JP3549978B2 - Induction hardening steel with excellent cold workability - Google Patents

Induction hardening steel with excellent cold workability Download PDF

Info

Publication number
JP3549978B2
JP3549978B2 JP09871896A JP9871896A JP3549978B2 JP 3549978 B2 JP3549978 B2 JP 3549978B2 JP 09871896 A JP09871896 A JP 09871896A JP 9871896 A JP9871896 A JP 9871896A JP 3549978 B2 JP3549978 B2 JP 3549978B2
Authority
JP
Japan
Prior art keywords
less
strength
steel
induction hardening
torsional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09871896A
Other languages
Japanese (ja)
Other versions
JPH09287055A (en
Inventor
達朗 越智
秀雄 蟹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09871896A priority Critical patent/JP3549978B2/en
Publication of JPH09287055A publication Critical patent/JPH09287055A/en
Application granted granted Critical
Publication of JP3549978B2 publication Critical patent/JP3549978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は冷間加工性の優れた高周波焼入れ用鋼にかかわり、さらに詳しくは、第1図(A)〜(C)に示したスプライン部11,12を有するシャフト10、フランジ22付シャフト20,21、外筒部33を有するシャフト30〜32等の自動車の動力伝達系を構成する部品の中で、冷間加工による成形と高周波焼入れを含む工程により製造される部品用として好適な鋼に関するものである。
【0002】
【従来の技術】
自動車の動力伝達系を構成する軸部品は、通常中炭素鋼を切削、転造等の冷間加工により所定の部品形状に成形加工し、高周波焼入れ−焼戻しを施して製造されているが、近年の自動車エンジンの高出力化及び環境規制対応にともない、捩り強度、捩り疲労強度向上の指向が強い。一方、高強度化に伴って、高周波焼入れ前の段階での冷間加工性が劣化し、生産性が劣化するために、冷間加工性と高周波焼入れ後の高強度化の両立が求められている。
【0003】
これに対して、特公平1−38847号公報にはC:0.35超〜0.65%、Si:0.15%以下、Mn:0.6%以下、B:0.0005〜0.005%、Ti:0.05%以下、Al:0.015〜0.05%、N:0.010%以下からなる冷間鍛造用鋼を素材として、冷間鍛造後高周波焼入れをして機械構造用部品を製造することを特徴とする機械構造用部品の製造方法が示されている。この発明の特徴の一つはMn含有量を0.6%以下に規制したことである。また、同公報の第3〜4頁の第1表から明らかのように、Tiの添加量を0.02〜0.04%の範囲にしている。同公報に記載されている鋼の冷間加工性は必ずしも十分ではなく、また軸部品として十分な強度が実現できていない。
【0004】
また、特開平5−179400号公報にはC:0.38〜0.45%、Si:0.35%以下、Mn:1.0超〜1.5%、B:0.0005〜0.0035%、Ti:0.01〜0.05%、Al:0.01〜0.06%、N:0.010%以下でフェライト結晶粒度番号6以上の細粒組織を有する直接切削−高周波焼入れ用鋼材が示されている。このように、この発明のMnの含有量は1.0超〜1.5%であり、軸部品において、高周波焼入れ後の静的捩り強度は十分な特性が得られるが、冷間加工性は極めて良くない。また、同公報では、高周波焼入れ軸部品にとって重要な特性の一つである捩り疲労強度については全く配慮されていない。静的な荷重に対する材料抵抗力である静的捩り強度と、繰り返し荷重にたいする材料抵抗力である捩り疲労強度は支配因子が異なり、別の特性である。そのため、本材料は捩り疲労強度特性を必要とする部品には必ずしも適用されていないのが現状である。
【0005】
【発明が解決しようとする課題】
本発明の目的は、高周波焼入れ前には切削、転造等の冷間加工性に優れ、高周波焼入れ後は捩り強度、捩り疲労強度の優れた高周波焼入れ部品用として好適な鋼を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明者らは、素材の段階で優れた冷間加工性を有し、高周波焼入れにより優れた捩り強度特性、捩り疲労強度特性を有する部品を実現するために、鋭意検討を行ない次の知見を得た。
(1)素材の段階での冷間加工性を確保するには、次の方法が有効である。
【0007】
(i)固溶体硬化元素であるSi,Pを低減する。
(ii)また、固溶体硬化元素であるMnを多量添加しない。その代わりに、焼入れ性はB添加により補う。
(iii) さらに、セメンタイトとは独立に炭化物を形成するMoを用いて焼入れ性を補う。
(2)さらに、冷間加工性を確保するには、Ti,N量の適正化が必須である。
上記のBの焼入れ性向上効果を引き出すためには、Tiを添加し固溶Nを低減する必要がある。しかしながら、特公平1−38847号公報の第3〜4頁の第1表に開示されているような、Tiの多量添加(Ti:0.02〜0.04%)は次のような弊害を引き起こす。
【0008】
(i)冷間加工の前の棒鋼圧延の冷却過程、あるいは軟化焼鈍の冷却過程においてTiN又はTiCが析出し、Ti多量添加鋼では、これによる析出硬化により、却って硬さの増加を引き起こす。
(ii)TiN,TiCの多量析出は、被削性を著しく劣化させるとともに、転造等の冷間加工時の割れの原因になるため、高Ti鋼では、冷間加工性が著しく悪化する。
【0009】
特公平1−38847号公報の技術の冷間加工性が必ずしも十分ではないのは、このような冷間加工性に対するTi多量添加の弊害によると考えられる。冷間加工性に対するTiの弊害を抑制して、なお且つBの焼入れ性向上効果を引き出すためには、Ti:0.005〜0.020%未満に制限することが必要であり、さらにまた、N:0.0015〜0.0050%未満の範囲で制御することが必要である。
(3)次に、高周波焼入れ材の捩り疲労破壊は、次の過程で起きる。
【0010】
A.表面または硬化層と芯部の境界でき裂が発生する。
B.軸方向に平行な面又は垂直な面でき裂が初期伝播する。これを以下モードIII 破壊と呼ぶ。
C.軸方向に45度の面で粒界割れを伴って脆性破壊を起こし、最終破壊を起こす。これを以下モードI破壊と呼ぶ。
(4)硬化層は捩り疲労過程で材質劣化を起こす。つまり、捩り疲労過程では、表面圧縮残留応力の減衰、硬さの低下が起きる。疲労過程でこのような材質劣化を起こしやすい材料ほど、疲労き裂の発生が早期に起きる。捩り疲労過程でのこうした材質劣化を抑制するには、次の方法が有効である。
【0011】
(i)Mo,Siを添加する。但し、Siは加工性の劣化を配慮し適量添加する。
(ii)Mn−B添加により焼入れ性を確保する。但し、Mnは加工性の劣化を配慮し適量添加する。セメンタイトを安定化する元素であるCrを多量添加しない。
(5)上記捩り疲労破壊過程「B.」の欄で述べたモードIII 破壊はディンプルパターンをともなう延性破壊であり、TiNのような析出物が多数存在すると、これが延性破壊の核となりモードIII 破壊が起きやすくなる。つまり、従来のTi:0.020%以上、N:0.005%以上を含有するボロン鋼では、TiNを核とする延性破壊を起こしやすい。特公平1−38847号公報の技術の強度特性が不十分であり、普及していない原因の一つは、これが原因と考えられる。そのため、モードIII 破壊強度向上の視点からも、Ti,N量をTi:0.005〜0.020%未満、N:0.0015〜0.005%未満の範囲に規制することが必要である。
(6)上記捩り疲労破壊過程「C.」の欄で述べた、軸方向に45度の面で粒界割れを伴う脆性破壊モードIを抑制するためには、次の方法による粒界強化が有効である。
【0012】
(i)B,Mo,Siの添加。但し、Siは加工性の劣化を配慮し適量添加する。Bは粒界偏析Pを粒界から追い出す効果による。Mo,Siは粒界に析出する炭化物を微細化する効果による。
(ii)P,Cu,O量の低減。
(iii) Ti,N量の適正化によるTiN析出物量の減少。
(7)次に、高周波焼入れ材の静的捩り破壊は、あるレベル以上に強度が高い場合には、粒界割れをともなう。つまり、静的捩り強度は粒界強度により決まる。そのため、静的捩り強度を向上させるためには、上記の方法による粒界強化が有効である。
【0013】
本発明は以上の新規なる知見にもとづいてなされたものであり、本発明の要旨は以下の通りである。
重量比として、C:0.40〜0.60%、Si:0.01〜0.15%、Mn:0.6超〜1.0%未満、S:0.01〜0.15%、Mo:0.01〜0.70%、Ti:0.005〜0.020%未満、Al:0.010〜0.06%、B:0.0005〜0.005%、N:0.0015〜0.0050%未満、を含有し、必要によりNi:0.05〜3.00%、Cr:0.03〜0.70%の1種または2種、V:0.03〜0.3%、Nb:0.005〜0.1%の1種または2種を含有し、P:0.020%以下、Cu:0.02%以下、O:0.0020%以下に制限し、残部が鉄および不可避的不純物からなることを特徴とする冷間加工性の優れた高周波焼入れ用鋼である。
【0014】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
本発明の成分含有範囲を上記の如く限定した理由について説明する。
C:0.40〜0.60%
Cは高周波焼入れ硬化層の硬さを増加させるのに有効な元素であるが、0.40%未満では硬さが不十分であり、また0.60%を超えると高周波焼入れ前の硬さが硬くなりすぎて冷間加工性が劣化するとともに、オーステナイト粒界への炭化物析出が顕著になって粒界強度を劣化させるため、含有量を0.40〜0.60%に定めた。
【0015】
Si:0.01〜0.15%
Siは脱酸元素として、および粒界強化を狙いとして添加する。しかしながら、0.01%未満ではその効果は不十分である。一方、Siは固溶体硬化により素材硬さを高くするため、0.15%を超える添加は、高周波焼入れ前の段階で切削性等の冷間加工性を劣化させる。以上の理由でその含有量を0.01〜0.15%とした。
【0016】
Mn:0.6超〜1.0%未満
Mnは(i)焼入れ性の向上、および鋼中でMnSを形成することによる(ii)高周波焼入れ加熱時のオーステナイト粒の微細化と(iii)被削性の向上を目的として添加する。しかしながら、0.6%以下ではこの効果は不十分である。一方、Mnを過剰添加すると、高周波焼入れ前の素材のパーライト分率を増加させて素材強度を増加させ、冷間加工性を劣化させる。特にこの傾向は1.0%以上の添加で顕著になる。以上の理由から、Mnの含有量を0.6超〜1.0%未満とした。
【0017】
S:0.01〜0.15%
Sは鋼中でMnSを形成し、これによる高周波焼入れ加熱時のオーステナイト粒の微細化および被削性の向上を目的として添加するが、0.01%以下ではその効果は不十分である。一方、0.15%を超えるとその効果は飽和し、むしろ粒界偏析を起こし粒界脆化を招く。以上の理由から、Sの含有量を0.01超〜0.15%とした。
【0018】
Mo:0.01〜0.70%
Moは(i)捩り疲労過程での材質劣化の抑制、(ii)オーステナイト粒界に粒界偏析を起こすことによる粒界強度の増加、および(iii)焼入れ性の向上を狙いとして添加する。しかしながら、0.01%未満ではこの効果は不十分であり、一方、0.70%を超える過剰添加は、効果が飽和し冷間加工性の劣化を招くので、その含有量を0.01〜0.70%とした。
【0019】
Ti:0.005〜0.020%未満
Tiは鋼中でNと結合してTiNとなるが、これによる固溶Nの完全固定によるBN析出防止、つまり固溶Bの確保を目的として添加する。しかしながら、0.005未満ではその効果は不十分であり、一方、0.020%以上の過剰添加では、多量のTiN,TiCによる冷間加工時の割れおよび最終部品でのモードIII 破壊強度の劣化を引き起こすので、その含有量を0.005〜0.020%未満とした。
【0020】
Al:0.010〜0.06%
Alは脱酸元素および結晶粒微細化元素として添加するが、0.010%未満ではその効果は不十分であり、一方、0.06%を超えるとその効果は飽和し、むしろ最終部品でのモードIII 破壊強度を劣化させるので、その含有量を0.010〜0.06%とした。
【0021】
B:0.0005〜0.005%
Bは固溶状態でオーステナイト粒界に粒界偏析し、焼入れ性を増加させることを狙いとして添加する。同時に、P,Cu等の粒界不純物を粒界から追い出すことにより粒界強度を増加させる作用も存在する。粒界強化により捩り強度、捩り疲労強度が増加する。しかしながら、0.0005%未満ではその効果は不十分であり、一方、0.005%を超える過剰添加は、むしろ粒界脆化を招くので、その含有量を0.0005〜0.005%とした。
【0022】
N:0.0015〜0.0050%未満
NはAlN等の炭窒化物析出による高周波加熱時のオーステナイト粒の微細化を目的として添加するが、0.0015%未満ではその効果は不十分である。一方、0.0050%以上では、BNを析出して固溶Bの低減を引き起こすとともに、多量のTiN析出による冷間加工割れおよび最終部品でのモードIII 破壊強度の劣化を引き起こすので、その含有量を0.0015〜0.0050%未満とした。
【0023】
P:0.020%以下
Pは固溶体硬化により素材硬さを高くし、高周波焼入れ前の段階で冷間鍛造性を劣化させる。さらにオーステナイト粒界に粒界偏析を起こし、粒界強度を低下させて捩り応力下での脆性破壊を起こし易くし、そのため強度を低下させる。特にPが0.020%を超えると強度低下が顕著となるため、0.020%を上限とした。なお、より粒界強化を図る場合には、0.015%以下が望ましい。
【0024】
Cu:0.02%以下
CuもPと同様オーステナイト粒界に粒界偏析を起こし、強度低下の原因となる。特にCuが0.02%を超えると強度低下が顕著となるため、0.02%を上限とした。
O:0.0020%以下
Oは粒界偏析を起こし粒界脆化を起こすとともに、鋼中で硬い酸化物系介在物を形成し、捩り応力下での脆性破壊を起こし易くし、強度低下の原因となる。特にOが0.0020%を超えると強度低下が顕著となるため、0.0020%を上限とした。
【0025】
次に、請求項2,4の発明鋼は、Cr,Ni添加により、(i)捩り疲労過程での硬さの低下の抑制、および(ii)焼入れ性の向上を図った鋼である。
Ni:0.05〜3.00%
Cr:0.03〜0.70%
これらの元素はいずれも焼入れ性を向上し、捩り疲労過程での硬さの低下を抑制する。また、Niには、粒界近傍の靱性を改善し、脆性破壊を抑制する効果も有する。この効果はNi:0.05未満、Cr:0.03%未満では不十分であり、一方、Cr:0.7%超では高周波焼入れ前の組織中のセメンタイトが安定化し、高周波焼入れ加熱時にセメンタイトの溶解が困難になり、高周波焼入れ後の効果層の硬さが不十分となる。また、3.0%を超えるNiの多量添加は、効果が飽和し経済性の観点からこのましくない。さらに、これらの過剰添加は冷間加工性の劣化を招く。以上の理由から、その含有量を上記の範囲に限定した。
【0026】
次に、請求項3,4は、高周波加熱時のオーステナイト粒を微細化し、粒界破壊防止による高強度化を図った鋼である。
V:0.03〜0.3%
Nb:0.005〜0.1%
V,Nbは鋼中で炭窒化物を形成し、高周波加熱時のオーステナイト粒を微細化させる効果を有する。しかしながら、V含有量が0.03%未満、Nb含有量が0.005%未満ではその効果は不十分であり、一方、V:0.3%超、Nb:0.1%超ではその効果は飽和し、むしろ冷間加工性の劣化、最終製品での強度劣化を招くので、これらの含有量をV:0.03〜0.3%、Nb:0.005〜0.1%とした。
【0027】
ここで、捩り疲労過程でのき裂の発生の原因の一つは、硬化層の硬さムラである。本願発明鋼の対象部品は、熱間圧延ままで冷間加工−高周波焼入れされる場合以外に、熱間圧延後A点以下の温度での簡易焼鈍等の熱処理を経た後、冷間加工−高周波焼入れされる場合がある。但し、熱間圧延後、簡易焼鈍等の熱処理を経た組織は、圧延材の組織に大きく影響される。そのため、このような熱間圧延後熱処理を受ける場合でも、高周波焼入れ時の硬化層の硬さムラ抑制のためには圧延材組織の適正化が重要である。圧延材の組織のフェライト分率が35%を超え、フェライト結晶粒径が30μmを超えると硬化層で顕著な硬さのムラを生じ、捩り疲労破壊を起こし易くなる。そのため、圧延材の組織のフェライトの組織分率が35%以下で、フェライト結晶粒径が30μm以下とするのが望ましい。但し、本願発明鋼では、本組織因子を特に限定するものではない。
【0028】
また、本願発明の高周波焼入れ用鋼では、製造条件は特に限定せず、本発明の要件を満足すればいずれの条件でも良い。例えば、冷間加工性を一層改善するためには、鋼材素材の熱間圧延による製造を仕上げ温度;750〜900℃、仕上げ圧延後700〜500℃の温度範囲の平均冷却速度;0.1〜1.7℃/秒の条件で行う方法が上げられるが、本発明では特に限定するものではない。また、本願発明鋼を用いた部品の製造に際しては、簡易焼鈍、通常焼鈍、焼準等の熱処理を必要に応じて行うことができる。
【0029】
以下に、本発明の効果を実施例により、さらに具体的に示す。
【0030】
【実施例】
表1の組成を有する鋼材を直径34mmの棒鋼に圧延した。この棒鋼から、光学顕微鏡観察試験片を採取し、5%ナイタール液で腐食して200倍、400倍で観察し、フェライト分率およびフェライト結晶粒径を求めた。表1にフェライト分率およびフェライト結晶粒径を示す。
【0031】
【表1】

Figure 0003549978
【0032】
【表2】
Figure 0003549978
【0033】
圧延棒鋼の内、一部の材料については、700℃×3時間→空冷の条件で簡易焼鈍を行った。焼鈍を行った材料は、表2の3列目にAの記号をつけて示す。
これらの材料から、平行部直径20mmの静的捩り試験片、捩り疲労試験片を採取した。
静的捩り試験片、捩り疲労試験片について周波数8.5kHz で高周波焼入れを行い、その後170℃×1時間の条件で焼戻しを行った。いずれも、有効硬化層深さは約5mmである。その後、静的捩り試験、捩り疲労試験を行った。捩り疲労特性は1×10サイクルでの時間強度で評価した。
【0034】
また被削性はハイスドリルによる寿命速度を用いて評価した。用いたドリルはJIS−SKH51で直径3mmのハイスドリルであり、穴あけ条件は送り0.25mm/rev 、穴深さ9mm、切削油はスピンドル油を用い、2リットル/分である。評価試験は、切削速度を種々変化させて各切削速度における切削不能になるまでのドリル寿命から切削速度−ドリル寿命曲線を求め、この曲線から寿命穴あけ総深さが1000mmでドリル寿命となる最大切削速度を求め、これを寿命速度とした。
【0035】
表2に熱処理の有無、各供試材の硬さ、ハイスドリル寿命、静的捩り強度、捩り疲労強度を示す。表2の「熱処理」の欄に記号「A」を付けている水準は、圧延棒鋼を700℃×3時間→空冷の条件で簡易焼鈍を行った後に硬さ他の評価を行ったことを示す。一方、無印の水準は圧延材を熱処理なしで、硬さ他の評価を行ったことを示す。ハイスドリル寿命は、比較鋼31のドリル寿命速度を100とした時の相対値で示した。
【0036】
また、捩り疲労過程での材質劣化挙動を評価するために、応力振幅700MPa で1×10サイクル疲労試験を行った試験片について、(i)表面での圧縮残留応力の減衰量および(ii)フェライト(211)面のX線回折ピークの半価幅の減衰量を評価した。X線回折ピークの半価幅の減衰量は、疲労過程での正味の硬さの低下量を評価するために用いた。X線発生源としては、Cr管球を使用した。
【0037】
【表3】
Figure 0003549978
【0038】
【表4】
Figure 0003549978
【0039】
表2のNo. 1〜30は本発明鋼である。本発明鋼材では、比較鋼31と比較して、概ね硬さは軟らかく、ドリル寿命も優れている。また、静的捩り強度、捩り疲労強度は比較鋼31と比較して、同一炭素量でみると、いずれも優れている。静的捩り破壊の破面はいずれも粒界割れを含む破面であり、本発明鋼が優れた捩り強度を示すのは、Mo添加他により粒界強度が増加した効果による。また、疲労過程での残留応力減衰量、疲労過程での半価幅減衰量は、比較鋼31と比較して、同一炭素量でみると、いずれも抑制されている。これから、本発明鋼が優れた捩り強度を示すのは、Mo添加他により疲労過程での材質劣化が抑制された効果、および粒界強度が増加した効果による。
【0040】
一方、比較鋼33はCの含有量が本発明の範囲を上回った場合であり、同一炭素量の本発明鋼に比較して、静的捩り強度、捩り疲労強度が劣っている。
比較鋼34はTiの含有量が本発明の範囲を上回った場合であり、比較鋼材35はNの含有量が本発明の範囲を上回った場合であり、いずれも、同一炭素量の本発明鋼に比較して、硬さが硬く、ドリル寿命も悪く、また静的捩り強度、捩り疲労強度が劣っている。
【0041】
比較鋼36はMoの含有量が本発明の範囲を下回った場合であり、比較鋼材38はPの含有量が本発明の範囲を上回った場合であり、いずれも、同一炭素量の本発明鋼に比較して、静的捩り強度、捩り疲労強度が劣っている。
比較鋼37,39はSi,Mnの含有量が本発明の範囲を上回った場合であり、いずれも、同一炭素量の本発明鋼に比較して、硬さが硬く、ドリル寿命も悪い。
【0042】
また、比較鋼32はMn,Moの含有量が本発明の範囲を下回り、TiとNの含有量が本発明の範囲を上回った場合である。比較鋼31はJIS規格のS53C鋼にTi,Bを添加した鋼であり、Si,Mn,Mo,Ti,Nの含有量が本願発明の範囲と異なった場合である。いずれも、同一炭素量の本発明鋼に比較して、硬さが硬く、ドリル寿命も悪く、また静的捩り強度、捩り疲労強度が劣っている。
【0043】
【発明の効果】
以上述べたごとく、本発明の高周波焼入れ用鋼を用いることにより、素材の段階で優れた冷間加工性を有し、高周波焼入れにより優れた捩り強度特性、捩り疲労強度特性を有する部品を実現することが可能となり、産業上の効果は極めて顕著なるものがある。
【図面の簡単な説明】
【図1】自動車の動力伝達系を構成する部品を示す正面図で、(A)はスプライン部を有するシャフト、(B)はフランジ付シャフト、(C)は外筒部付シャフトをそれぞれ示す。
【符号の説明】
10…シャフト
11,12…スプライン部
20,21…シャフト
22…フランジ
30,31,32…シャフト
33…外筒部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel for induction hardening having excellent cold workability, and more specifically, the shaft 10 having the spline portions 11 and 12 shown in FIGS. 21. Among the components constituting a power transmission system of an automobile, such as shafts 30 to 32 having an outer cylindrical portion 33, those related to steel suitable for components manufactured by processes including forming by cold working and induction hardening. It is.
[0002]
[Prior art]
Shaft parts constituting a power transmission system of an automobile are usually manufactured by forming medium carbon steel into a predetermined part shape by cold working such as cutting and rolling, and performing induction hardening-tempering. With the increase in the output of automobile engines and the compliance with environmental regulations, there is a strong tendency to improve torsional strength and torsional fatigue strength. On the other hand, with the increase in strength, the cold workability at the stage before induction hardening deteriorates and the productivity deteriorates, so both cold workability and high strength after induction hardening are required. I have.
[0003]
In contrast, Japanese Patent Publication No. 38847/1989 discloses that C: more than 0.35 to 0.65%, Si: 0.15% or less, Mn: 0.6% or less, and B: 0.0005 to 0. 005%, Ti: 0.05% or less, Al: 0.015 to 0.05%, N: 0.010% or less Using cold forging steel as a material, cold forging and induction hardening are applied to the machine. A method for manufacturing a machine structural component, which comprises manufacturing a structural component, is shown. One of the features of the present invention is that the Mn content is regulated to 0.6% or less. Further, as is apparent from Table 1 on pages 3 and 4 of the publication, the amount of Ti added is in the range of 0.02 to 0.04%. The cold workability of the steel described in the publication is not always sufficient, and sufficient strength as a shaft part cannot be realized.
[0004]
JP-A-5-179400 discloses that C: 0.38 to 0.45%, Si: 0.35% or less, Mn: more than 1.0 to 1.5%, and B: 0.0005 to 0.5%. Direct cutting-induction quenching with fine grain structure of 0035%, Ti: 0.01 to 0.05%, Al: 0.01 to 0.06%, N: 0.010% or less and ferrite grain size number 6 or more A steel material is shown. As described above, the Mn content of the present invention is more than 1.0 to 1.5%, and in the shaft component, sufficient static torsional strength after induction hardening can be obtained, but cold workability is low. Not very good. Further, in this publication, no consideration is given to the torsional fatigue strength which is one of the important characteristics for the induction hardened shaft part. Dominant factors differ between static torsional strength, which is a material resistance to a static load, and torsional fatigue strength, which is a material resistance to a repeated load, and are different characteristics. Therefore, at present, the present material is not always applied to parts requiring torsional fatigue strength characteristics.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide steel which is excellent in cold workability such as cutting and rolling before induction hardening, and which has excellent torsional strength and torsional fatigue strength after induction hardening, which is excellent in induction hardened parts. Things.
[0006]
[Means for Solving the Problems]
The present inventors have excellent cold workability at the material stage, and to achieve a component having excellent torsional strength characteristics and torsional fatigue strength characteristics by induction hardening, perform intensive studies and obtain the following knowledge. Obtained.
(1) The following method is effective to ensure cold workability at the stage of raw material.
[0007]
(I) Si and P which are solid solution hardening elements are reduced.
(Ii) Mn, which is a solid solution hardening element, is not added in a large amount. Instead, the hardenability is supplemented by the addition of B.
(Iii) Further, the quenchability is supplemented by using Mo which forms a carbide independently of cementite.
(2) Further, in order to ensure cold workability, it is essential to optimize the amounts of Ti and N.
In order to bring out the above-described effect of improving the hardenability of B, it is necessary to add Ti to reduce solid solution N. However, the addition of a large amount of Ti (Ti: 0.02 to 0.04%) as disclosed in Table 1 on page 3 to 4 of JP-B 1-38847 causes the following harmful effects. cause.
[0008]
(I) TiN or TiC precipitates in the cooling process of the bar rolling before the cold working or in the cooling process of the softening annealing, and in the steel with a large amount of Ti added, the precipitation hardening causes the hardness to increase rather.
(Ii) A large amount of precipitation of TiN and TiC significantly deteriorates machinability and causes cracking during cold working such as rolling, so that cold workability of high Ti steel is significantly deteriorated.
[0009]
It is considered that the cold workability of the technique disclosed in Japanese Patent Publication No. 38847/1990 is not always sufficient due to the adverse effect of a large amount of Ti addition on such cold workability. In order to suppress the adverse effect of Ti on cold workability and to bring out the effect of improving the hardenability of B, it is necessary to limit Ti to less than 0.005 to 0.020%. N: It is necessary to control in the range of 0.0015 to less than 0.0050 % .
(3) Next, torsional fatigue fracture of the induction hardened material occurs in the following process.
[0010]
A. Cracks occur at the boundary between the surface or the hardened layer and the core.
B. The crack propagates initially in a plane parallel or perpendicular to the axial direction. This is referred to below as Mode III destruction.
C. Brittle fracture occurs with grain boundary cracking at a plane of 45 degrees in the axial direction, resulting in final fracture. This is hereinafter referred to as mode I destruction.
(4) The hardened layer undergoes material deterioration during the torsional fatigue process. That is, in the torsional fatigue process, the surface compressive residual stress is attenuated and the hardness is reduced. The more easily the material deteriorates in the fatigue process, the earlier the fatigue cracks occur. The following method is effective to suppress such material deterioration during the torsional fatigue process.
[0011]
(I) Mo and Si are added. However, Si is added in an appropriate amount in consideration of deterioration in workability.
(Ii) Hardenability is ensured by adding Mn-B. However, Mn is added in an appropriate amount in consideration of deterioration in workability. Do not add a large amount of Cr, an element that stabilizes cementite.
(5) The mode III fracture described in the column of the above torsional fatigue fracture process “B.” is a ductile fracture accompanied by a dimple pattern. If a large number of precipitates such as TiN are present, this becomes a core of the ductile fracture and becomes a mode III fracture. Is more likely to occur. That is, the conventional boron steel containing 0.020% or more of Ti and 0.005% or more of N tends to cause ductile fracture with TiN as a nucleus. One of the causes of the insufficient strength characteristics of the technology disclosed in Japanese Patent Publication No. 1-38847 and the widespread use thereof is considered to be the cause. Therefore, from the viewpoint of improving the mode III fracture strength, it is necessary to regulate the amounts of Ti and N in the ranges of Ti: 0.005 to less than 0.020% and N: 0.0015 to less than 0.005%. .
(6) In order to suppress the brittle fracture mode I accompanied by grain boundary cracking at a plane of 45 degrees in the axial direction described in the section of the above torsional fatigue fracture process “C.”, grain boundary strengthening by the following method is required. It is valid.
[0012]
(I) Addition of B, Mo, Si. However, Si is added in an appropriate amount in consideration of deterioration in workability. B is due to the effect of driving out grain boundary segregation P from the grain boundaries. Mo and Si are due to the effect of miniaturizing carbides precipitated at the grain boundaries.
(Ii) Reduction of P, Cu, O amounts.
(Iii) A reduction in the amount of TiN precipitates by optimizing the amounts of Ti and N.
(7) Next, the static torsional fracture of the induction hardened material is accompanied by grain boundary cracking when the strength is higher than a certain level. That is, the static torsional strength is determined by the grain boundary strength. Therefore, in order to improve the static torsional strength, grain boundary strengthening by the above-described method is effective.
[0013]
The present invention has been made based on the above novel findings, and the gist of the present invention is as follows.
As a weight ratio, C: 0.40 to 0.60%, Si: 0.01 to 0.15%, Mn: more than 0.6 to less than 1.0%, S: 0.01 to 0.15%, Mo: 0.01 to 0.70%, Ti: 0.005 to less than 0.020%, Al: 0.010 to 0.06%, B: 0.0005 to 0.005%, N: 0.0015 Less than 0.0050%, if necessary, one or two kinds of Ni: 0.05 to 3.00%, Cr: 0.03 to 0.70%, V: 0.03 to 0.3 %, Nb: one or two kinds of 0.005 to 0.1%, P: 0.020% or less, Cu: 0.02% or less , O: 0.0020% or less, the balance being Is an induction hardening steel excellent in cold workability, characterized by comprising iron and unavoidable impurities.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The reason for limiting the component content range of the present invention as described above will be described.
C: 0.40 to 0.60%
C is an element effective for increasing the hardness of the induction hardened layer, but if it is less than 0.40%, the hardness is insufficient, and if it exceeds 0.60%, the hardness before induction hardening is increased. The content was determined to be 0.40 to 0.60% because the hardness becomes too hard to deteriorate the cold workability, and carbide precipitation at the austenite grain boundaries becomes remarkable, deteriorating the grain boundary strength.
[0015]
Si: 0.01 to 0.15%
Si is added as a deoxidizing element and for the purpose of strengthening the grain boundary. However, if the content is less than 0.01%, the effect is insufficient. On the other hand, since Si increases the material hardness by solid solution hardening, addition of more than 0.15% deteriorates cold workability such as machinability at a stage before induction hardening. For the above reasons, the content is set to 0.01 to 0.15%.
[0016]
Mn: more than 0.6 to less than 1.0% Mn is (i) improvement of hardenability and formation of MnS in steel, (ii) refinement of austenite grains during induction hardening heating, and (iii) coating It is added for the purpose of improving machinability. However, below 0.6%, this effect is insufficient. On the other hand, when Mn is excessively added, the pearlite fraction of the raw material before induction hardening is increased, thereby increasing the raw material strength and deteriorating the cold workability. In particular, this tendency becomes remarkable when 1.0% or more is added. For the above reasons, the content of Mn is set to more than 0.6 to less than 1.0%.
[0017]
S: 0.01-0.15%
S forms MnS in steel and is added for the purpose of miniaturizing austenite grains and improving machinability during induction hardening and heating, but the effect is insufficient at 0.01% or less. On the other hand, when the content exceeds 0.15%, the effect is saturated, and rather, grain boundary segregation is caused to cause grain boundary embrittlement. For the above reasons, the content of S is set to more than 0.01 to 0.15%.
[0018]
Mo: 0.01 to 0.70%
Mo is added for the purpose of (i) suppressing the deterioration of the material during the torsional fatigue process, (ii) increasing the grain boundary strength by causing grain boundary segregation at the austenite grain boundary, and (iii) improving the hardenability. However, if the content is less than 0.01%, this effect is insufficient. On the other hand, excessive addition exceeding 0.70% saturates the effect and causes deterioration of cold workability. 0.70%.
[0019]
Ti: less than 0.005 to 0.020% Ti is combined with N in the steel to form TiN, which is added for the purpose of preventing BN precipitation by completely fixing solid solution N, that is, securing solid solution B. . However, if the content is less than 0.005, the effect is insufficient. On the other hand, if the content is excessively added at 0.020% or more, cracking at the time of cold working with a large amount of TiN or TiC and deterioration of the mode III fracture strength in the final part. Therefore, the content was made 0.005 to less than 0.020%.
[0020]
Al: 0.010-0.06%
Al is added as a deoxidizing element and a grain refining element, but if its content is less than 0.010%, its effect is insufficient. Mode III Since the breaking strength is deteriorated, the content is set to 0.010 to 0.06%.
[0021]
B: 0.0005 to 0.005%
B is added for the purpose of increasing the hardenability by segregating at the austenite grain boundaries in the solid solution state. At the same time, there is also an effect of increasing grain boundary strength by driving out grain boundary impurities such as P and Cu from the grain boundaries. Grain boundary strengthening increases torsional strength and torsional fatigue strength. However, if the content is less than 0.0005%, the effect is insufficient. On the other hand, the excessive addition exceeding 0.005% rather causes grain boundary embrittlement, so that the content is limited to 0.0005 to 0.005%. did.
[0022]
N: 0.0015 to less than 0.0050 % N is added for the purpose of refining austenite grains during high-frequency heating by precipitation of carbonitrides such as AlN, but the effect is insufficient if less than 0.0015%. . On the other hand, if the content is 0.0050% or more , BN is precipitated to reduce solid solution B, and cold work cracking due to precipitation of a large amount of TiN and deterioration of the mode III fracture strength in the final part are caused. Was set to 0.0015 to less than 0.0050 % .
[0023]
P: 0.020% or less P increases the material hardness by solid solution hardening, and deteriorates cold forgeability at a stage before induction hardening. Further, segregation at the austenite grain boundaries is caused, and the grain boundary strength is reduced, so that the brittle fracture under torsional stress is easily caused, and thus the strength is reduced. In particular, when P exceeds 0.020%, the strength is remarkably reduced, so 0.020% was made the upper limit. In order to further strengthen the grain boundary, the content is preferably 0.015% or less.
[0024]
Cu: 0.02% or less Cu also causes grain boundary segregation at austenite grain boundaries similarly to P, causing a reduction in strength. In particular, when Cu exceeds 0.02% , the strength is remarkably reduced. Therefore , the upper limit is set to 0.02% .
O: 0.0020% or less O causes grain boundary segregation to cause grain boundary embrittlement, forms hard oxide-based inclusions in steel, facilitates brittle fracture under torsional stress, and reduces strength. Cause. In particular, when O exceeds 0.0020%, the strength decreases remarkably, so the upper limit was made 0.0020%.
[0025]
Next, the invention steels according to claims 2 and 4 are steels in which (i) suppression of a decrease in hardness during torsional fatigue process and (ii) improvement of hardenability are achieved by adding Cr and Ni.
Ni: 0.05 to 3.00%
Cr: 0.03 to 0.70%
All of these elements improve the hardenability and suppress the decrease in hardness during the torsional fatigue process. Ni also has the effect of improving the toughness near the grain boundaries and suppressing brittle fracture. This effect is insufficient if Ni is less than 0.05 and Cr is less than 0.03%, while if Cr is more than 0.7%, cementite in the structure before induction hardening is stabilized, and cementite is heated during induction hardening. Becomes difficult, and the hardness of the effect layer after induction hardening becomes insufficient. Further, the addition of a large amount of Ni exceeding 3.0% saturates the effect and is not preferable from the viewpoint of economy. Furthermore, these excessive additions cause deterioration of cold workability. For the above reasons, the content was limited to the above range.
[0026]
Next, the third and fourth aspects of the present invention are steels in which austenite grains during high-frequency heating are refined to increase the strength by preventing grain boundary destruction.
V: 0.03-0.3%
Nb: 0.005 to 0.1%
V and Nb form carbonitrides in the steel and have the effect of reducing austenite grains during high-frequency heating. However, when the V content is less than 0.03% and the Nb content is less than 0.005%, the effect is insufficient. On the other hand, when the V content exceeds 0.3% and the Nb content exceeds 0.1%, the effect is insufficient. Are saturated, and rather cause deterioration of the cold workability and strength of the final product. Therefore, these contents are set to V: 0.03 to 0.3% and Nb: 0.005 to 0.1%. .
[0027]
Here, one of the causes of the occurrence of cracks in the process of torsional fatigue is uneven hardness of the hardened layer. Target component of the present invention steels, cold work remains hot rolling - besides When induction hardening, after a heat treatment of simple annealing or the like in the hot rolling after A 3-point temperature below, cold working - It may be induction hardened. However, the structure that has undergone heat treatment such as simple annealing after hot rolling is greatly affected by the structure of the rolled material. Therefore, even when such a heat treatment is performed after hot rolling, it is important to optimize the texture of the rolled material in order to suppress the unevenness in hardness of the hardened layer during induction hardening. If the structure of the rolled material has a ferrite fraction of more than 35% and a ferrite crystal grain size of more than 30 μm, the hardened layer will have remarkable unevenness in hardness, which tends to cause torsional fatigue failure. Therefore, it is desirable that the ferrite structure fraction of the structure of the rolled material be 35% or less and the ferrite crystal grain size be 30 μm or less. However, in the steel of the present invention, the present structure factor is not particularly limited.
[0028]
Further, in the steel for induction hardening according to the present invention, the manufacturing conditions are not particularly limited, and any conditions may be used as long as the requirements of the present invention are satisfied. For example, in order to further improve the cold workability, the steel material is manufactured by hot rolling at a finishing temperature of 750 to 900 ° C, and an average cooling rate in a temperature range of 700 to 500 ° C after the finish rolling; There is a method of performing the reaction under a condition of 1.7 ° C./sec, but the present invention is not particularly limited. In the production of a part using the steel of the present invention, heat treatment such as simple annealing, normal annealing, and normalizing can be performed as necessary.
