JP3546094B2 - Degassing device - Google Patents

Degassing device Download PDF

Info

Publication number
JP3546094B2
JP3546094B2 JP12829195A JP12829195A JP3546094B2 JP 3546094 B2 JP3546094 B2 JP 3546094B2 JP 12829195 A JP12829195 A JP 12829195A JP 12829195 A JP12829195 A JP 12829195A JP 3546094 B2 JP3546094 B2 JP 3546094B2
Authority
JP
Japan
Prior art keywords
treated water
tank
vacuum tank
supply pipe
deaerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12829195A
Other languages
Japanese (ja)
Other versions
JPH08318138A (en
Inventor
昇吾 山口
靖史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12829195A priority Critical patent/JP3546094B2/en
Publication of JPH08318138A publication Critical patent/JPH08318138A/en
Application granted granted Critical
Publication of JP3546094B2 publication Critical patent/JP3546094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ビール、清涼飲料等の飲料の製造に使用する処理水の脱気装置に関するものである。
【0002】
【従来の技術】
従来の脱気装置を図3により説明すると、30が膜式脱酸素装置、31が中空糸状気体透過膜等を用いた膜式脱酸素装置30の脱酸素膜部で、同脱酸素膜部31は、透過膜の外周部を水封式真空ポンプ34により真空状態にして、同透過膜中を流れる原水(食品加工水)の溶存酸素を除去するようにしている。35は減圧弁、36は定流量弁、37、38は電磁弁である。
【0003】
39がフロースイッチで、同フロースイッチ39は、その出力信号により、上記水封式真空ポンプ34の稼働及び上記電磁弁37、38の開閉を制御する。即ち、上記脱酸素膜部31内を原水が流れると、フロースイッチ39が作動して、水封式真空ポンプ34がONになるとともに、電磁弁37、38が開になる。
32が任意の食品加工装置、33が置換ガス内封型貯水タンクで、例えばN2 等の不活性ガスを同置換ガス内封型貯水タンク33内に充満させ、外部(雰囲気)からの酸素O2 の混入を防止して、原水の溶存酸素濃度を3ppm以下に調整した後、原水を食品加工装置32へ供給する。
【0004】
この場合の溶存酸素濃度の調整は、脱酸素膜部31を通る原水の流量を調節したり、水封式真空ポンプ34の排気量を制御することによっても行うことができる。
また図4は、脱気装置の他の従来例を示しており、30が脱酸素性能の異なる複数台の膜式脱酸素装置で、これらの膜式脱酸素装置30を切換バルブ40により切り換えるようにしている。
【0005】
以上の脱気装置は、各種農産物、畜産物、水産物の浸漬や水煮に適用されている。また野菜、豆類、穀類の浸漬や煮炊き、海草類や乾燥物の水戻し、鰹節等によるダシの製造にも適用されている。さらに各種飲料水(コーヒー、紅茶、ウーロン茶、緑茶等)の抽出や希釈、薬草からの薬効成分の抽出、汁物の調理、醤油や酒類(日本酒、ワイン等)の製造などにも適用されている。
【0006】
これら液状食品材料の加工に際しては、前工程で加工した液状食品材料を膜式酸素装置30へ導入し、脱酸素膜部31により真空脱気して、溶存酸素を3ppm以下に調整した後、次工程の食品加工装置32へ供給する。このときの供給量は、実用上、単位時間当たり400〜10000リットルの範囲になっている。
【0007】
【発明が解決しようとする課題】
前記図3、図4に示す従来の脱気装置は、炭酸ガス等を水中に注入して、水中の空気と置換するものであり、この種の脱気装置では、脱気処理水に高濃度の炭酸ガスが溶存するために、炭酸ガス濃度の低い炭酸飲料の製造には、使用できない。
【0008】
また脱酸素膜部31で脱酸素膜として使用している中空糸状気体透過膜は、耐圧性が低いため、処理水の圧力と脱気部との圧力差を大きくして、処理水の溶存酸素やその他の製品液の品質に悪い影響を与える気体を効率よく脱気させるのが困難である。
また中空糸状気体透過膜を破損させない限界値で脱気を行うためには、圧力制御を高精度で行う必要があって、製作コスト及びランニングコストを嵩ませるという問題があった。
【0009】
本発明は前記の問題点に鑑み提案するものであり、その目的とする処は、▲1▼処理水の溶存酸素やその他の製品液の品質に悪い影響を与える気体を処理水中から効率よく脱気させることができ、▲2▼製作コスト及びランニングコストを低減でき、▲3▼炭酸ガス濃度の低い炭酸飲料の製造に使用できる脱気装置を提供しようとする点にある。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、ビール、清涼飲料等の飲料の製造に使用する処理水の脱気装置において、処理水供給配管を流れる処理水に炭酸ガスまたは窒素ガスを微細気泡状態になるように吹き込むガス吹込み装置と、前記処理水供給配管からタンク上部内へ供給された微細気泡を含む処理水をタンク内下部に向かい流下させるとともにタンク内下部に設けた多孔質中空糸状膜ユニットを通過させてその間に製品液の品質に悪影響を与える空気・酸素気泡及び気体と余分の炭酸ガスまたは窒素ガスとを真空ポンプにより処理水中から脱気させる真空タンクと、同真空タンクの下部から脱気処理水を取り出して次工程へ送る処理水送出配管とを具えている(請求項1)。
【0011】
前記請求項1記載の脱気装置において、処理水供給配管からタンク上部内へ供給された処理水を旋回させながらタンク内下部に向かい流下させる螺旋状水路を真空タンクの上部内壁面に設けてもよい(請求項2)。
前記請求項1記載の脱気装置において、処理水供給配管からタンク上部内へ供給された処理水を多数の孔を通してタンク内下部に向かい流下させる多孔板を真空タンクの上部内壁面に設けてもよい(請求項3)。
【0012】
【作用】
本発明の脱気装置は前記のように構成されており、処理水を処理水供給配管→ガス吹込み装置→真空タンクへ送る一方、製品液の品質に悪影響を与えない炭酸ガスまたは窒素ガスをガス吹込み装置により上記処理水供給配管を流れる処理水へ吹き込んで、処理水を炭酸ガスまたは窒素ガスの微細気泡を多数含んだ処理水(気泡液)にし、次いで処理水(気泡液)を真空タンク内上部へ供給して、真空タンク内下部に向かい流下させることにより(螺旋状水路により旋回させながら真空タンク内下部に向かい流下させるか、多孔板の各孔を通して真空タンク内下部に向かい流下させることにより)、気泡液接触時間を長く保ちながら、多孔質中空糸状膜ユニット上方の処理水滞留スペースへ流入させ、この間、製品液の品質に悪影響を与える空気・酸素気泡及び気体と、余分な炭酸ガスまたは窒素ガスとを真空ポンプにより処理水中から脱気し、次いで上記処理水滞留スペースに滞留した処理水を真空タンク内下部に設けた多孔質中空糸状膜ユニットを通過させることにより、気泡液接触時間を長く保ちながら、真空タンク内最下部へ流入させ、この間、上記処理水滞留スペースまでの脱気行程で脱気されなかった上記気体を真空ポンプにより処理水中から脱気する。そして真空タンク内最下部へ流入した脱気処理水を処理水送出配管により真空タンクの下部から取り出して次工程へ送る。 上記のように炭酸ガスまたは窒素ガスを処理水供給配管を流れる処理水へ吹き込んで、微細気泡にするのは、炭酸ガス等の混入を促進するためであり、これにより、酸素を効率よく脱気させるとともに、その後の液に含まれている炭酸ガス等を脱気により取り除き易くして、その濃度を低くするためである。なお無炭酸飲料であって炭酸ガスが混入してはいけない場合には、窒素ガスを使用することになる。
【0013】
【実施例】
(第1実施例)
次に本発明の脱気装置を図1に示す第1実施例により説明すると、1が真空タンクで、同真空タンク1は、ベース(図示せず)に固定され、同真空タンク1の内壁面中段部には、螺旋状水路(螺旋状凹型水路)2が設けられ、同真空タンク1の下部内には、多孔質中空糸状膜ユニット3が配設され、同多孔質中空糸状膜ユニット3の上下に多孔のフランジ4、4が固定され、同各フランジ4が真空タンク1の内壁面に固定され、同上下フランジ4、4の外周面と同真空タンク1の内壁面との間が気密的にシールされて、同上下フランジ4、4間に密閉空間部1aが形成されている。
【0014】
20aが同密閉空間部1aに開口した真空タンク1の脱気排出口、20bが真空タンク1の頂部に開口した脱気排出口、5が上記脱気排出口20a、20bに配管を介して連絡した真空ポンプ、6aが脱気排出口20a側の配管に設けられた逆止弁、6bが脱気排出口20b側の配管に設けられた逆止弁で、これら逆止弁6a、6bには、流量調整弁(図示せず)が設けられている。同各流量調整弁は、真空タンク1内が一定の真空度になるように自動的に調節する役目を持っている。
【0015】
22が処理水供給配管で、同処理水供給配管22が上記螺旋状水路2の入口ソケット(図示せず)に連絡し、同処理水供給配管22には、コントロール弁7とガス吹込み装置(エゼクター)9とが設けられ、上記コントロール弁7が真空タンク1内に設けたフロートバルブ8に連結され、同ガス吹込み装置9側の配管には、減圧弁10と手動式ストップ弁11とガス量等を確認するフローメータ12とガス供給量を制御する電磁弁13とが設けられている。
【0016】
23が上記真空タンク1の下部内に連絡した処理水送出配管で、同処理水送出配管23には、送水ポンプ14と流量計15と自動弁17とが設けられ、送水ポンプ14と流量計15とが電気配線を介して流量コントローラ16に接続されている。
次に前記図1に示す脱気装置の作用を具体的に説明する。
【0017】
真空タンク1内の定められた水位がフロートバルブ8により検出され、同フロートバルブ8により得られた検出信号(電気信号)がコントロール弁7へ送られ、同コントロール弁7が作動して、処理水が処理水供給配管22→ガス吹込み装置(エゼクター)9→真空タンク1へ送られる。
一方、製品液の品質に悪影響を与えない炭酸ガスまたは窒素ガスが減圧弁10→手動式ストップ弁11→フローメータ12→電磁弁13を経てガス吹込み装置(エゼクター)9へ送られる。なお炭酸ガスまたは窒素ガスは、減圧弁10により減圧され、フローメータ12により注入量が確認される。
【0018】
ガス吹込み装置(エゼクター)9では、上記炭酸ガスまたは窒素ガスが処理水供給配管22を流れる処理水へ吹き込まれて、処理水が炭酸ガスまたは窒素ガスの微細気泡を多数含んだ処理水(気泡液)にされる。
次いで処理水(気泡液)が真空タンク1内上部へ供給され、螺旋状水路2を通って、旋回させられることにより、気泡液接触時間が長く保たれながら、真空タンク1内下部に向かい流下して、真空タンク1内下部に設けられた多孔質中空糸状膜ユニット3の上方の処理水滞留スペースへ流入する。この処理水滞留スペースに滞留した処理水の水位は、フロートバルブ8とコントロール弁7とによりコントロールされる。
【0019】
この間、製品液の品質に悪影響を与える空気・酸素気泡及び気体と余分の炭酸ガスまたは窒素ガスとが脱気排出口20b→逆止弁6bを経て真空ポンプ5により処理水中から脱気される。
次いで上記処理水滞留スペースに滞留した処理水が真空タンク1内下部に設けられた多孔質中空糸状膜ユニット3を通過することにより、気泡液接触時間が長く保たれながら、真空タンク1内最下部へ流入する。
【0020】
この間、上記処理水滞留スペースまでの脱気行程で脱気されなかった気体、即ち、製品液の品質に悪影響を与える空気・酸素気泡及び気体と余分の炭酸ガスまたは窒素ガスとが上下フランジ4、4間の密閉空間部1a→脱気排出口20a→逆止弁6aを経て真空ポンプ5により処理水中から脱気される。
そして真空タンク1内最下部へ流入した脱気処理水が処理水送出配管23→送水ポンプ14→流量計15→自動弁17を経て次工程へ送られる。その際、流量計15により検出された流量値が流量コントローラ16へ送られる一方、同流量コントローラ16により送水ポンプ14が制御される。次行程で異常が発生したときには、自動弁17が作動して、真空ポンプ5が停止する。なお真空ポンプ5の吸引圧は、調整機構(図示せず)により調整される。
【0021】
(第2実施例)
図2は、第2実施例を示している。この実施例が前記第1実施例と異なるのは、同真空タンク1の内壁面中段部に螺旋状水路(螺旋状凹型水路)2を設ける代わりに、多孔質中空糸状膜ユニット3と真空タンク1頂部との間に多数の孔21aを有する多孔板21を設け、炭酸ガスまたは窒素ガスの微細気泡を多数含んだ処理水(気泡液)をこの多孔板21内へ導入して、多数の孔21aから落下させ、その途中に、製品液の品質に悪影響を与える空気・酸素気泡及び気体と余分の炭酸ガスまたは窒素ガスとを逆止弁6bを経て真空ポンプ5により処理水中から脱気させるようにした点である。その他の作用は、第1実施例と同じである。
【0022】
【発明の効果】
本発明の脱気装置は前記のように処理水を処理水供給配管→ガス吹込み装置→真空タンクへ送る一方、製品液の品質に悪影響を与えない炭酸ガスまたは窒素ガスをガス吹込み装置により上記処理水供給配管を流れる処理水へ吹き込んで、処理水を炭酸ガスまたは窒素ガスの微細気泡を多数含んだ処理水(気泡液)にし、次いで処理水(気泡液)を真空タンク内上部へ供給して、真空タンク内下部に向かい流下させることにより(螺旋状水路により旋回させながら真空タンク内下部に向かい流下させるか、多孔板の各孔を通して真空タンク内下部に向かい流下させることにより)、気泡液接触時間を長く保ちながら、多孔質中空糸状膜ユニット上方の処理水滞留スペースへ流入させ、この間、製品液の品質に悪影響を与える空気・酸素気泡及び気体と、余分な炭酸ガスまたは窒素ガスとを真空ポンプにより処理水中から脱気し、次いで上記処理水滞留スペースに滞留した処理水を真空タンク内下部に設けた多孔質中空糸状膜ユニットを通過させることにより、気泡液接触時間を長く保ちながら、真空タンク内最下部へ流入させ、この間、上記処理水滞留スペースまでの脱気行程で脱気されなかった上記気体を真空ポンプにより処理水中から脱気する。そして真空タンク内最下部へ流入した脱気処理水を処理水送出配管により真空タンクの下部から取り出して次工程へ送るので、処理水の溶存酸素やその他の製品液の品質に悪い影響を与える気体を処理水中から効率よく脱気させることができる。
【0023】
また本発明の脱気装置では前記のように処理水の脱気に多孔質中空糸状膜ユニットを使用している。その場合、一番問題になる強度に対して真空ポンプの負圧をあまり大きくする必要がなく、その分、圧力調整にあまり気を使う必要がなく、真空ポンプに真空度の低いものを使用できて、脱気装置の製作コスト及びランニングコストを低減できる。
【0024】
また本発明の脱気装置では前記のように炭酸ガス等処理水供給配管を流れる処理水へ吹き込んで、微細気泡にしている。これは、炭酸ガス等の混入を促進するためであり、これにより、酸素を効率よく脱気させるとともに、その後の液に含まれている炭酸ガス等を脱気により取り除き易くして、その濃度を低くするためであり、炭酸ガス濃度の低い炭酸飲料の製造に使用できる。
【図面の簡単な説明】
【図1】本発明の脱気装置の第1実施例を示す斜視図である。
【図2】本発明の脱気装置の第2実施例を示す斜視図である。
【図3】従来の脱気装置の一例を示す系統図である。
【図4】従来の脱気装置の他の例を示す系統図である。
【符号の説明】
1 真空タンク
1a 密閉空間部
2 螺旋状水路(螺旋状凹型水路)
3 多孔質中空糸状膜ユニット
4 多孔のフランジ
5 真空ポンプ
6a 逆止弁
6b 〃
7 コントロール弁
8 フロートバルブ
9 ガス吹込み装置(エゼクター)
10 減圧弁
11 手動式ストップ弁
12 フローメータ
13 電磁弁
14 送水ポンプ
15 流量計
16 流量コントローラ
17 自動弁
20a 脱気排出口
20b 〃
22 処理水供給配管
23 処理水送出配管
[0001]
[Industrial applications]
TECHNICAL FIELD The present invention relates to a deaerator for treated water used for producing beverages such as beer and soft drinks.
[0002]
[Prior art]
A conventional deaerator will be described with reference to FIG. 3. Reference numeral 30 denotes a membrane deoxygenator, 31 denotes a deoxygenator of a membrane deoxygenator 30 using a hollow fiber gas permeable membrane or the like. , The outer periphery of the permeable membrane is evacuated by a water-sealed vacuum pump 34 to remove dissolved oxygen in raw water (food processing water) flowing through the permeable membrane. 35 is a pressure reducing valve, 36 is a constant flow valve, and 37 and 38 are solenoid valves.
[0003]
Reference numeral 39 denotes a flow switch. The flow switch 39 controls the operation of the water ring vacuum pump 34 and the opening and closing of the solenoid valves 37 and 38 based on the output signal. That is, when raw water flows in the deoxidizing film section 31, the flow switch 39 is operated, the water ring vacuum pump 34 is turned on, and the solenoid valves 37 and 38 are opened.
32 is an optional food processing apparatus, 33 is a replacement gas sealed type water storage tank, for example, an inert gas such as N 2 is filled in the replacement gas sealed type water storage tank 33 and oxygen O from the outside (atmosphere) is filled. After adjusting the dissolved oxygen concentration of the raw water to 3 ppm or less while preventing the mixing of 2 , the raw water is supplied to the food processing apparatus 32.
[0004]
In this case, the dissolved oxygen concentration can also be adjusted by adjusting the flow rate of the raw water passing through the deoxidizing film section 31 or by controlling the displacement of the water ring vacuum pump 34.
FIG. 4 shows another conventional example of the deaerator, in which 30 is a plurality of membrane deoxygenators having different deoxygenation performances, and these membrane deoxygenators 30 are switched by a switching valve 40. I have to.
[0005]
The above deaerator is applied to immersion and boiling of various agricultural products, livestock products, and marine products. It is also applied to dipping or boiling of vegetables, beans and grains, rehydration of seaweeds and dried products, and production of dashes using bonito and the like. Further, it is applied to extraction and dilution of various drinking waters (coffee, black tea, oolong tea, green tea, etc.), extraction of medicinal components from herbs, cooking of soups, production of soy sauce and alcoholic beverages (sake, wine, etc.).
[0006]
In processing these liquid food materials, the liquid food materials processed in the previous step are introduced into the membrane oxygen device 30, vacuum degassed by the deoxidizing film unit 31, and the dissolved oxygen is adjusted to 3 ppm or less. It is supplied to the food processing device 32 in the process. The supply amount at this time is practically in the range of 400 to 10000 liters per unit time.
[0007]
[Problems to be solved by the invention]
The conventional degassing apparatus shown in FIGS. 3 and 4 is for injecting carbon dioxide gas or the like into water and replacing it with air in the water. Cannot be used for the production of carbonated beverages having a low carbon dioxide concentration.
[0008]
Further, since the hollow fiber gas permeable membrane used as the deoxidizing membrane in the deoxidizing membrane section 31 has low pressure resistance, the pressure difference between the treated water pressure and the degassing section is increased to increase the dissolved oxygen in the treated water. It is difficult to efficiently degas gas that has a bad influence on the quality of liquids and other product liquids.
In addition, in order to perform degassing at a limit value that does not damage the hollow fiber-shaped gas permeable membrane, it is necessary to perform pressure control with high accuracy, and there has been a problem that manufacturing costs and running costs are increased.
[0009]
The present invention has been made in view of the above problems, and has as its object the following points: (1) to efficiently remove dissolved oxygen in the treated water and other gases having a bad influence on the quality of the product liquid from the treated water. (2) The production cost and the running cost can be reduced, and (3) A deaerator which can be used for producing a carbonated beverage having a low carbon dioxide concentration is to be provided.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to a deaerator for treated water used for manufacturing beverages such as beer and soft drinks, wherein carbon dioxide gas or nitrogen gas is finely bubbled into treated water flowing through a treated water supply pipe. A gas blowing device for blowing into the tank, and a porous hollow fiber provided at the lower part of the tank while flowing treated water containing fine bubbles supplied from the treated water supply pipe into the upper part of the tank toward the lower part of the tank. A vacuum tank for passing air / oxygen bubbles and gas and extra carbon dioxide gas or nitrogen gas, which have a negative effect on the quality of the product liquid, through the membrane unit during processing, from the treated water by a vacuum pump, and a lower part of the vacuum tank And a treated water delivery pipe for taking out degassed treated water from the tank and sending it to the next step (claim 1).
[0011]
The deaerator according to claim 1, wherein a spiral water passage is formed on the upper inner wall surface of the vacuum tank for turning the treated water supplied from the treated water supply pipe into the upper portion of the tank and flowing down toward the lower portion of the tank. Good (claim 2).
The deaerator according to claim 1, wherein a perforated plate is provided on the upper inner wall surface of the vacuum tank for allowing the treated water supplied from the treated water supply pipe into the upper part of the tank to flow downward through the plurality of holes toward the lower part of the tank. Good (claim 3).
[0012]
[Action]
The deaerator of the present invention is configured as described above, and sends treated water to a treated water supply pipe → a gas blowing device → a vacuum tank while supplying carbon dioxide gas or nitrogen gas which does not adversely affect the quality of the product liquid. The treated water is blown into the treated water flowing through the treated water supply pipe by a gas blowing device to convert the treated water into treated water (bubble liquid) containing a large number of fine bubbles of carbon dioxide gas or nitrogen gas. By supplying to the upper part in the tank and flowing down to the lower part in the vacuum tank (either flowing down to the lower part in the vacuum tank while swirling by a spiral water channel, or flowing down to the lower part in the vacuum tank through each hole of the perforated plate ), While keeping the contact time of the bubble liquid long, it is allowed to flow into the treated water retention space above the porous hollow fiber membrane unit, and during this time, empty space that adversely affects the quality of the product liquid A porous hollow fiber membrane in which oxygen bubbles and gas and excess carbon dioxide gas or nitrogen gas are degassed from the treated water by a vacuum pump, and the treated water retained in the treated water retaining space is provided in the lower portion of the vacuum tank. By passing through the unit, the bubble liquid is allowed to flow into the lowermost portion of the vacuum tank while maintaining a long contact time, and during this time, the gas that has not been degassed in the degassing process to the treated water retention space is processed by the vacuum pump. Degas from the water. Then, the degassed treated water flowing into the lowermost portion in the vacuum tank is taken out from the lower portion of the vacuum tank by a treated water delivery pipe and sent to the next step. The reason why the carbon dioxide gas or the nitrogen gas is blown into the treated water flowing through the treated water supply pipe to form fine bubbles as described above is to promote the mixing of the carbon dioxide gas and the like, thereby efficiently degassing oxygen. At the same time, carbon dioxide and the like contained in the subsequent liquid are easily removed by degassing to lower the concentration. In the case of a non-carbonated beverage, in which carbon dioxide gas must not be mixed, nitrogen gas is used.
[0013]
【Example】
(First embodiment)
Next, a deaerator according to the present invention will be described with reference to a first embodiment shown in FIG. 1. Reference numeral 1 denotes a vacuum tank, and the vacuum tank 1 is fixed to a base (not shown). A spiral water channel (spiral concave water channel) 2 is provided in the middle part, and a porous hollow fiber membrane unit 3 is provided in the lower part of the vacuum tank 1. Upper and lower perforated flanges 4 and 4 are fixed, and each of the flanges 4 is fixed to the inner wall surface of the vacuum tank 1, and the space between the outer peripheral surfaces of the upper and lower flanges 4 and 4 and the inner wall surface of the vacuum tank 1 is airtight. And a sealed space 1a is formed between the upper and lower flanges 4, 4.
[0014]
20a is a degassing / exhaust port of the vacuum tank 1 opened to the closed space 1a, 20b is a degassing / exhausting port opened to the top of the vacuum tank 1, and 5 is connected to the degassing / discharging ports 20a and 20b via piping. Vacuum pump, 6a is a check valve provided on the pipe on the side of the deaeration outlet 20a, 6b is a check valve provided on the pipe on the side of the deaeration outlet 20b, and these check valves 6a, 6b , A flow control valve (not shown) is provided. Each of the flow control valves has a function of automatically adjusting the inside of the vacuum tank 1 to a constant degree of vacuum.
[0015]
Reference numeral 22 denotes a treated water supply pipe. The treated water supply pipe 22 communicates with an inlet socket (not shown) of the spiral water channel 2, and the treated water supply pipe 22 has a control valve 7 and a gas injection device (not shown). An ejector 9 is provided, the control valve 7 is connected to a float valve 8 provided in the vacuum tank 1, and a pressure reducing valve 10, a manual stop valve 11, A flow meter 12 for checking the amount and the like and an electromagnetic valve 13 for controlling the gas supply amount are provided.
[0016]
Reference numeral 23 denotes a treated water delivery pipe connected to the lower part of the vacuum tank 1. The treated water delivery pipe 23 is provided with a water pump 14, a flow meter 15, and an automatic valve 17. Are connected to the flow controller 16 via electric wiring.
Next, the operation of the deaerator shown in FIG. 1 will be specifically described.
[0017]
A predetermined water level in the vacuum tank 1 is detected by the float valve 8, and a detection signal (electric signal) obtained by the float valve 8 is sent to the control valve 7. Is sent to the treated water supply pipe 22 → the gas blowing device (ejector) 9 → the vacuum tank 1.
On the other hand, carbon dioxide gas or nitrogen gas which does not adversely affect the quality of the product liquid is sent to the gas blowing device (ejector) 9 via the pressure reducing valve 10 → the manual stop valve 11 → the flow meter 12 → the solenoid valve 13. The pressure of the carbon dioxide gas or the nitrogen gas is reduced by the pressure reducing valve 10, and the flow meter 12 confirms the injection amount.
[0018]
In the gas blowing device (ejector) 9, the carbon dioxide gas or the nitrogen gas is blown into the treated water flowing through the treated water supply pipe 22, and the treated water is treated water containing many fine bubbles of the carbon dioxide gas or the nitrogen gas (bubble). Liquid).
Next, the treated water (bubble liquid) is supplied to the upper part in the vacuum tank 1 and swirled through the spiral water channel 2 to flow down toward the lower part in the vacuum tank 1 while keeping the contact time of the bubble liquid long. Then, it flows into the treated water retention space above the porous hollow fiber membrane unit 3 provided in the lower part of the vacuum tank 1. The level of the treated water retained in the treated water retention space is controlled by the float valve 8 and the control valve 7.
[0019]
During this time, air / oxygen bubbles and gases that adversely affect the quality of the product liquid and excess carbon dioxide or nitrogen gas are deaerated from the treated water by the vacuum pump 5 via the deaeration outlet 20b → check valve 6b.
Next, the treated water retained in the treated water retaining space passes through the porous hollow fiber membrane unit 3 provided in the lower portion of the vacuum tank 1, so that the bubble liquid contact time is kept long and the lowermost portion in the vacuum tank 1 is maintained. Flows into
[0020]
During this time, the gas that has not been degassed in the degassing process up to the treated water retention space, that is, air and oxygen bubbles and gas that adversely affect the quality of the product liquid, and excess carbon dioxide gas or nitrogen gas are mixed with the upper and lower flanges 4, The air is deaerated from the treated water by the vacuum pump 5 via the closed space 1a between the four → the deaeration outlet 20a → the check valve 6a.
Then, the degassed treated water flowing into the lowermost portion in the vacuum tank 1 is sent to the next step via the treated water delivery pipe 23 → the water supply pump 14 → the flow meter 15 → the automatic valve 17. At this time, the flow value detected by the flow meter 15 is sent to the flow controller 16, and the water pump 14 is controlled by the flow controller 16. When an abnormality occurs in the next stroke, the automatic valve 17 operates and the vacuum pump 5 stops. The suction pressure of the vacuum pump 5 is adjusted by an adjusting mechanism (not shown).
[0021]
(Second embodiment)
FIG. 2 shows a second embodiment. This embodiment is different from the first embodiment in that a porous hollow fiber membrane unit 3 and a vacuum tank 1 are provided instead of providing a spiral water channel (spiral concave water channel) 2 in the middle portion of the inner wall surface of the vacuum tank 1. A perforated plate 21 having a number of holes 21a is provided between the top and the top, and treated water (bubble liquid) containing a number of fine bubbles of carbon dioxide gas or nitrogen gas is introduced into the perforated plate 21 to form a number of holes 21a. From the process water, and in the middle of the process, air / oxygen bubbles and gas that adversely affect the quality of the product liquid and excess carbon dioxide gas or nitrogen gas are degassed from the treated water by the vacuum pump 5 via the check valve 6b. It is a point that did. Other operations are the same as those of the first embodiment.
[0022]
【The invention's effect】
As described above, the deaerator of the present invention sends the treated water to the treated water supply pipe → the gas blowing device → the vacuum tank while sending carbon dioxide gas or nitrogen gas that does not adversely affect the quality of the product liquid by the gas blowing device. The treated water is blown into the treated water flowing through the treated water supply pipe, thereby turning the treated water into treated water (bubble liquid) containing many fine bubbles of carbon dioxide gas or nitrogen gas, and then supplying the treated water (bubble liquid) to the upper portion of the vacuum tank. Then, by flowing down toward the lower portion in the vacuum tank (by flowing downward toward the lower portion inside the vacuum tank while rotating by a spiral water channel, or by flowing downward toward the lower portion inside the vacuum tank through each hole of the perforated plate), bubbles While keeping the liquid contact time long, it is allowed to flow into the treated water retention space above the porous hollow fiber membrane unit, and during this time, air and oxygen bubbles that adversely affect the quality of the product liquid and The body and excess carbon dioxide or nitrogen gas are degassed from the treated water by a vacuum pump, and then the treated water retained in the treated water retaining space is passed through a porous hollow fiber membrane unit provided at the lower portion in the vacuum tank. Thus, the gas is allowed to flow into the lowermost portion of the vacuum tank while keeping the bubble liquid contact time long, and during this time, the gas that has not been degassed in the degassing process to the process water retention space is degassed from the process water by the vacuum pump. I do. The degassed treated water that has flowed into the lowermost part of the vacuum tank is taken out from the lower part of the vacuum tank by the treated water delivery pipe and sent to the next process, so the dissolved oxygen in the treated water and other gases that have a bad effect on the quality of the product liquid Can be efficiently degassed from the treated water.
[0023]
Further, in the deaerator of the present invention, the porous hollow fiber membrane unit is used for deaeration of the treated water as described above. In that case, it is not necessary to increase the vacuum pressure of the vacuum pump too much for the strength that is the most problematic, and so there is no need to pay much attention to the pressure adjustment, and a vacuum pump with a low degree of vacuum can be used. Thus, the production cost and running cost of the deaerator can be reduced.
[0024]
Further, in the deaerator of the present invention, fine bubbles are blown into the treated water flowing through the treated water supply pipe such as carbon dioxide gas as described above. This is to promote the incorporation of carbon dioxide and the like, and thereby efficiently degas oxygen, and facilitate removal of carbon dioxide and the like contained in the subsequent liquid by degassing to reduce the concentration. This is for reducing the carbon dioxide concentration and can be used for producing a carbonated beverage having a low carbon dioxide concentration.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of a deaerator according to the present invention.
FIG. 2 is a perspective view showing a second embodiment of the deaerator of the present invention.
FIG. 3 is a system diagram showing an example of a conventional deaerator.
FIG. 4 is a system diagram showing another example of a conventional deaerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum tank 1a Sealed space part 2 Spiral channel (spiral concave channel)
3 Porous hollow fiber membrane unit 4 Porous flange 5 Vacuum pump 6a Check valve 6b
7 control valve 8 float valve 9 gas injection device (ejector)
Reference Signs List 10 pressure reducing valve 11 manual stop valve 12 flow meter 13 solenoid valve 14 water pump 15 flow meter 16 flow controller 17 automatic valve 20a deaeration outlet 20b
22 treated water supply pipe 23 treated water delivery pipe

Claims (3)

ビール、清涼飲料等の飲料の製造に使用する処理水の脱気装置において、処理水供給配管を流れる処理水に炭酸ガスまたは窒素ガスを微細気泡状態になるように吹き込むガス吹込み装置と、前記処理水供給配管からタンク上部内へ供給された微細気泡を含む処理水をタンク内下部に向かい流下させるとともにタンク内下部に設けた多孔質中空糸状膜ユニットを通過させてその間に製品液の品質に悪影響を与える空気・酸素気泡及び気体と余分の炭酸ガスまたは窒素ガスとを真空ポンプにより処理水中から脱気させる真空タンクと、同真空タンクの下部から脱気処理水を取り出して次工程へ送る処理水送出配管とを具えていることを特徴とした脱気装置。Beer, in a deaerator for treated water used for the production of beverages such as soft drinks, a gas blowing device that blows carbon dioxide or nitrogen gas into treated water flowing through a treated water supply pipe in a fine bubble state, The treated water containing fine bubbles supplied from the treated water supply pipe into the upper part of the tank is allowed to flow down to the lower part of the tank, and at the same time, passes through the porous hollow fiber membrane unit provided at the lower part of the tank to improve the quality of the product liquid. A vacuum tank that degass air and oxygen bubbles and gases that have an adverse effect and excess carbon dioxide or nitrogen gas from the treated water using a vacuum pump, and a process that takes out degassed water from the lower part of the vacuum tank and sends it to the next process A deaerator characterized by comprising a water delivery pipe. 前記処理水供給配管からタンク上部内へ供給された処理水を旋回させながらタンク内下部に向かい流下させる螺旋状水路を前記真空タンクの上部内壁面に設けた請求項1記載の脱気装置。The deaerator according to claim 1, wherein a spiral water channel is provided on an upper inner wall surface of the vacuum tank, the spiral water passage configured to swirl the treated water supplied from the treated water supply pipe into the upper part of the tank and flow down toward the lower part of the tank. 前記処理水供給配管からタンク上部内へ供給された処理水を多数の孔を通してタンク内下部に向かい流下させる多孔板を前記真空タンクの上部内壁面に設けた請求項1記載の脱気装置。The deaerator according to claim 1, wherein a perforated plate is provided on an upper inner wall surface of the vacuum tank for allowing treated water supplied from the treated water supply pipe into the upper portion of the tank to flow downward through the plurality of holes toward the lower portion of the tank.
JP12829195A 1995-05-26 1995-05-26 Degassing device Expired - Fee Related JP3546094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12829195A JP3546094B2 (en) 1995-05-26 1995-05-26 Degassing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12829195A JP3546094B2 (en) 1995-05-26 1995-05-26 Degassing device

Publications (2)

Publication Number Publication Date
JPH08318138A JPH08318138A (en) 1996-12-03
JP3546094B2 true JP3546094B2 (en) 2004-07-21

Family

ID=14981184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12829195A Expired - Fee Related JP3546094B2 (en) 1995-05-26 1995-05-26 Degassing device

Country Status (1)

Country Link
JP (1) JP3546094B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078157C (en) * 1999-05-10 2002-01-23 李羽堃 Filling technological method capable of optimizing fresh-preservation and drinking of instant beverage
ES2576552T3 (en) 2002-10-30 2016-07-08 Suntory Holdings Limited Manufacturing process of finished product of plant origin
ATE440503T1 (en) * 2003-10-02 2009-09-15 Friesland Brands Bv METHOD FOR PRODUCING A MONODISPERSE FOAM, AND PRODUCT PRODUCED THEREFROM
NL1024433C2 (en) * 2003-10-02 2005-04-05 Friesland Brands Bv Manufacturing monodisperse foam involves forming monodisperse coarse prefoam from unfoamed liquid starting product, and passing prefoam through membrane with particular pore diameter
JP5246888B2 (en) * 2008-04-01 2013-07-24 株式会社前川製作所 Deaeration device and method
JP2012005938A (en) * 2010-06-23 2012-01-12 Shinwa:Kk Automatic pressure control device in microbubble generator
JP2018047426A (en) * 2016-09-21 2018-03-29 オルガノ株式会社 Deoxidation treatment method and deoxidation treatment system of water to be treated and production method of deoxidized carbonated water containing hardness component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368472A (en) * 1976-12-01 1978-06-17 Kato Haruki Multiistaged type vacuum degassing means
JPH059042Y2 (en) * 1988-04-22 1993-03-05
JPH0411904U (en) * 1990-05-22 1992-01-30
JPH04131405U (en) * 1991-05-17 1992-12-03 日立金属株式会社 steam water separator
JPH0760005A (en) * 1993-08-31 1995-03-07 Miura Co Ltd Dearation of liquid product

Also Published As

Publication number Publication date
JPH08318138A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
RU2391878C2 (en) Method and device for puring of oxygen-enriched air liquids
US11785968B2 (en) System and method for deaerating beverages
US7537644B2 (en) Method for degassing a liquid
JPH0760005A (en) Dearation of liquid product
JP3139460U (en) Mass production equipment for gas-dissolved liquid by continuous pressurized flow system
EP2213180A1 (en) Method of producing carbonated drink
JP3546094B2 (en) Degassing device
US10370234B2 (en) Filling device for filling machine
US9339056B2 (en) Seal and anti foam device
US4265167A (en) Deoxygenating unit
US3991219A (en) Method for mixing a carbonated beverage
JPH08276121A (en) Method and apparatus for controlling dissolved gas in liquidand gas/liquid contact body module and usage thereof
SE517821C2 (en) Method and apparatus for continuously venting a liquid
KR101006869B1 (en) Apparatus for producing carbonated water having optimized abstracting system of carbonated water using membrane
RU2365538C2 (en) Filling machine with return gas separate channel
JPH0780205A (en) Selective deaeration and its device
US4352682A (en) Deoxygenating apparatus
JP2009044988A (en) Method for modifying liquors, modifying apparatus, and liquors obtained thereby
EP0447104A1 (en) Dissolving a gas in a liquid
SE541975C2 (en) Apparatus and method for producing oxygen-sensitive beverages
US1749561A (en) Degasification of liquids
JPH02139313A (en) Method and apparatus for charging liquid with inactive gas displaced
JP2002086136A (en) Device for deoxidizing feed water
US20170369825A1 (en) Container assembly with a breathable membrane oxygenator
US4669888A (en) Apparatus for mixing liquid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees