JP3549363B2 - Infrared solid-state imaging device - Google Patents

Infrared solid-state imaging device Download PDF

Info

Publication number
JP3549363B2
JP3549363B2 JP13990497A JP13990497A JP3549363B2 JP 3549363 B2 JP3549363 B2 JP 3549363B2 JP 13990497 A JP13990497 A JP 13990497A JP 13990497 A JP13990497 A JP 13990497A JP 3549363 B2 JP3549363 B2 JP 3549363B2
Authority
JP
Japan
Prior art keywords
infrared
thermal
support leg
semiconductor substrate
thermal detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13990497A
Other languages
Japanese (ja)
Other versions
JPH10332480A (en
Inventor
雅章 木股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13990497A priority Critical patent/JP3549363B2/en
Publication of JPH10332480A publication Critical patent/JPH10332480A/en
Application granted granted Critical
Publication of JP3549363B2 publication Critical patent/JP3549363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、熱型赤外線検出器を用いた2次元赤外線固体撮像素子に関するものである。
【0002】
【従来の技術】
図12は、温度で熱型赤外線検出器である抵抗値が変化するボロメータを用いた2次元固体撮像素子の従来の画素の構造の一例を示す斜視図である。例えばシリコンなどの半導体からなる基板1の上に、ボロメータ薄膜11を含む赤外線検出器部10が空間を隔てて設けられる。2本の支持脚21、22が、赤外線検出器部10をシリコン基板から浮かせて持ち上げる。金属配線31、32は、ボロメータ薄膜11に電流を流すものであり、検出回路により電流のON,OFFが制御される。
【0003】
次にこの熱型赤外線検出器を用いた2次元赤外線固体撮像素子の動作について説明する。赤外線は光検出器部10が存在する側から入射し、光検出器部10で吸収される。光検出器部10で吸収された赤外線のエネルギは熱に変換され、光検出器部10の温度を上昇させる。温度上昇は入射する赤外線の量に依存(入射する赤外線の量は撮像対象物の温度と放射率に依存)する。温度上昇の量はボロメータ薄膜の抵抗値の変化を測定することで知ることができるので、撮像対象物が放射している赤外線の量をボロメータの抵抗値の変化から知ることができる。
【0004】
【発明が解決しようとする課題】
ボロメータ薄膜の抵抗温度係数が同じであれば、光検出器部の温度上昇が大きいほど同じ量の赤外線入射で得られる抵抗変化が大きくなり、感度が高くなるが、温度上昇を高くするためには光検出器部10からシリコン基板1に逃げる熱をできるだけ小さくすることが効果的であり、このために支持脚21、22は熱抵抗を出来るだけ大きくするよう設計される。また、撮像素子のフレーム時間に比べ光検出器部10の温度時定数が短くなるよう光検出器部10の熱容量を小さくすることも重要である。また赤外線を受ける部分となる光検出器部10の面積を大きくすることも感度を高めるのに有効である。しかし、従来の構造では、1つの光検出器部10からの熱が2本の支持脚21、22から逃げて行くので、光検出器部の温度が十分に上昇せず、高感度化を阻害していた。
【0005】
さらに、支持脚が多いことは高感度化を阻害する。図13は図12に示した構造の平面図であり、この図を参照することで赤外線を受光する光検出器部10と支持脚21、22の画素内に占める面積を考える。支持脚の幅は配線31、32の幅と配線と支持脚を形成する絶縁膜のパターンとの余裕(片側の余裕の2倍)で決まるパターン形成上の幅と、製造工程を通して検出器部10を中空に支えるだけの機械的強度で決まる幅(この場合は厚さも関係する)の2つを考慮して決められる。熱はこの幅で決まる2本の支持脚を通して基板に逃げることになる。なお、図13において、配線31、32は、コンタクト121、122を経て読み出し回路に接続される。支持脚の両側にはパターン形成上必要な空隙を介して検出器部または別の支持脚が配置されるが、必要な空隙が全て同じであれば、1画素当たり3個の空隙を割り当てる必要がある。したがって検出器部10の図中縦方向の幅は、画素縦方向ピッチから支持脚2本分の幅と3個の空隙の幅を引いたものとなり、設計上の制限を受ける。光検出器10の図面垂直方向に割り当てられる幅は、2本分の支持脚21、22と支持脚の幅と検出器部と支持脚および支持脚同士の間に必要な空隙3個分の幅を画素ピッチから引いた値となり、光検出器部10の面積に制限を与えており、高感度化を阻害していた。
本発明の目的は、高感度の赤外線固体撮像素子を提供することである。
【0006】
【課題を解決するための手段】
この発明に係る第1の赤外線固体撮像素子は、半導体基板と、該半導体基板の上方に配置された熱型検出器部と、前記熱型検出器部の側部にその一端が取りつけられ、前記熱型検出器部と空隙を介して該熱型検出器部の側方に沿って延びて前記半導体基板から空間を隔てて支持する1本の支持脚とを備え、前記支持脚内に、前記熱型検出器部と前記半導体基板との間の電気経路を形成する複数の配線を絶縁膜を介して積層し、前記支持脚の幅は、前記配線幅と該配線幅より広い絶縁膜パターンの余裕とで規定された幅であり、赤外線の入射による熱型検出器部の特性変化を支持脚内の配線を通して検出する
好ましくは、この赤外線固体撮像素子において、前記熱型検出器部は、赤外線検出薄膜と前記赤外線検出薄膜に電気的に接続される複数の電極とを備え、前記複数の電極のうち、前記赤外線検出薄膜より下側に位置する電極が前記赤外線検出薄膜より広く形成される。好ましくは、前記複数の電極のうち前記赤外線検出薄膜より上側に位置する電極が前記赤外線検出薄膜の略全面に形成される。
この発明に係る第1の2次元赤外線固体撮像素子は、半導体基板と、前記半導体基板上に2次元的に配置された複数対の熱型検出器部及び支持脚からなり、赤外線の入射による熱型検出器部の特性変化を支持脚内の配線を通して検出する。1対の前記熱型検出器部及び前記支持脚において、前記支持脚は、前記熱型検出器部の側部にその一端が取りつけられ、前記熱型検出器と空隙を介して該熱型検出器の側方に沿って延びて前記半導体基板から空間を隔てて支持し、前記支持脚内に、前記熱型検出器部と前記半導体基板との間の電気経路を形成する複数の配線を絶縁膜を介して積層し、前記支持脚の幅は、前記配線幅と該配線幅より広い絶縁膜パターンの余裕とで規定された幅である。
【0007】
この発明に係る第2の赤外線固体撮像素子は、表面に空洞部を設けた半導体基板と、該半導体基板の上方に配置された熱型検出器部と、前記半導体基板の前記空洞部の上に空間を隔てて前記熱型検出器部を支持する1本の支持脚とを備え、前記支持脚は、前記熱型検出器部の側部でその一端が取りつけられ、前記熱型検出器部とは空隙を介して前記側部に沿って延びて前記熱型検出器部を支持し、前記支持脚内に、前記熱型検出器部と前記半導体基板の間の電気経路を形成する複数の配線を絶縁膜を介して積層し、前記支持脚の幅は、前記配線幅と該配線幅より広い絶縁膜パターンの余裕とで規定された幅であり、赤外線の入射による熱型検出器部の特性変化を支持脚内の配線を通して検出する。
好ましくは、この赤外線固体撮像素子において、前記熱型検出器部は、赤外線検出薄膜と前記赤外線検出薄膜に電気的に接続される複数の電極とを備え、前記複数の電極のうち、前記赤外線検出薄膜より下側に位置する電極が前記赤外線検出薄膜より広く形成される。好ましくは、前記複数の電極のうち前記赤外線検出薄膜より上側に位置する電極が前記赤外線検出薄膜の略全面に形成される。
この発明に係る第2の2次元赤外線固体撮像素子は、表面に複数の空洞部を設けた半導体基板と、前記半導体基板上に2次元的に配置された複数対の熱型検出器部及び支持脚とからなり、赤外線の入射による熱型検出器部の特性変化を支持脚内の配線を通して検出する。前記複数の空洞部は、前記半導体基板の表面に1対の熱型検出器部及び支持脚ごとに設けられる。1対の前記熱型検出器部及び前記支持脚において、前記支持脚は前記空洞部の上に空間を隔てて前記熱型検出器部を支持し、前記支持脚は、前記熱型検出器部の側部で、その一端が取り付けられ、前記熱型検出器部とは空隙を介して前記側部に沿って延びて前記熱型検出器を支持し、前記支持脚内に、前記熱型検出器部と前記半導体基板との間の電気経路を形成する複数の配線を絶縁膜を介して積層し、前記支持脚の幅は、前記配線幅と該配線幅より広い絶縁膜パターンの余裕とで規定された幅である。
【0008】
【発明の実施の形態】
以下、この発明の実施の形態を添付の図面を参照して説明する。
実施の形態1.
図1は、熱型赤外線検出器である抵抗値が温度で変化するボロメータを用いた実施の形態1の2次元赤外線固体撮像素子の1画素の構造を示す図式的な斜視図であり、図2は、この赤外線固体撮像素子の電流経路に沿った図式的な断面図である。図2では、簡単のために本発明と直接関係のない、基板1上に設けられた信号読み出し回路は省略している。2次元固体撮像素子では、図1と図2に示した画素が2次元に配置される。
【0009】
図1と図2に示される構造において、赤外線検出器部10は、抵抗値が温度で変化するボロメータ薄膜11を含む。赤外線検出器部10は、例えばシリコンなどの半導体からなる基板1と空間90を隔てて設けられる。基板1の上に絶縁膜80が設けられ、熱抵抗の大きな1本の支持脚20が絶縁膜80の上に固定され、赤外線検出器部10をシリコン基板1から浮かせて持ち上げる。すなわち、赤外線検出器部10は、1本の支持脚20で基板1の上方に支持される。赤外線検出器部10は、下から絶縁膜110、金属配線31、絶縁膜130、ボロメータ膜11およびそれに接続される金属配線32、絶縁膜100が順次積層された5層構造からなる。金属配線31、32は、四角形のボロメータ膜11の両端に電気的に接続される。支持脚20も同様な5層構造からなり、1本の支持脚20の内部に、ボロメータ薄膜11に電流を流すための複数の(本実施形態では2本の)金属配線31、32が配置される。絶縁膜100、110、130は、支持脚20および検出器部10の機械的構造を形成しているシリコン酸化膜、シリコン窒化膜等からなり、絶縁膜130は、配線31と配線32の層間絶縁膜の役目も果たしている。
基板1の上には、信号線50と読み出し回路制御クロックバスライン60により2次元マトリクスが形成され、信号線50と読み出し回路制御クロックバスライン60の各交点に読み出し回路40が設けられる。
支持脚20は、本実施形態では、信号線50上で基板1に取り付けられる。支持脚20が基板に接続される部分で、金属配線31、32は、絶縁膜130、110、80に設けたコンタクトホール121、122を通して、図示されていないシリコン基板1上の信号読み出し回路40に接続される。この信号読み出し回路40において、金属配線31は、スイッチ・トランジスタを介して制御クロック線に接続され、金属配線32は、信号線に接続される。スイッチ・トランジスタは、制御クロック線からのクロック信号に応じて、配線31、32とボロメータ薄膜11を通して流れる電流のON、OFFを行なう。
また、金属反射膜70は、絶縁膜80の上に、ボロメータ膜11の下方に相当する位置に設けられ、検出器部10と光学的共振構造をつくり検出器部10での赤外線の吸収を増大させる。検出器部10には、赤外線の吸収を助けるために薄い金属赤外線吸収膜が形成される場合もある。
図1と図2で明らかなように、この2次元赤外線固体撮像素子は1つの支持脚20内に2つ以上の配線を配置した構造としたので、支持脚の数を従来より減らすことができ、検出器部10から逃げて行く熱が減少し、感度を高くできる。
【0010】
図3は、図1と図2に示した素子構造において金属配線31に関係する部分を省いた平面図であり、図4は、図1と2に示した素子構造で金属配線32に関する部分を省いた平面図である。上側の配線32は、図3に示すようにボロメータ膜11の左端の部分で接しており、下側の配線31は、図4に示すようにボロメータ膜11と右端の部分で接している。
図3と図4で明らかなように、この2次元赤外線固体撮像素子は、支持脚の数を従来より減らすことができるので、検出器部10に割り当てられる面積は、従来に比べ支持脚の数が減った分だけ大きくできる。減った部分の支持脚が占めていた面積と支持脚と検出器部の間の空隙に相当する部分の面積の和に相当する面積をも光検出器部に割り当てることができ、開口率を大きくして高感度化するのに有効である。
【0011】
次に、本実施形態による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の赤外線検出動作について説明する。赤外線は検出器部10側から入射する。入射した赤外線は、検出器部10で吸収され検出器部10の温度を上昇させる。検出器部10の温度上昇は、ボロメータ膜11の抵抗変化により検出される。この抵抗変化を配線31、32、コンタクト121、122を通してシリコン基板上に形成した信号読出回路で検出することで、赤外線を検出する。なお、反射膜70と検出器部10とは、光学的な共振構造を形成して赤外線の吸収の効率を高めている。
【0012】
実施の形態2.
図5と図6は、本発明による実施形態2の熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の電流経路に沿った図式的断面図および実施形態1の図3に相当する平面図である。この構造では、図6に示されるように、下層の金属配線32がボロメータ膜11の下に、ボロメータ膜11より広がって形成されており、実施形態1の素子で形成した反射膜は除去されている。その他については実施形態1の素子と同じである。
【0013】
この構造では、金属配線32のボロメータ膜11上に位置した部分では金属電極32が反射膜の働きをしている。金属電極32の上の絶縁膜130と100、および、ボロメータ膜11(および、場合によって金属配線上のいずれかの部分に形成される薄膜金属赤外線吸収膜)の膜種、膜厚を適当に設計することで、光学的共振構造を構成することができる。実施形態1では空洞90の高さによって光学的共振構造の効果の度合が変化し、膜の構成によっては検出器部11や支持脚20が反ることがあり、制御が難しい。本実施形態の構造では、光学的共振構造の効果は固体である薄膜の膜厚で決まり、制御しやすく安定である。
【0014】
実施の形態3.
図7は、本発明の実施形態3を示す熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の電流経路に沿った断面構造である。この実施形態では、第1の実施形態の図1と図2に示したボロメータ膜11を電極31と32で挟んだ形をしている。すなわち、ボロメータ膜11の存在する部分では、赤外線検出器部10は、下から絶縁膜110、金属電極31、ボロメータ膜11、金属電極32、絶縁膜100を積層した構造であり、平面的には、2つの電極31と32はボロメータ膜11のほぼ全体に接するように配置されている。
【0015】
上側の電極32を赤外線の透過する材料または赤外線が十分透過できるだけ薄くできる場合は、下側の電極31を反射膜として動作させることができる。この場合、図示していないが、配線31の上に位置する任意の部分に薄膜金属赤外線吸収層を設けると、より効率的に赤外線を吸収できる。
電極32を赤外線の透過する材料または赤外線が十分透過できるだけ薄くできない場合は、上側(光入射側)の電極になる32を反射膜として動作させることができる。この場合、図示していないが、配線32の上に位置する任意の部分に薄膜金属赤外線吸収層を設けるとより効率的に赤外線を吸収できる。
【0016】
上記の実施形態1〜3では検出器がボロメータで配線が2本の素子を示した。しかし、配線が3本以上必要とする別の検出器を用いる場合であっても、実施の形態1〜3において、そのー部または全部を1本の支持脚に積層して配置することで、従来構造と比べ支持脚の数を減らすことができ、同様の効果を奏するものである。
また、上記の実施形態1〜3では配線が積層されたものを示した。しかし、熱的効果は若干落ちるが、実施の形態1〜3において配線を平行に1つの支持脚内に配置しても同様の効果を奏するものである。
【0017】
実施の形態4.
図8は、本発明の実施形態4の熱型赤外線検出器である抵抗値が温度で変化するボロメータを用いた2次元固体撮像素子の1画素の構造を示す図式的な斜視図であり、図9は、この2次元赤外線固体撮像素子の電流経路に沿った図式的な断面図である。図8と図9では、簡単のために本発明と直接関係のない、基板1上に設けられた信号読み出し回路は省略している。2次元固体撮像素子では、図8と図9に示した画素が2次元に配置される。
図8と図9に示される構造において、赤外線検出器部10は、上述の実施形態と同様な構造を備え、同様に例えばシリコンなどの半導体からなる基板1と空間を隔てて設けられるが、空間を隔てる構造が異なる。凹部(空洞部)200がシリコン基板1の上部に形成され、赤外線検出器部10は、凹部200の上方に位置される。回路の平面配置に余裕があり、画素毎の読み出し回路を検出器部と積層する必要がない場合、構造の簡単なこの構造が適している。
【0018】
熱抵抗の大きな1本の支持脚20が、赤外線検出器部10をシリコン基板1から浮かせて持ち上げ、基板1の上方に支持する。しかし、上述の実施形態とは異なり、赤外線検出器部10と支持脚20は同じ平面内に、すなわち、基板1に対して同じ高さに形成される。赤外線検出器部10と支持脚20は、下から絶縁膜110、金属配線31、絶縁膜130、ボロメータ膜11およびそれに接続される金属配線32、絶縁膜100が順次積層された5層構造からなる。金属配線31、32は、四角形のボロメータ膜11の両端に電気的に接続される。1本の支持脚20の中にボロメータ薄膜11に電流を流すための複数の(本実施形態では2本の)金属配線31、32が配置される。
支持脚20は、本実施形態では、信号線50と読み出し回路制御クロックバスライン60の交点上で基板1に取り付けられる。支持脚20が基板に接続される部分で、金属配線31、32は、絶縁膜130、110、80に設けたコンタクトホール121、122を通して、シリコン基板1上の図示されていない信号読み出し回路に接続される。この信号読み出し回路において、金属配線31は、スイッチ・トランジスタを介して制御クロック線に接続され、金属配線32は、信号線に接続される。スイッチ・トランジスタは、制御クロック線からのクロック信号に応じて、配線31、32とボロメータ薄膜11を通して流れる電流のON、OFFを行なう。
【0019】
実施の形態5.
図10は、本発明の別の実施形態5の熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の電流経路に沿った断面構造を示す。赤外線検出器部10の構造や、1本の支持脚20の中にボロメータ薄膜11に電流を流すための複数の金属配線31、32が配置される点は、第2の実施形態の場合と同じであるが、凹部200がシリコン基板1に形成され、支持脚20が赤外線検出器部10と同じ高さに形成される点では、第4の実施形態と同様である。回路の平面配置に余裕があり、画素毎の読出回路を検出器部と積層する必要がない場合、構造の簡単なこの構造が適している。
【0020】
実施の形態6.
図11は、本発明の別の実施形態を示す熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の電流経路に沿った断面構造を示す。赤外線検出器部10の構造や、1本の支持脚20の中にボロメータ薄膜11に電流を流すための複数の金属配線31、32が配置される点は、第3の実施形態の場合と同じであるが、凹部200がシリコン基板1に形成され、支持脚20が赤外線検出器部10と同じ高さに形成される点では、第4の実施形態と同様である。回路の平面配置に余裕があり、画素毎の読出回路を検出器部と積層する必要がない場合、構造の簡単なこの構造が適している。
上記の実施形態4〜6では検出器がボロメータで配線が2本のものを示した。しかし、配線が3本以上必要とする別の検出器であっても、実施の形態4〜6において、そのー部または全部を積層することで、従来構造と比べ支持脚の数を減らすことができ、同様の効果を奏するものである。
また、上記の実施形態4〜6では配線が積層されたもの示した。しかし、熱的効果は若干落ちるが実施形態4〜6において配線を平行に1つの支持脚内に配置しても同様な効果を奏するものである。
【0021】
【発明の効果】
本発明に係る第1の赤外線固体撮像素子は、半導体基板上に熱抵抗の大きな支持脚で支えられた熱型光検出器部を備え、赤外線の入射による熱型検出器の特性変化を支持脚内の配線を通して検出する赤外線固体撮像素子であって、少なくとも1本の支持脚内に複数の配線を配置するので、支持脚の数を減らすことができ、支持脚を通して逃げる熱量を減らすことができ高感度化が実現できる。また、支持脚の数を減らすことができるようにしたので、支持脚に割り当てる面積を減らすことができ、この結果、検出器部の面積を増大し開口率を高めることで高感度化が実現できる。
好ましくは、この赤外線固体撮像素子において、少なくとも1本の支持脚内に複数の配線を積層して配置したので、支持脚の数を減らすことができる。
好ましくは、この赤外線固体撮像素子において、赤外線検出薄膜より下側に位置する電極が赤外線検出薄膜より広く形成されるので、下側電極を反射膜として用いて安定な光学的共振構造を構成できる。
好ましくは、この赤外線固体撮像素子において、複数の電極のうち赤外線検出薄膜より上側に位置する電極が赤外線検出薄膜の略全面に形成されるので、上側または下側の電極を反射膜として用いることができる。
本発明に係る第2の赤外線固体撮像素子は、半導体基板中に設けた空洞部の上に熱抵抗の大きな支持脚で支えられた熱型光検出器部を備え、赤外線の入射による熱型検出器の特性変化を支持脚内の配線を通して検出する赤外線固体撮像素子であって、少なくとも1本の支持脚内に複数の配線を配置するので、支持脚の数を減らすことができ、支持脚を通して逃げる熱量を減らすことができ高感度化が実現できる。また、支持脚の数を減らすことができるようにしたので、支持脚に割り当てる面積を減らすことができ、この結果、検出器部の面積を増大し開口率を高めることで高感度化が実現できる。
好ましくは、この赤外線固体撮像素子において、少なくとも1本の支持脚内に複数の配線を積層して配置したので、支持脚の数を減らすことができる。
好ましくは、この赤外線固体撮像素子において、赤外線検出薄膜より下側に位置する電極が赤外線検出薄膜より広く形成されるので、下側の電極を反射膜として用いて安定な光学的共振構造を構成できる。
好ましくは、この赤外線固体撮像素子において、複数の電極のうち赤外線検出薄膜より上側に位置する電極が赤外線検出薄膜の略全面に形成されるので、上側または下側の電極を反射膜として用いることができる。
【図面の簡単な説明】
【図1】この発明の実施形態1による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の図式的斜視図。
【図2】実施形態1による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の電流経路に沿った図式的断面図。
【図3】実施形態1による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の上層配線のレイアウトを示す平面図。
【図4】実施形態1による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の下層配線のレイアウトを示す平面図。
【図5】この発明の実施形態2による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の電流経路に沿った図式的断面図。
【図6】実施形態2による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の下層配線のレイアウトを示す平面図。
【図7】この発明の実施形態3による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の電流経路に沿った図式的断面図。
【図8】この発明の実施形態4による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の図式的斜視図。
【図9】この発明の実施形態4による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の電流経路に沿った図式的断面図。
【図10】この発明の実施形態5による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の電流経路に沿った図式的断面図。
【図11】この発明の実施形態6による熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の電流経路に沿った図式的断面図。
【図12】従来の熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の構造を示す斜視図。
【図13】従来の熱型赤外線検出器を用いた2次元赤外線固体撮像素子の画素の構造を示す平面図。
【符号の説明】
1 シリコン基板、 10 赤外線検出器部、 11 ボロメータ薄膜、
21、22 支持脚、 31、32 金属配線、 40 読み出し回路、
50 信号線、 60 読み出し回路制御クロックバスライン、
70 反射膜、 80 絶縁膜、 90 空洞部、
100 絶縁膜、 110 絶縁膜、 121、122 コンタクト、
130 絶縁膜、 200 基板内の空洞部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a two-dimensional infrared solid-state imaging device using a thermal infrared detector.
[0002]
[Prior art]
FIG. 12 is a perspective view showing an example of the structure of a conventional pixel of a two-dimensional solid-state imaging device using a bolometer that is a thermal infrared detector whose resistance value changes with temperature. For example, an infrared detector unit 10 including a bolometer thin film 11 is provided on a substrate 1 made of a semiconductor such as silicon with a space therebetween. The two support legs 21 and 22 lift and lift the infrared detector unit 10 from the silicon substrate. The metal wirings 31 and 32 allow current to flow through the bolometer thin film 11, and ON and OFF of the current are controlled by a detection circuit.
[0003]
Next, the operation of the two-dimensional infrared solid-state imaging device using the thermal infrared detector will be described. Infrared rays enter from the side where the photodetector unit 10 is present and are absorbed by the photodetector unit 10. The infrared energy absorbed by the photodetector section 10 is converted into heat, and the temperature of the photodetector section 10 is increased. The temperature rise depends on the amount of incident infrared light (the amount of incident infrared light depends on the temperature and emissivity of the imaging target). Since the amount of temperature rise can be known by measuring the change in the resistance value of the bolometer thin film, the amount of infrared radiation emitted by the imaging object can be known from the change in the resistance value of the bolometer.
[0004]
[Problems to be solved by the invention]
If the temperature coefficient of resistance of the bolometer thin film is the same, the larger the temperature rise of the photodetector unit, the larger the resistance change obtained by the same amount of incident infrared light and the higher the sensitivity, but in order to increase the temperature rise, It is effective to minimize the heat escaping from the photodetector section 10 to the silicon substrate 1, so that the supporting legs 21 and 22 are designed to increase the thermal resistance as much as possible. It is also important to reduce the heat capacity of the photodetector unit 10 so that the temperature time constant of the photodetector unit 10 becomes shorter than the frame time of the image sensor. It is also effective to increase the area of the photodetector section 10 that receives infrared rays to increase the sensitivity. However, in the conventional structure, since the heat from one photodetector section 10 escapes from the two support legs 21 and 22, the temperature of the photodetector section does not sufficiently rise, and high sensitivity is hindered. Was.
[0005]
In addition, a large number of supporting legs hinders improvement in sensitivity. FIG. 13 is a plan view of the structure shown in FIG. 12. Referring to FIG. 13, the area occupied by the photodetector unit 10 for receiving infrared rays and the supporting legs 21 and 22 in the pixel will be considered. The width of the supporting leg is determined by the width of the wirings 31 and 32, the margin between the wiring and the pattern of the insulating film forming the supporting leg (twice the margin on one side), and the width of the detector unit 10 through the manufacturing process. Is determined in consideration of two widths (in this case, the thickness is also determined) determined by the mechanical strength enough to support the hollow. Heat will escape to the substrate through the two support legs determined by this width. In FIG. 13, the wirings 31 and 32 are connected to the readout circuit via the contacts 121 and 122. On both sides of the support leg, a detector unit or another support leg is arranged via a space required for pattern formation. If all the required spaces are the same, three spaces need to be allocated per pixel. is there. Therefore, the width of the detector unit 10 in the vertical direction in the drawing is obtained by subtracting the width of two support legs and the width of three gaps from the pixel vertical pitch, which is subject to design restrictions. The width of the photodetector 10 allocated in the drawing vertical direction is the width of two support legs 21 and 22, the width of the support legs, and the width of three necessary gaps between the detector unit, the support legs, and the support legs. Is subtracted from the pixel pitch, which imposes a limit on the area of the photodetector section 10 and hinders an increase in sensitivity.
An object of the present invention is to provide a high-sensitivity infrared solid-state imaging device.
[0006]
[Means for Solving the Problems]
A first infrared solid-state imaging device according to the present invention has a semiconductor substrate , a thermal detector disposed above the semiconductor substrate, and one end attached to a side of the thermal detector, A support leg extending along the side of the thermal detector unit and a gap via the gap and supporting the semiconductor substrate with a space therebetween, wherein the support leg includes: A plurality of wirings forming an electrical path between the thermal detector unit and the semiconductor substrate are laminated via an insulating film, and the width of the support leg is equal to the wiring width and the width of the insulating film pattern wider than the wiring width. The width is defined by a margin, and the characteristic change of the thermal detector due to the incidence of infrared rays is detected through the wiring in the support leg .
Preferably, in the infrared solid-state imaging device, the thermal detector unit includes an infrared detection thin film and a plurality of electrodes electrically connected to the infrared detection thin film. An electrode located below the thin film is formed wider than the infrared detecting thin film. Preferably, of the plurality of electrodes, an electrode located above the infrared detection thin film is formed on substantially the entire surface of the infrared detection thin film.
A first two-dimensional infrared solid-state imaging device according to the present invention includes a semiconductor substrate, a plurality of pairs of thermal detectors and support legs two-dimensionally arranged on the semiconductor substrate, and generates heat due to incident infrared light. The characteristic change of the mold detector is detected through the wiring in the support leg. In the pair of the thermal detector section and the support leg, one end of the support leg is attached to a side of the thermal detector section, and the thermal leg detection is performed through a gap with the thermal detector section. A plurality of wirings extending along the sides of the detector and supporting the semiconductor substrate with a space therebetween, and forming an electric path between the thermal detector unit and the semiconductor substrate in the support leg; The support legs are laminated via a film, and the width of the support leg is a width defined by the wiring width and a margin of an insulating film pattern wider than the wiring width.
[0007]
A second infrared solid-state imaging device according to the present invention includes a semiconductor substrate having a cavity on a surface thereof, a thermal detector disposed above the semiconductor substrate, and a semiconductor substrate having a cavity disposed on the semiconductor substrate. A support leg for supporting the thermal detector unit with a space therebetween, the support leg having one end attached to a side of the thermal detector unit; A plurality of wirings extending along the side portion via a gap to support the thermal detector, and forming an electric path between the thermal detector and the semiconductor substrate in the support leg. Are laminated via an insulating film, and the width of the support leg is a width defined by the wiring width and a margin of an insulating film pattern wider than the wiring width. Changes are detected through wiring in the support legs.
Preferably, in the infrared solid-state imaging device, the thermal detector unit includes an infrared detection thin film and a plurality of electrodes electrically connected to the infrared detection thin film. An electrode located below the thin film is formed wider than the infrared detecting thin film. Preferably, of the plurality of electrodes, an electrode located above the infrared detection thin film is formed on substantially the entire surface of the infrared detection thin film.
According to a second two-dimensional infrared solid-state imaging device according to the present invention, there are provided a semiconductor substrate having a plurality of cavities formed on a surface thereof, a plurality of pairs of thermal detectors arranged two-dimensionally on the semiconductor substrate, and a support. It consists of legs, and detects a change in characteristics of the thermal detector due to the incidence of infrared rays through wiring in the support legs. The plurality of cavities are provided on the surface of the semiconductor substrate for each of a pair of thermal detectors and a support leg. In the pair of the thermal detector and the support leg, the support leg supports the thermal detector with a space above the cavity, and the support leg includes the thermal detector. At one side, one end thereof is attached, extends along the side portion through a gap with the thermal type detector portion to support the thermal type detector, and the thermal type detection portion is provided in the support leg. A plurality of wirings forming an electrical path between the container unit and the semiconductor substrate are stacked via an insulating film, and the width of the support leg is determined by the wiring width and a margin of the insulating film pattern wider than the wiring width. The specified width.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic perspective view showing the structure of one pixel of a two-dimensional infrared solid-state imaging device according to Embodiment 1 using a bolometer whose resistance value changes with temperature, which is a thermal infrared detector. FIG. 2 is a schematic sectional view along a current path of the infrared solid-state imaging device. FIG. 2 omits a signal readout circuit provided on the substrate 1 which is not directly related to the present invention for simplicity. In the two-dimensional solid-state imaging device, the pixels shown in FIGS. 1 and 2 are two-dimensionally arranged.
[0009]
In the structure shown in FIGS. 1 and 2, the infrared detector section 10 includes a bolometer thin film 11 whose resistance value changes with temperature. The infrared detector unit 10 is provided with a space 90 separated from the substrate 1 made of a semiconductor such as silicon. An insulating film 80 is provided on the substrate 1, one supporting leg 20 having a large thermal resistance is fixed on the insulating film 80, and the infrared detector unit 10 is lifted up from the silicon substrate 1. That is, the infrared detector unit 10 is supported above the substrate 1 by one support leg 20. The infrared detector unit 10 has a five-layer structure in which an insulating film 110, a metal wiring 31, an insulating film 130, a bolometer film 11, a metal wiring 32 connected thereto, and an insulating film 100 are sequentially stacked from below. The metal wirings 31 and 32 are electrically connected to both ends of the square bolometer film 11. The support leg 20 also has a similar five-layer structure, and a plurality of (two in the present embodiment) metal wirings 31 and 32 for flowing a current to the bolometer thin film 11 are arranged inside one support leg 20. You. The insulating films 100, 110, and 130 are made of a silicon oxide film, a silicon nitride film, or the like that forms the mechanical structure of the support leg 20 and the detector unit 10. The insulating film 130 is an interlayer insulating film between the wirings 31 and 32. It also plays the role of a membrane.
On the substrate 1, a two-dimensional matrix is formed by the signal lines 50 and the read circuit control clock bus lines 60, and the read circuit 40 is provided at each intersection of the signal lines 50 and the read circuit control clock bus lines 60.
The support leg 20 is attached to the substrate 1 on the signal line 50 in the present embodiment. At the portion where the support leg 20 is connected to the substrate, the metal wirings 31 and 32 pass through the contact holes 121 and 122 provided in the insulating films 130, 110 and 80 to the signal readout circuit 40 on the silicon substrate 1 (not shown). Connected. In the signal readout circuit 40, the metal wiring 31 is connected to a control clock line via a switch transistor, and the metal wiring 32 is connected to a signal line. The switch transistor turns on and off a current flowing through the wirings 31 and 32 and the bolometer thin film 11 according to a clock signal from a control clock line.
Further, the metal reflection film 70 is provided on the insulating film 80 at a position corresponding to the position below the bolometer film 11, and forms an optical resonance structure with the detector unit 10 to increase the absorption of infrared rays by the detector unit 10. Let it. In some cases, the detector unit 10 is formed with a thin metal infrared absorbing film to help absorb infrared light.
As is clear from FIGS. 1 and 2, the two-dimensional infrared solid-state imaging device has a structure in which two or more wirings are arranged in one support leg 20, so that the number of support legs can be reduced as compared with the conventional case. Thus, the amount of heat escaping from the detector section 10 is reduced, and the sensitivity can be increased.
[0010]
FIG. 3 is a plan view of the device structure shown in FIGS. 1 and 2 excluding a portion related to the metal wiring 31. FIG. 4 is a plan view showing a portion related to the metal wiring 32 in the device structure shown in FIGS. FIG. The upper wiring 32 is in contact with the left end of the bolometer film 11 as shown in FIG. 3, and the lower wiring 31 is in contact with the bolometer film 11 at the right end as shown in FIG.
As is clear from FIGS. 3 and 4, this two-dimensional infrared solid-state imaging device can reduce the number of supporting legs compared to the conventional one, so that the area allocated to the detector unit 10 is smaller than that of the conventional one. Can be increased by the reduced amount. The area corresponding to the sum of the area occupied by the support legs in the reduced portion and the area corresponding to the gap between the support legs and the detector unit can also be assigned to the photodetector unit, and the aperture ratio can be increased. This is effective for increasing the sensitivity.
[0011]
Next, an infrared detection operation of a pixel of the two-dimensional infrared solid-state imaging device using the thermal infrared detector according to the present embodiment will be described. Infrared rays enter from the detector section 10 side. The incident infrared rays are absorbed by the detector unit 10 and increase the temperature of the detector unit 10. The temperature rise of the detector unit 10 is detected by a change in resistance of the bolometer film 11. This change in resistance is detected by a signal readout circuit formed on the silicon substrate through the wirings 31 and 32 and the contacts 121 and 122, thereby detecting infrared rays. The reflection film 70 and the detector unit 10 form an optical resonance structure to increase the efficiency of infrared absorption.
[0012]
Embodiment 2 FIG.
5 and 6 are schematic sectional views along a current path of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to a second embodiment of the present invention, and correspond to FIG. 3 of the first embodiment. It is a top view. In this structure, as shown in FIG. 6, the lower metal wiring 32 is formed below the bolometer film 11 so as to extend from the bolometer film 11, and the reflection film formed by the element of the first embodiment is removed. I have. Other components are the same as those of the first embodiment.
[0013]
In this structure, the metal electrode 32 functions as a reflection film in a portion of the metal wiring 32 located on the bolometer film 11. Appropriately design the film type and thickness of the insulating films 130 and 100 on the metal electrode 32 and the bolometer film 11 (and a thin metal infrared absorption film formed on any part of the metal wiring in some cases). By doing so, an optical resonance structure can be configured. In the first embodiment, the degree of the effect of the optical resonance structure changes depending on the height of the cavity 90, and depending on the configuration of the film, the detector unit 11 and the support legs 20 may be warped, so that control is difficult. In the structure of this embodiment, the effect of the optical resonance structure is determined by the thickness of the solid thin film, and is easy to control and stable.
[0014]
Embodiment 3 FIG.
FIG. 7 is a cross-sectional structure along a current path of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to a third embodiment of the present invention. In this embodiment, the bolometer film 11 of the first embodiment shown in FIGS. 1 and 2 is sandwiched between electrodes 31 and 32. That is, in the portion where the bolometer film 11 exists, the infrared detector unit 10 has a structure in which the insulating film 110, the metal electrode 31, the bolometer film 11, the metal electrode 32, and the insulating film 100 are stacked from below, and The two electrodes 31 and 32 are arranged so as to contact almost the entire bolometer film 11.
[0015]
If the upper electrode 32 can be made of a material that transmits infrared rays or can be made thinner enough to transmit infrared rays, the lower electrode 31 can be operated as a reflective film. In this case, although not shown, if a thin-film metal infrared absorbing layer is provided at an arbitrary portion located above the wiring 31, infrared light can be absorbed more efficiently.
If the electrode 32 cannot be made thin enough to transmit infrared light or transmit infrared light sufficiently, the upper electrode (light incident side) 32 can be operated as a reflection film. In this case, though not shown, infrared light can be absorbed more efficiently by providing a thin-film metal infrared absorbing layer on an arbitrary portion located above the wiring 32.
[0016]
In the first to third embodiments, the detector is a bolometer and the wiring is two elements. However, even in the case where another detector that requires three or more wirings is used, in the first to third embodiments, by disposing one or all of the parts on one supporting leg, The number of supporting legs can be reduced as compared with the structure, and the same effect can be obtained.
In the first to third embodiments, the wirings are stacked. However, although the thermal effect is slightly reduced, a similar effect can be obtained even if the wires are arranged in parallel in one support leg in the first to third embodiments.
[0017]
Embodiment 4 FIG.
FIG. 8 is a schematic perspective view showing the structure of one pixel of a two-dimensional solid-state imaging device using a bolometer whose resistance value changes with temperature, which is a thermal infrared detector according to Embodiment 4 of the present invention. FIG. 9 is a schematic sectional view of the two-dimensional infrared solid-state imaging device along a current path. 8 and 9, a signal readout circuit provided on the substrate 1 which is not directly related to the present invention is omitted for simplicity. In the two-dimensional solid-state imaging device, the pixels shown in FIGS. 8 and 9 are two-dimensionally arranged.
In the structure shown in FIGS. 8 and 9, the infrared detector section 10 has the same structure as that of the above-described embodiment, and is similarly provided with a space separated from the substrate 1 made of a semiconductor such as silicon. Are different. A concave portion (hollow portion) 200 is formed on the upper portion of the silicon substrate 1, and the infrared detector 10 is located above the concave portion 200. When there is room in the planar arrangement of the circuit and it is not necessary to stack the readout circuit for each pixel with the detector unit, this simple structure is suitable.
[0018]
One support leg 20 having a large thermal resistance raises the infrared detector unit 10 by lifting it from the silicon substrate 1 and supports it above the substrate 1. However, unlike the above-described embodiment, the infrared detector section 10 and the support leg 20 are formed in the same plane, that is, at the same height with respect to the substrate 1. The infrared detector section 10 and the support legs 20 have a five-layer structure in which an insulating film 110, a metal wiring 31, an insulating film 130, a bolometer film 11, a metal wiring 32 connected thereto, and an insulating film 100 are sequentially stacked from below. . The metal wirings 31 and 32 are electrically connected to both ends of the square bolometer film 11. A plurality of (two in this embodiment) metal wirings 31 and 32 for flowing a current to the bolometer thin film 11 are arranged in one support leg 20.
In the present embodiment, the support leg 20 is attached to the substrate 1 at the intersection of the signal line 50 and the readout circuit control clock bus line 60. At the portion where the support leg 20 is connected to the substrate, the metal wirings 31 and 32 are connected to a signal reading circuit (not shown) on the silicon substrate 1 through the contact holes 121 and 122 provided in the insulating films 130, 110 and 80. Is done. In this signal readout circuit, the metal wiring 31 is connected to a control clock line via a switch transistor, and the metal wiring 32 is connected to a signal line. The switch transistor turns on and off a current flowing through the wirings 31 and 32 and the bolometer thin film 11 according to a clock signal from a control clock line.
[0019]
Embodiment 5 FIG.
FIG. 10 shows a sectional structure along a current path of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to another embodiment 5 of the present invention. The structure of the infrared detector unit 10 and the point in which a plurality of metal wirings 31 and 32 for supplying a current to the bolometer thin film 11 in one support leg 20 are the same as those in the second embodiment. However, it is the same as the fourth embodiment in that the concave portion 200 is formed in the silicon substrate 1 and the support leg 20 is formed at the same height as the infrared detector unit 10. If there is room in the planar arrangement of the circuit and it is not necessary to stack the readout circuit for each pixel with the detector section, this simple structure is suitable.
[0020]
Embodiment 6 FIG.
FIG. 11 shows a cross-sectional structure along a current path of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to another embodiment of the present invention. The structure of the infrared detector unit 10 and the arrangement of a plurality of metal wirings 31 and 32 for passing a current through the bolometer thin film 11 in one support leg 20 are the same as those in the third embodiment. However, it is the same as the fourth embodiment in that the concave portion 200 is formed in the silicon substrate 1 and the support leg 20 is formed at the same height as the infrared detector unit 10. If there is room in the planar arrangement of the circuit and it is not necessary to stack the readout circuit for each pixel with the detector section, this simple structure is suitable.
In the above fourth to sixth embodiments, the detector has a bolometer and has two wires. However, even in the case of another detector that requires three or more wires, in Embodiments 4 to 6, by laminating all or all of the parts, the number of supporting legs can be reduced as compared with the conventional structure. The same effect is obtained.
Further, in the above-described fourth to sixth embodiments, wirings are stacked. However, although the thermal effect is slightly reduced, a similar effect can be obtained even if the wires are arranged in parallel in one support leg in the fourth to sixth embodiments.
[0021]
【The invention's effect】
A first infrared solid-state imaging device according to the present invention includes a thermal type photodetector section supported on a semiconductor substrate by a support leg having a large thermal resistance, and detects a change in characteristics of the thermal type detector due to the incidence of infrared rays. In the infrared solid-state imaging device for detecting through the wiring inside, a plurality of wirings are arranged in at least one supporting leg, so that the number of supporting legs can be reduced, and the amount of heat escaping through the supporting leg can be reduced. High sensitivity can be realized. In addition, since the number of supporting legs can be reduced, the area allocated to the supporting legs can be reduced. As a result, the area of the detector section can be increased and the aperture ratio can be increased, thereby achieving high sensitivity. .
Preferably, in this infrared solid-state imaging device, a plurality of wirings are stacked and arranged in at least one support leg, so that the number of support legs can be reduced.
Preferably, in the infrared solid-state imaging device can be configured a stable optical resonator structures using Runode electrode positioned below the infrared detection film is formed wider than the infrared detection film, a lower electrode as a reflective film.
Preferably, in the infrared solid-state imaging device, an electrode located above the infrared detection thin film among the plurality of electrodes is formed on substantially the entire surface of the infrared detection thin film, and thus the upper or lower electrode is used as a reflection film. it can.
A second infrared solid-state imaging device according to the present invention includes a thermal-type photodetector section supported by supporting legs having a large thermal resistance above a hollow section provided in a semiconductor substrate, and performs thermal-type detection by incidence of infrared rays. An infrared solid-state imaging device that detects a change in the characteristics of a container through wiring in a support leg, and since a plurality of wirings are arranged in at least one support leg, the number of support legs can be reduced, and the number of support legs can be reduced. The amount of heat that escapes can be reduced, and high sensitivity can be achieved. In addition, since the number of supporting legs can be reduced, the area allocated to the supporting legs can be reduced. As a result, the area of the detector section can be increased and the aperture ratio can be increased, thereby achieving high sensitivity. .
Preferably, in this infrared solid-state imaging device, a plurality of wirings are stacked and arranged in at least one support leg, so that the number of support legs can be reduced.
Preferably, in the infrared solid-state imaging device can be configured a stable optical resonator structures using Runode electrode positioned below the infrared detection film is formed wider than the infrared detection film, a lower electrode as a reflective film .
Preferably, in the infrared solid-state imaging device, an electrode located above the infrared detection thin film among the plurality of electrodes is formed on substantially the entire surface of the infrared detection thin film, and thus the upper or lower electrode is used as a reflection film. it can.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to Embodiment 1 of the present invention.
FIG. 2 is a schematic cross-sectional view along a current path of a pixel of a two-dimensional infrared solid-state imaging device using the thermal infrared detector according to the first embodiment.
FIG. 3 is a plan view showing a layout of an upper layer wiring of a pixel of the two-dimensional infrared solid-state imaging device using the thermal infrared detector according to the first embodiment.
FIG. 4 is a plan view showing a layout of a lower wiring of a pixel of the two-dimensional infrared solid-state imaging device using the thermal infrared detector according to the first embodiment.
FIG. 5 is a schematic sectional view along a current path of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to Embodiment 2 of the present invention.
FIG. 6 is a plan view showing a layout of a lower wiring of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to a second embodiment.
FIG. 7 is a schematic cross-sectional view along a current path of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to Embodiment 3 of the present invention.
FIG. 8 is a schematic perspective view of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to Embodiment 4 of the present invention.
FIG. 9 is a schematic cross-sectional view along a current path of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to Embodiment 4 of the present invention.
FIG. 10 is a schematic cross-sectional view along a current path of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to Embodiment 5 of the present invention.
FIG. 11 is a schematic cross-sectional view along a current path of a pixel of a two-dimensional infrared solid-state imaging device using a thermal infrared detector according to Embodiment 6 of the present invention.
FIG. 12 is a perspective view showing the structure of a pixel of a two-dimensional infrared solid-state imaging device using a conventional thermal infrared detector.
FIG. 13 is a plan view showing a pixel structure of a two-dimensional infrared solid-state imaging device using a conventional thermal infrared detector.
[Explanation of symbols]
1 silicon substrate, 10 infrared detector section, 11 bolometer thin film,
21, 22 support leg, 31, 32 metal wiring, 40 readout circuit,
50 signal lines, 60 readout circuit control clock bus lines,
70 reflective film, 80 insulating film, 90 cavity,
100 insulating film, 110 insulating film, 121, 122 contact,
130 insulating film, 200 cavity in substrate.

Claims (8)

半導体基板と、
該半導体基板の上方に配置された熱型検出器部と、
前記熱型検出器部の側部にその一端が取りつけられ、前記熱型検出器部と空隙を介して該熱型検出器部の側方に沿って延びて前記半導体基板から空間を隔てて支持する1本の支持脚とを備え、
前記支持脚内に、前記熱型検出器部と前記半導体基板との間の電気経路を形成する複数の配線を絶縁膜を介して積層し、
前記支持脚の幅は、前記配線幅と該配線幅より広い絶縁膜パターンの余裕とで規定された幅であり、
赤外線の入射による熱型検出器部の特性変化を支持脚内の配線を通して検出する赤外線固体撮像素子。
A semiconductor substrate ;
A thermal detector section disposed above the semiconductor substrate;
One end is attached to a side portion of the thermal detector section, and extends along the side of the thermal detector section via a gap with the thermal detector section and is supported by a space from the semiconductor substrate. And one supporting leg that
In the support leg, a plurality of wirings forming an electrical path between the thermal detector unit and the semiconductor substrate are laminated via an insulating film,
The width of the support leg is a width defined by the wiring width and a margin of an insulating film pattern wider than the wiring width,
An infrared solid-state imaging device that detects a change in the characteristics of the thermal detector due to the incidence of infrared rays through wiring in the support legs .
前記熱型検出器部は、赤外線検出薄膜と前記赤外線検出薄膜に電気的に接続される複数の電極とを備え、前記複数の電極のうち、前記赤外線検出薄膜より下側に位置する電極が前記赤外線検出薄膜より広く形成されたことを特徴とする請求項1に記載された赤外線固体撮像素子。The thermal detector section includes an infrared detection thin film and a plurality of electrodes electrically connected to the infrared detection thin film, and among the plurality of electrodes, an electrode located below the infrared detection thin film is the electrode. The infrared solid-state imaging device according to claim 1, wherein the infrared solid-state imaging device is formed wider than the infrared detection thin film. 前記複数の電極のうち前記赤外線検出薄膜より上側に位置する電極が前記赤外線検出薄膜の略全面に形成されたことを特徴とする請求項2に記載された赤外線固体撮像素子。The infrared solid-state imaging device according to claim 2, wherein an electrode located above the infrared detection thin film among the plurality of electrodes is formed on substantially the entire surface of the infrared detection thin film. 半導体基板と、A semiconductor substrate;
前記半導体基板上に2次元的に配置された複数対の熱型検出器部及び支持脚からなり、It comprises a plurality of pairs of thermal detectors and support legs two-dimensionally arranged on the semiconductor substrate,
1対の前記熱型検出器部及び前記支持脚において、前記支持脚は、前記熱型検出器部の側部にその一端が取りつけられ、前記熱型検出器と空隙を介して該熱型検出器の側方に沿って延びて前記半導体基板から空間を隔てて支持し、前記支持脚内に、前記熱型検出器部と前記半導体基板との間の電気経路を形成する複数の配線を絶縁膜を介して積層し、前記支持脚の幅は、前記配線幅と該配線幅より広い絶縁膜パターンの余裕とで規定された幅であり、In the pair of the thermal detector section and the support leg, one end of the support leg is attached to a side of the thermal detector section, and the thermal leg detection is performed through a gap with the thermal detector section. A plurality of wirings extending along the sides of the detector and supporting the semiconductor substrate with a space therebetween, and forming an electric path between the thermal detector unit and the semiconductor substrate in the support leg; Laminated via a film, the width of the support leg is a width defined by the wiring width and a margin of an insulating film pattern wider than the wiring width,
赤外線の入射による熱型検出器部の特性変化を支持脚内の配線を通して検出する2次元赤外線固体撮像素子。  A two-dimensional infrared solid-state imaging device that detects a change in characteristics of a thermal detector due to the incidence of infrared rays through wiring in a support leg.
表面に空洞部を設けた半導体基板と、A semiconductor substrate having a cavity on its surface;
該半導体基板の上方に配置された熱型検出器部と、A thermal detector disposed above the semiconductor substrate;
前記半導体基板の前記空洞部の上に空間を隔てて前記熱型検出器部を支持する1本の支持脚とを備え、One supporting leg for supporting the thermal detector with a space above the cavity of the semiconductor substrate,
前記支持脚は、前記熱型検出器部の側部でその一端が取りつけられ、前記熱型検出器部とは空隙を介して前記側部に沿って延びて前記熱型検出器部を支持し、The support leg has one end attached to a side portion of the thermal detector portion, and extends along the side portion through a gap with the thermal detector portion to support the thermal detector portion. ,
前記支持脚内に、前記熱型検出器部と前記半導体基板の間の電気経路を形成する複数の配線を絶縁膜を介して積層し、In the support leg, a plurality of wirings forming an electrical path between the thermal detector unit and the semiconductor substrate are stacked via an insulating film,
前記支持脚の幅は、前記配線幅と該配線幅より広い絶縁膜パターンの余裕とで規定された幅であり、The width of the support leg is a width defined by the wiring width and a margin of an insulating film pattern wider than the wiring width,
赤外線の入射による熱型検出器部の特性変化を支持脚内の配線を通して検出する赤外線固体撮像素子。An infrared solid-state imaging device that detects changes in the characteristics of a thermal detector due to the incidence of infrared rays through wiring in the support legs.
前記熱型検出器部は、赤外線検出薄膜と前記赤外線検出薄膜に電気的に接続される複数の電極とを備え、前記複数の電極のうち、前記赤外線検出薄膜より下側に位置する電極が前記赤外線検出薄膜より広く形成されたことを特徴とする請求項5に記載された赤外線固体撮像素子。The thermal detector section includes an infrared detection thin film and a plurality of electrodes electrically connected to the infrared detection thin film, and among the plurality of electrodes, an electrode located below the infrared detection thin film is the electrode. The infrared solid-state imaging device according to claim 5, wherein the infrared solid-state imaging device is formed wider than the infrared detection thin film. 前記複数の電極のうち前記赤外線検出薄膜より上側に位置する電極が前記赤外線検出薄膜の略全面に形成されたことを特徴とする請求項6に記載された赤外線固体撮像素子。The infrared solid-state imaging device according to claim 6, wherein an electrode located above the infrared detection thin film among the plurality of electrodes is formed on substantially the entire surface of the infrared detection thin film. 表面に複数の空洞部を設けた半導体基板と、A semiconductor substrate having a plurality of cavities on its surface;
前記半導体基板上に2次元的に配置された複数対の熱型検出器部及び支持脚とからなりIt comprises a plurality of pairs of thermal detectors and support legs two-dimensionally arranged on the semiconductor substrate. ,
前記複数の空洞部は、前記半導体基板の表面に1対の熱型検出器部及び支持脚ごとに設けられ、The plurality of cavities are provided on the surface of the semiconductor substrate for each of a pair of thermal detectors and a support leg,
1対の前記熱型検出器部及び前記支持脚において、前記支持脚は前記空洞部の上に空間を隔てて前記熱型検出器部を支持し、前記支持脚は、前記熱型検出器部の側部でその一端が取り付けられ、前記熱型検出器部とは空隙を介して前記側部に沿って延びて前記熱型検出器を支持し、前記支持脚内に、前記熱型検出器部と前記半導体基板との間の電気経路を形成する複数の配線を絶縁膜を介して積層し、前記支持脚の幅は、前記配線幅と該配線幅より広い絶縁膜パターンの余裕とで規定された幅であり、In the pair of the thermal detector and the support leg, the support leg supports the thermal detector with a space above the cavity, and the support leg includes the thermal detector. One end is attached to a side portion of the thermal type detector portion, the thermal type detector portion extends along the side portion through a gap to support the thermal type detector, and the thermal type detector is provided in the support leg. A plurality of wirings forming an electric path between the portion and the semiconductor substrate are laminated via an insulating film, and the width of the support leg is defined by the wiring width and a margin of an insulating film pattern wider than the wiring width. Is the width
赤外線の入射による熱型検出器部の特性変化を支持脚内の配線を通して検出する2次元赤外線固体撮像素子。A two-dimensional infrared solid-state imaging device that detects a change in characteristics of a thermal detector due to the incidence of infrared rays through wiring in a support leg.
JP13990497A 1997-05-29 1997-05-29 Infrared solid-state imaging device Expired - Lifetime JP3549363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13990497A JP3549363B2 (en) 1997-05-29 1997-05-29 Infrared solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13990497A JP3549363B2 (en) 1997-05-29 1997-05-29 Infrared solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH10332480A JPH10332480A (en) 1998-12-18
JP3549363B2 true JP3549363B2 (en) 2004-08-04

Family

ID=15256341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13990497A Expired - Lifetime JP3549363B2 (en) 1997-05-29 1997-05-29 Infrared solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3549363B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529133B1 (en) * 1998-06-30 2006-01-27 주식회사 대우일렉트로닉스 Infrared rays absorption bolometer
KR20000046515A (en) * 1998-12-31 2000-07-25 전주범 Infrared ray bolometer
JP3460810B2 (en) 1999-07-26 2003-10-27 日本電気株式会社 Thermal infrared detector with thermal separation structure
KR100339353B1 (en) * 1999-10-01 2002-06-03 구자홍 micro bolometer and fabrication methode of the same
KR20030016867A (en) * 2001-08-22 2003-03-03 대우전자주식회사 Method for forming a silicon oxide layer in an infrared bolometer
WO2005034248A1 (en) * 2003-10-09 2005-04-14 Ocas Corp. Bolometric infrared sensor having two layer structure and method for manufacturing the same
JP4721141B2 (en) * 2006-03-17 2011-07-13 日本電気株式会社 Thermal infrared solid-state image sensor
KR20090065941A (en) 2007-12-18 2009-06-23 한국전자통신연구원 The multi-level structure bolometer and fabricating method thereof
FR2965349B1 (en) 2010-09-23 2017-01-20 Commissariat Energie Atomique BOLOMETER WITH FREQUENCY DETECTION
JP5861264B2 (en) * 2011-03-29 2016-02-16 セイコーエプソン株式会社 Infrared detector
JP2013231738A (en) * 2013-07-25 2013-11-14 Ricoh Co Ltd Detection device
JP7173125B2 (en) * 2018-03-06 2022-11-16 Tdk株式会社 heat utilization device

Also Published As

Publication number Publication date
JPH10332480A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
US6777681B1 (en) Infrared detector with amorphous silicon detector elements, and a method of making it
JP3597069B2 (en) Thermal infrared array sensor for detecting multiple infrared wavelength bands
US6441374B1 (en) Thermal type infrared ray detector with thermal separation structure for high sensitivity
JP3040356B2 (en) Infrared solid-state imaging device
JP3549363B2 (en) Infrared solid-state imaging device
KR0135119B1 (en) Infrared detector
US6690014B1 (en) Microbolometer and method for forming
US7288765B2 (en) Device for detecting infrared radiation with bolometric detectors
JP5259430B2 (en) Photodetector
US8809786B2 (en) Microbolometer detector with centrally-located support structure
KR100860184B1 (en) Infrared array detection device
KR20010024718A (en) Infrared solid state image sensing device
US20080265164A1 (en) Thermal detector for electromagnetic radiation and infrared detection device using such detectors
JP2009180682A (en) Infrared sensor
JP3859479B2 (en) Bolometer type infrared detector
JP3574368B2 (en) Infrared solid-state imaging device
JP5353138B2 (en) Infrared imaging device
KR101479915B1 (en) Device for detecting heat radiation with high resolution and method for the production thereof
JP2806972B2 (en) Thermal image creation device
JP3775830B2 (en) Infrared detector
CA2791933C (en) Microbolometer detector with centrally-located support structure
RU120770U1 (en) UNCOOLED MICROBOLOMETRIC RADIATION RECEIVER
JP4075222B2 (en) Resistance change type infrared detector
WO2009096310A1 (en) Heat-detecting sensor array
WO2015146054A1 (en) Infrared ray detection element and infrared ray detection device equipped therewith

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term