[0029]
Hereinafter, the effects of the present invention will be more specifically described with reference to examples.
[0030]
【Example】
A steel material having the composition shown in Table 1 was rolled into a steel bar having a diameter of 34 mm. From this steel bar, an optical microscope observation specimen was sampled, corroded with a 5% nital solution, observed at 200 times and 400 times, and the ferrite fraction and the ferrite crystal grain size were determined. Table 1 shows the ferrite fraction and the ferrite crystal grain size.
[0031]
[Table 1]
Figure 0003549978
[0032]
[Table 2]
Figure 0003549978
[0033]
For some of the rolled steel bars, simple annealing was performed under the condition of 700 ° C. × 3 hours → air cooling. The annealed material is indicated by the symbol A in the third column of Table 2.
From these materials, static torsional test pieces and torsional fatigue test pieces having a parallel portion diameter of 20 mm were collected.
The static torsional test specimen and the torsional fatigue test specimen were subjected to induction hardening at a frequency of 8.5 kHz, and thereafter tempered at 170 ° C. × 1 hour. In each case, the effective hardened layer depth is about 5 mm. Thereafter, a static torsional test and a torsional fatigue test were performed. The torsional fatigue properties were evaluated by the time strength at 1 × 10 4 cycles.
[0034]
The machinability was evaluated using the life speed of a high speed drill. The drill used was a high-speed drill having a diameter of 3 mm according to JIS-SKH51. The drilling conditions were 0.25 mm / rev in feed, 9 mm in depth, and 2 liters / minute using spindle oil as cutting oil. In the evaluation test, a cutting speed-drill life curve was obtained from the drill life until cutting became impossible at various cutting speeds at various cutting speeds, and from this curve the maximum cutting at which the total life drilling depth was 1000 mm and the drill life was reached. The speed was determined and this was taken as the life speed.
[0035]
Table 2 shows the presence or absence of heat treatment, hardness of each test material, life of high speed drill, static torsional strength, and torsional fatigue strength. The level indicated by the symbol "A" in the column of "Heat treatment" in Table 2 indicates that the hardness and other evaluations were performed after the rolled steel bars were subjected to simple annealing under the condition of 700 ° C. × 3 hours → air cooling. . On the other hand, an unmarked level indicates that the rolled material was evaluated for hardness and other properties without heat treatment. The high-speed drill life was shown as a relative value when the drill life speed of the comparative steel 31 was set to 100.
[0036]
In addition, in order to evaluate the material deterioration behavior in the torsional fatigue process, (i) the attenuation of the compressive residual stress on the surface and (ii) the test specimens that were subjected to a 1 × 10 4 cycle fatigue test at a stress amplitude of 700 MPa. The attenuation of the half width of the X-ray diffraction peak on the ferrite (211) plane was evaluated. The attenuation of the half width of the X-ray diffraction peak was used to evaluate the net decrease in hardness during the fatigue process. As an X-ray source, a Cr tube was used.
[0037]
[Table 3]
Figure 0003549978
[0038]
[Table 4]
Figure 0003549978
[0039]
No. of Table 2 1 to 30 are steels of the present invention. The steel material of the present invention is generally softer in hardness and has a longer drill life than the comparative steel 31. In addition, the static torsional strength and the torsional fatigue strength are all superior to the comparative steel 31 when viewed at the same carbon amount. The fracture surfaces of static torsional fracture are all fracture surfaces including grain boundary cracks, and the reason why the steel of the present invention exhibits excellent torsional strength is due to the effect of increasing the grain boundary strength by addition of Mo and the like. In addition, the residual stress attenuation amount in the fatigue process and the half width width attenuation amount in the fatigue process are all suppressed as compared with the comparative steel 31 in terms of the same carbon amount. From this, the reason why the steel of the present invention exhibits excellent torsional strength is due to the effect of suppressing the material deterioration in the fatigue process due to the addition of Mo and the effect of increasing the grain boundary strength.
[0040]
On the other hand, the comparative steel 33 is the case where the content of C exceeds the range of the present invention, and is inferior in static torsional strength and torsional fatigue strength as compared with the steel of the present invention having the same carbon content.
Comparative steel 34 is a case where the content of Ti exceeds the range of the present invention, and comparative steel material 35 is a case where the content of N exceeds the range of the present invention. , The hardness is high, the drill life is poor, and the static torsional strength and torsional fatigue strength are inferior.
[0041]
Comparative steel 36 is a case where the content of Mo is lower than the range of the present invention, and comparative steel 38 is a case where the content of P is higher than the range of the present invention. , The static torsional strength and the torsional fatigue strength are inferior.
Comparative steels 37 and 39 are cases in which the contents of Si and Mn exceed the range of the present invention, and both have higher hardness and a shorter drill life than the steels of the present invention having the same carbon content.
[0042]
In the comparative steel 32, the contents of Mn and Mo are lower than the range of the present invention, and the contents of Ti and N are higher than the range of the present invention. Comparative steel 31 is a steel in which Ti and B are added to JIS standard S53C steel, and the content of Si, Mn, Mo, Ti, and N is different from the range of the present invention. In each case, the hardness is high, the drill life is poor, and the static torsional strength and torsional fatigue strength are inferior to those of the steel of the present invention having the same carbon content.
[0043]
【The invention's effect】
As described above, by using the steel for induction hardening of the present invention, a component having excellent cold workability at the material stage and having excellent torsional strength characteristics and torsional fatigue strength characteristics by induction hardening is realized. And the industrial effect is extremely remarkable.
[Brief description of the drawings]
FIG. 1 is a front view showing parts constituting a power transmission system of an automobile, (A) shows a shaft having a spline portion, (B) shows a shaft with a flange, and (C) shows a shaft with an outer cylinder portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Shaft 11, 12 ... Spline part 20, 21 ... Shaft 22 ... Flange 30, 31, 32 ... Shaft 33 ... Outer cylinder part

Claims (4)

質量%で、
C:0.40〜0.60%、
Si:0.01〜0.15%、
Mn:0.6超〜1.0%未満、
S:0.01〜0.15%、
Mo:0.01〜0.70%、
Ti:0.005〜0.020%未満、
Al:0.010〜0.06%、
B:0.0005〜0.005%、
N:0.0015〜0.0050%未満
を含有し、
P:0.020%以下、
Cu:0.02%以下、
O:0.0020%以下に制限し、
残部が鉄および不可避的不純物からなることを特徴とする冷間加工性の優れた高周波焼入れ用鋼。
In mass%,
C: 0.40 to 0.60%,
Si: 0.01 to 0.15%,
Mn: more than 0.6 to less than 1.0%,
S: 0.01-0.15%,
Mo: 0.01-0.70%,
Ti: 0.005 to less than 0.020%,
Al: 0.010-0.06%,
B: 0.0005 to 0.005%,
N: 0.0015 to less than 0.0050 % ,
P: 0.020% or less,
Cu: 0.02% or less,
O: limited to 0.0020% or less,
Induction hardening steel with excellent cold workability, characterized in that the balance consists of iron and unavoidable impurities.
質量%で、
C:0.40〜0.60%、
Si:0.01〜0.15%、
Mn:0.6超〜1.0%未満、
S:0.01〜0.15%、
Mo:0.01〜0.70%、
Ti:0.005〜0.020%未満、
Al:0.010〜0.06%、
B:0.0005〜0.005%、
N:0.0015〜0.0050%未満
を含有し、
さらに、
Ni:0.05〜3.00%、
Cr:0.03〜0.70%
の1種または2種を含有し、
P:0.020%以下、
Cu:0.02%以下、
O:0.0020%以下に制限し、
残部が鉄および不可避的不純物からなることを特徴とする冷間加工性の優れた高周波焼入れ用鋼。
In mass%,
C: 0.40 to 0.60%,
Si: 0.01 to 0.15%,
Mn: more than 0.6 to less than 1.0%,
S: 0.01-0.15%,
Mo: 0.01-0.70%,
Ti: 0.005 to less than 0.020%,
Al: 0.010-0.06%,
B: 0.0005 to 0.005%,
N: 0.0015 to less than 0.0050 % ,
further,
Ni: 0.05 to 3.00%,
Cr: 0.03 to 0.70%
Containing one or two of the following,
P: 0.020% or less,
Cu: 0.02% or less,
O: limited to 0.0020% or less,
Induction hardening steel with excellent cold workability, characterized in that the balance consists of iron and unavoidable impurities.
質量%で、
C:0.40〜0.60%、
Si:0.01〜0.15%、
Mn:0.6超〜1.0%未満、
S:0.01〜0.15%、
Mo:0.01〜0.70%、
Ti:0.005〜0.020%未満、
Al:0.010〜0.06%、
B:0.0005〜0.005%、
N:0.0015〜0.0050%未満
を含有し、
さらに、
V:0.03〜0.3%、
Nb:0.005〜0.1%
の1種または2種を含有し、
P:0.020%以下、
Cu:0.02%以下、
O:0.0020%以下に制限し、
残部が鉄および不可避的不純物からなることを特徴とする冷間加工性の優れた高周波焼入れ用鋼。
In mass%,
C: 0.40 to 0.60%,
Si: 0.01 to 0.15%,
Mn: more than 0.6 to less than 1.0%,
S: 0.01-0.15%,
Mo: 0.01-0.70%,
Ti: 0.005 to less than 0.020%,
Al: 0.010-0.06%,
B: 0.0005 to 0.005%,
N: 0.0015 to less than 0.0050 % ,
further,
V: 0.03-0.3%,
Nb: 0.005 to 0.1%
Containing one or two of the following,
P: 0.020% or less,
Cu: 0.02% or less,
O: limited to 0.0020% or less,
Induction hardening steel with excellent cold workability, characterized in that the balance consists of iron and unavoidable impurities.
質量%で、
C:0.40〜0.60%、
Si:0.01〜0.15%、
Mn:0.6超〜1.0%未満、
S:0.01〜0.15%、
Mo:0.01〜0.70%、
Ti:0.005〜0.020%未満、
Al:0.010〜0.06%、
B:0.0005〜0.005%、
N:0.0015〜0.0050%未満
を含有し、
さらに、
Ni:0.05〜3.00%、
Cr:0.03〜0.70%
の1種または2種を含有し、
さらに、
V:0.03〜0.3%、
Nb:0.005〜0.1%
の1種または2種を含有し、
P:0.020%以下、
Cu:0.02%以下、
O:0.0020%以下に制限し、
残部が鉄および不可避的不純物からなることを特徴とする冷間加工性の優れた高周波焼入れ用鋼。
In mass%,
C: 0.40 to 0.60%,
Si: 0.01 to 0.15%,
Mn: more than 0.6 to less than 1.0%,
S: 0.01-0.15%,
Mo: 0.01-0.70%,
Ti: 0.005 to less than 0.020%,
Al: 0.010-0.06%,
B: 0.0005 to 0.005%,
N: 0.0015 to less than 0.0050 % ,
further,
Ni: 0.05 to 3.00%,
Cr: 0.03 to 0.70%
Containing one or two of the following,
further,
V: 0.03-0.3%,
Nb: 0.005 to 0.1%
Containing one or two of the following,
P: 0.020% or less,
Cu: 0.02% or less,
O: limited to 0.0020% or less,
Induction hardening steel with excellent cold workability, characterized in that the balance consists of iron and unavoidable impurities.
JP09871896A 1996-04-19 1996-04-19 Induction hardening steel with excellent cold workability Expired - Fee Related JP3549978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09871896A JP3549978B2 (en) 1996-04-19 1996-04-19 Induction hardening steel with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09871896A JP3549978B2 (en) 1996-04-19 1996-04-19 Induction hardening steel with excellent cold workability

Publications (2)

Publication Number Publication Date
JPH09287055A JPH09287055A (en) 1997-11-04
JP3549978B2 true JP3549978B2 (en) 2004-08-04

Family

ID=14227310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09871896A Expired - Fee Related JP3549978B2 (en) 1996-04-19 1996-04-19 Induction hardening steel with excellent cold workability

Country Status (1)

Country Link
JP (1) JP3549978B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012082040A1 (en) * 2010-12-13 2012-06-21 Aktiebolaget Skf Steel and component intended for high temperature joining processes

Also Published As

Publication number Publication date
JPH09287055A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
WO2019244503A1 (en) Mechanical component
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JP4771745B2 (en) Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP4219023B2 (en) High-strength drive shaft and manufacturing method thereof
JPH10195589A (en) Induction hardened steel material with high torsional fatigue strength
JP3432950B2 (en) Steel material for induction hardened shaft parts that has both cold workability and torsional fatigue strength characteristics
JP2002069566A (en) Steel for induction hardening excellent in torsional fatigue characteristic and induction hardened parts
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP2003055714A (en) Non-heat treated steel forged workpiece, production method therefor and connecting rod parts for internal combustion engine obtained by using the same
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JP2015166495A (en) Case hardening steel excellent in cold forgeability and crystal grain coarsening suppression performance
JPH11131176A (en) Induction hardened parts and production thereof
JP5583352B2 (en) Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength
JPH1129842A (en) Ferrite-pearlite type non-heat treated steel
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JP5141313B2 (en) Steel material with excellent black skin peripheral turning and torsional strength
JP3549978B2 (en) Induction hardening steel with excellent cold workability
JP3432944B2 (en) Steel material for induction hardened shaft parts with excellent torsional fatigue strength
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JPH1017935A (en) Production of induction hardened parts
JPH09235654A (en) Steel for induction hardening and induction hardened part
JP3687275B2 (en) Non-tempered steel for induction hardening
CN114959502B (en) Nb microalloyed fine-grain high-torque output gear steel, manufacturing method thereof and processing technology for producing gears

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees