, B, which is a healthy phase,
Even if the first arithmetic unit (26B) of the phase outputs an output signal due to a malfunction, the output level of the second arithmetic unit (27B) is “L”, so the third arithmetic unit (26B) that takes the AND The output level of 28B) becomes "°L°", which eliminates the possibility of erroneously determining a healthy phase as a failure phase, and greatly improves reliability as a protection device.

なお、上記実施例では、零相電圧を外部から導入してい
るが、各相電圧を導入し、内部で零相電圧を求める方式
としてもよい。
In the above embodiment, the zero-sequence voltage is introduced from the outside, but a method may also be adopted in which each phase voltage is introduced and the zero-sequence voltage is determined internally.

また、零相電流の差動演算を行い、その結果を含めた論
理積をとるようにすれば、地絡事故検出の信頼性を一層
向上させることかできる。
Further, by performing differential calculation of the zero-sequence current and performing a logical product including the results, it is possible to further improve the reliability of ground fault detection.

更に、上記実施例では保護装置をデジタル形て構成した
か、<Vずしもそれに限定される訳ではない。
Further, in the above embodiments, the protection device is configured in a digital form, but the protection device is not limited thereto.

〔発明の効果〕〔Effect of the invention〕

この発明は以上のように構成されているので、零相電流
検出用の3次巻線を備えたCTを使用しているにもかか
わらず、1線地絡事故の事故相を正確確実に検出するこ
とができる。
Since the present invention is configured as described above, it is possible to accurately and reliably detect the fault phase of a single-wire ground fault even though a CT equipped with a tertiary winding for zero-phase current detection is used. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による自端リレー装置の内
部構成を示す機能ブロック図、第2図は差電流と零相電
圧との位相関係を示すベクトル図、第3図は一般的な高
抵抗接地電力系統保護システムを示す構成図、第4図は
従来の自端リレー装置の内部構成を示す機能ブロック図
、第5図は1線地絡事故時の電流分布を示す説明図であ
る。 図において、(1)は送電線、(2)は送電線の自端、
(3)は送電線の相手端、(6)は自端CT、(61A
)等は2次巻線、(62A)等は3次巻線、(8)は自
端母線PT、(25)は送電線電流差動保護装置として
の自端リレー装置、(26A>等は第1の演算部、(2
7A)等は第2の演算部、(28A)等は第3の演算部
である。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is a functional block diagram showing the internal configuration of a self-end relay device according to an embodiment of the present invention, Fig. 2 is a vector diagram showing the phase relationship between differential current and zero-sequence voltage, and Fig. 3 is a general FIG. 4 is a functional block diagram showing the internal configuration of a conventional self-end relay device; FIG. 5 is an explanatory diagram showing current distribution in the event of a single-wire ground fault. . In the figure, (1) is the transmission line, (2) is the own end of the transmission line,
(3) is the other end of the transmission line, (6) is the own end CT, (61A
), etc. are secondary windings, (62A), etc. are tertiary windings, (8) is own-end bus PT, (25) is a self-end relay device as a transmission line current differential protection device, (26A> etc. are The first calculation unit, (2
7A), etc. are second calculation units, and (28A), etc. are third calculation units. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  零相電圧検出用のPTおよび正相電流検出用の2次巻
線と零相電流検出用に3相閉回路に結線される3次巻線
とを備えたCTを送電線の自端と相手端とのそれぞれに
設置し、更に、上記両端のCT2次巻線の出力電流の差
を各相毎に演算して所定の設定値以上となったとき出力
信号を出す第1の演算部、上記CT2次巻線からの出力
電流と上記PTからの零相電圧との位相関係を判別する
第2の演算部、および上記両演算部の出力論理積から上
記送電線における1線地絡事故相を判別する第3の演算
部を備えた送電線電流差動保護装置。
A CT equipped with a PT for zero-sequence voltage detection, a secondary winding for positive-sequence current detection, and a tertiary winding connected to a three-phase closed circuit for zero-sequence current detection is connected to the own end of the transmission line and the other end. and a first calculating section installed at each end of the CT secondary winding, and further calculating the difference between the output currents of the CT secondary windings at both ends for each phase and outputting an output signal when the difference exceeds a predetermined set value; A second calculation unit that determines the phase relationship between the output current from the CT secondary winding and the zero-sequence voltage from the PT, and a one-wire ground fault phase in the power transmission line from the logical product of the outputs of both calculation units. A power transmission line current differential protection device including a third calculation unit that makes a determination.
JP2041568A 1990-02-21 1990-02-21 Transmission line current differential protection device Expired - Fee Related JPH082137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2041568A JPH082137B2 (en) 1990-02-21 1990-02-21 Transmission line current differential protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2041568A JPH082137B2 (en) 1990-02-21 1990-02-21 Transmission line current differential protection device

Publications (2)

Publication Number Publication Date
JPH03243114A true JPH03243114A (en) 1991-10-30
JPH082137B2 JPH082137B2 (en) 1996-01-10

Family

ID=12612051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041568A Expired - Fee Related JPH082137B2 (en) 1990-02-21 1990-02-21 Transmission line current differential protection device

Country Status (1)

Country Link
JP (1) JPH082137B2 (en)

Also Published As

Publication number Publication date
JPH082137B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
US6839210B2 (en) Bus total overcurrent system for a protective relay
JPS59209018A (en) Protecting relaying device and method
JPS5893422A (en) Protecting device for high voltage transmission line
JP2009005565A (en) Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method
JPS5810934B2 (en) Ground fault detection device
KR20190110411A (en) Out of order discrimination apparatus and protective relay apparatus
CN102204050B (en) Differential protection method and differential protection device
US20020080535A1 (en) Multiple ground fault trip function system and method for same
JPH03243114A (en) Current differential protective relay for transmission line
JP5283369B2 (en) Disconnection protection relay
JP2000184578A (en) Method of locating a fault point of power transmission line and protection relaying system
JP3011496B2 (en) Line selection protection relay
JP4176529B2 (en) Differential protection relay system
JP2675207B2 (en) Ratio differential relay system
JP6729483B2 (en) Ratio differential relay
JPH033451B2 (en)
JP3784961B2 (en) Busbar protection relay device
JP2597653B2 (en) Fault location device
JP2001016767A (en) Failure section decision device for transformer station
JP3843663B2 (en) Protection relay device
JPS6349072Y2 (en)
JPS5846824A (en) Protective relay unit
JPH0210654B2 (en)
JP2005051860A (en) Protection relay system
JPH06105451A (en) Line protection relay device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees