JP2002086136A - Device for deoxidizing feed water - Google Patents

Device for deoxidizing feed water

Info

Publication number
JP2002086136A
JP2002086136A JP2000279353A JP2000279353A JP2002086136A JP 2002086136 A JP2002086136 A JP 2002086136A JP 2000279353 A JP2000279353 A JP 2000279353A JP 2000279353 A JP2000279353 A JP 2000279353A JP 2002086136 A JP2002086136 A JP 2002086136A
Authority
JP
Japan
Prior art keywords
water
tank
water supply
raw water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000279353A
Other languages
Japanese (ja)
Other versions
JP3737687B2 (en
Inventor
Akira Mori
朗 森
Toshihiko Tanaka
俊彦 田中
Koichi Ogawa
晃一 尾川
Kazukiyo Takano
和潔 高野
Yukito Ota
幸人 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Takuma Co Ltd
Sanyo Electronic Industries Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Takuma Co Ltd
Sanyo Electronic Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd, Takuma Co Ltd, Sanyo Electronic Industries Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2000279353A priority Critical patent/JP3737687B2/en
Publication of JP2002086136A publication Critical patent/JP2002086136A/en
Application granted granted Critical
Publication of JP3737687B2 publication Critical patent/JP3737687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a feed water deoxidizing device which is provided with a water supply tank 3 provided with a raw water receiving mechanism 10 for receiving raw water We while maintaining a water level within a prescribed range and a degassing tank 4 connected with a water supply pipe line 7 for supplying degassed water Wd to a feed water utilizing position and which converts the raw water We blended with dissolved oxygen extracting gas G by an oxygen extracting gas blending mechanism 8 provided in a raw water supply pipe line 5 into degassed water Wd by gas-liquid separation in the degassing tank 4, capable of easily and simply deoxidizing feed water though the device has a small size and a simple mechanism and can be easily installed. SOLUTION: A partition wall 2 for bisecting the inside of a water tank 1 forming a close space is arranged and one space divided by the partition wall 2 forms the water supply tank 3 and the other space forms the degassing tank 4 and a space between the partition wall 2 and a ceiling 1a of the water tank 1 is formed to a communicating space 18 through which a gas phase space formed at an upper part of the degassing tank 4 communicate with the gas phase space formed at an upper part of the water supply tank 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばボイラ給水
中の溶存酸素に起因するボイラ水管或いはヘッダ等の腐
食を防止するために給水中の溶存酸素濃度を低減する給
水の脱酸素装置に関するものである。詳しくは、水位を
所定範囲内に維持しながら原水を受け入れる原水受入機
構を備える給水槽と、前記給水槽に受け入れた原水を供
給する原水供給管路で前記給水槽に接続され、前記原水
を脱酸素処理した後の脱気水を給水利用箇所に供給する
給水管路に接続してある脱気槽とを備え、前記原水供給
管路に、前記原水に溶存酸素抽出ガスを供給して混合す
る酸素抽出ガス混合機構を設けて、前記溶存酸素抽出ガ
スを混合した原水を前記脱気槽で気液分離し、前記原水
中の溶存酸素を低減する給水の脱酸素装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deoxygenating apparatus for reducing the concentration of dissolved oxygen in feed water in order to prevent corrosion of a boiler water pipe or a header caused by dissolved oxygen in the feed water of a boiler. is there. Specifically, a water supply tank having a raw water receiving mechanism for receiving raw water while maintaining the water level within a predetermined range, and a raw water supply pipe for supplying the raw water received in the water supply tank, are connected to the water supply tank to remove the raw water. A deaeration tank connected to a water supply pipe for supplying deaerated water after the oxygen treatment to a water supply utilization point, and supplying and mixing dissolved oxygen extraction gas to the raw water to the raw water supply pipe. The present invention relates to a deoxygenating device for a feedwater, which is provided with an oxygen extraction gas mixing mechanism, separates raw water mixed with the dissolved oxygen extraction gas into gas and liquid in the degassing tank, and reduces dissolved oxygen in the raw water.

【0002】[0002]

【従来の技術】上記従来の給水の脱酸素装置において
は、例えば図3に示すように、給水槽3と脱気槽4とが
別体に設けられ、前記給水槽3には、水位を所定範囲内
に維持しながら原水Wcを受け入れる原水受入機構10
を設け、前記脱気槽4は、前記給水槽3に受け入れた原
水Wcを供給する原水供給管路5で前記給水槽3に接続
されている。前記脱気槽4には、前記原水Wcを脱酸素
処理した後の脱気水Wdを給水として給水利用箇所に供
給する給水管路7を接続してある。そして、前記脱気槽
4には、前記原水供給管路5から供給される原水Wc中
に溶存酸素抽出ガスGとして例えば高純度の窒素ガスを
バブリング供給して、浮上する気泡と水との界面を介し
て原水Wc中の溶存酸素を前記気泡内に抽出するように
構成してあった。前記給水槽3の水面上方の空間は、通
常大気と連通してあり、前記脱気槽4の水面上方の空間
には、シールガスとして窒素ガス等の不活性ガスを供給
するようにしてある。
2. Description of the Related Art In the above-mentioned conventional water supply deoxidizer, a water supply tank 3 and a deaeration tank 4 are provided separately as shown in FIG. 3, for example. Raw water receiving mechanism 10 that receives raw water Wc while maintaining it within the range
The deaeration tank 4 is connected to the water supply tank 3 by a raw water supply pipe 5 for supplying the raw water Wc received in the water supply tank 3. The deaeration tank 4 is connected to a water supply pipe 7 for supplying the deaerated water Wd obtained by deoxidizing the raw water Wc to a water supply use point as a water supply. Then, a high-purity nitrogen gas, for example, as a dissolved oxygen extraction gas G is supplied to the deaeration tank 4 by bubbling into the raw water Wc supplied from the raw water supply pipe 5, and an interface between the floating bubbles and the water is supplied. Through which the dissolved oxygen in the raw water Wc is extracted into the bubbles. The space above the water surface of the water supply tank 3 is normally in communication with the atmosphere, and an inert gas such as nitrogen gas is supplied as a seal gas to the space above the water surface of the degassing tank 4.

【0003】前記給水管路7は、ボイラ15へのボイラ
給水管路16に接続してあり、前記ボイラ15で生成し
た蒸気は蒸気発電設備の蒸気タービン20に供給され、
前記蒸気タービン20で使用済みの廃蒸気は復水器21
で水に戻されて前記給水槽3に還流される。尚、小型の
ボイラである場合には、前記ボイラ15で生成した蒸気
は、蒸気使用箇所に使い捨て蒸気として供給される。
[0003] The water supply line 7 is connected to a boiler water supply line 16 to a boiler 15, and the steam generated by the boiler 15 is supplied to a steam turbine 20 of a steam power generation facility.
The waste steam used in the steam turbine 20 is supplied to a condenser 21.
And the water is returned to the water supply tank 3. In the case of a small boiler, the steam generated by the boiler 15 is supplied as a disposable steam to a location where steam is used.

【0004】[0004]

【発明が解決しようとする課題】上記従来の給水の脱酸
素装置の構成においては、溶存酸素抽出ガスの原水中に
おける滞留時間が短ければ、溶存酸素の抽出能力が低く
なるから、脱気槽において原水中を浮上する前記溶存酸
素抽出ガスの浮上距離を或る程度以上に維持しなけれ
ば、所望の酸素濃度まで残存酸素濃度(脱酸素処理後の
溶存酸素濃度)を低下させた脱気水を得られないため
に、前記脱気槽が大きいものとならざるを得ないという
問題を有している。従って、これを補うために、脱気槽
を大きくしたり、塩酸ヒドラジン等の薬剤を給水に添加
して、給水中の溶存酸素に起因する腐食を抑制すること
が行われる。
In the structure of the above-described conventional dewatering device for feed water, the shorter the residence time of the dissolved oxygen extraction gas in the raw water, the lower the dissolved oxygen extraction ability becomes. Unless the floating distance of the dissolved oxygen extraction gas floating in the raw water is maintained at a certain level or more, the degassed water in which the residual oxygen concentration (dissolved oxygen concentration after the deoxygenation treatment) has been reduced to a desired oxygen concentration is reduced. Since it cannot be obtained, there is a problem that the deaeration tank must be large. Therefore, in order to compensate for this, the degassing tank is enlarged, or a chemical such as hydrazine hydrochloride is added to the feed water to suppress corrosion caused by dissolved oxygen in the feed water.

【0005】こうした給水の脱酸素装置が大型化するこ
と、或いは、薬剤の添加を必要とすることは、例えば小
型のボイラに脱酸素水を供給する設備等においては大き
なデメリットとなる。つまり、小型のボイラは、小型且
つ簡単な構成であって、しかもメンテナンスの手間を要
しないことが望まれるのである。また、脱気槽を減圧し
て、減圧下で原水を脱酸素することも行われているが、
これも装置の複雑化を招き、小型化と簡素化の要請には
適合しない。この他、疎水性分離膜を用いて原水から酸
素を分離して除去することも行われるが、膜材の耐性に
問題があり、使用温度や薬剤の使用に制限がある。
Such an increase in the size of the deoxygenation device for water supply or the necessity of adding a chemical has a great disadvantage in, for example, a facility for supplying deoxygenated water to a small boiler. In other words, it is desired that a small boiler has a small and simple configuration and does not require maintenance. In addition, although degassing tanks are decompressed and raw water is deoxygenated under reduced pressure,
This also complicates the device and does not meet the demand for miniaturization and simplification. In addition, oxygen is separated and removed from raw water using a hydrophobic separation membrane. However, there is a problem with the resistance of the membrane material, and there is a limitation on the use temperature and the use of chemicals.

【0006】ところで、洗浄水として用いられる高純度
水、飲料や食品の原料水、醸造用水等においては、薬剤
の添加は忌避され、しかも、溶存酸素濃度の低いことも
要求される。こうした用途に適応する脱酸素装置とし
て、タンクに原液を供給する管路に、前記原液中に不活
性ガスを供給して加圧下で混合する不活性ガス混合機構
を設けて、前記不活性ガスを混合した原液を前記タンク
内で減圧して気液分離し、前記原水中の溶存酸素を低減
することが提案されている(例えば特開2000−10
7512号参照)。この提案においては、前記タンク内
には、不活性ガスが所定の圧力に維持されながら、パー
ジガスとして供給され、前記不活性ガス混合機構で原液
に混合された不活性ガスと共に抽出した酸素を伴って、
前記タンクの外部に放出される構成とされる。しかし、
上記提案による脱酸素装置では、不活性ガスとして高純
度窒素を用いて、不活性ガス混合機構での圧力を400
kPa以上で、且つ、窒素ガス供給量を原水に対してほ
ぼ同容積以上混合してはじめて残存酸素ガス濃度が約
0.5ppmにまで低減できるとされており、上記要請
に適うものではない。
[0006] By the way, high-purity water used as washing water, raw material water for beverages and foods, brewing water, and the like are required to avoid the addition of chemicals and have a low dissolved oxygen concentration. As a deoxygenation device adapted to such applications, a conduit for supplying a stock solution to a tank is provided with an inert gas mixing mechanism for supplying an inert gas into the stock solution and mixing it under pressure, and It has been proposed that the mixed stock solution is decompressed and gas-liquid separated in the tank to reduce dissolved oxygen in the stock water (for example, JP-A-2000-10).
No. 7512). In this proposal, in the tank, an inert gas is supplied as a purge gas while being maintained at a predetermined pressure, and accompanied by oxygen extracted together with the inert gas mixed with the stock solution by the inert gas mixing mechanism. ,
It is configured to be discharged to the outside of the tank. But,
In the oxygen absorber according to the above proposal, high-purity nitrogen is used as the inert gas, and the pressure in the inert gas mixing mechanism is set to 400.
It is said that the concentration of residual oxygen gas can be reduced to about 0.5 ppm only when the supply of nitrogen gas is at least kPa and the amount of nitrogen gas supplied is substantially equal to or more than that of the raw water.

【0007】そこで、本発明の目的は、小型且つ簡素な
機構でありながら、容易且つ簡単に脱酸素できて、設置
容易な給水の脱酸素装置を提供する点にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a water supply deoxidizing apparatus which can easily and easily deoxidize while having a small and simple mechanism and can be easily installed.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

【0009】〔本発明の特徴構成〕本発明に係る給水の
脱酸素装置は、水位を所定範囲内に維持しながら原水を
受け入れる原水受入機構を備える給水槽と、前記給水槽
に受け入れた原水を供給する原水供給管路で前記給水槽
に接続され、前記原水を脱酸素処理した後の脱気水を給
水利用箇所に供給する給水管路に接続してある脱気槽と
を備え、前記原水供給管路に、前記原水に溶存酸素抽出
ガスを供給して混合する酸素抽出ガス混合機構を設け
て、前記溶存酸素抽出ガスを混合した原水を前記脱気槽
で気液分離し、前記原水中の溶存酸素を低減する給水の
脱酸素装置において、給水槽と脱気槽とを一体に形成し
た点に特徴を有するものであり、夫々に以下のような特
徴を備えるものである。
[0009] [Features of the present invention] The water supply deoxygenating apparatus according to the present invention comprises a water tank provided with a raw water receiving mechanism for receiving raw water while maintaining the water level within a predetermined range, and a raw water received in the water tank. A deaeration tank connected to the water supply tank with a raw water supply line to be supplied and connected to a water supply line for supplying deaerated water after deoxidizing the raw water to a water supply utilization point; The supply pipe is provided with an oxygen extraction gas mixing mechanism for supplying and mixing the dissolved oxygen extraction gas to the raw water, the raw water mixed with the dissolved oxygen extraction gas is subjected to gas-liquid separation in the degassing tank, and The dewatering device for reducing the amount of dissolved oxygen is characterized in that a water supply tank and a deaeration tank are integrally formed, and each has the following characteristics.

【0010】本発明に係る給水の脱酸素装置の第1特徴
構成は、請求項1に記載のごとく、閉鎖空間を形成する
水槽の内部を二分割する区画壁を設けて、その区画壁で
分割された一方の空間で給水槽を形成すると共に、他方
の空間で脱気槽を形成して、前記区画壁と前記水槽の天
井との間の空間を、前記脱気槽の上方に形成される気相
空間と前記給水槽の上方に形成される気相空間とを連通
する連通空間に形成してある点にある。
According to a first characteristic configuration of the water supply deoxidizer according to the present invention, a partition wall for dividing the inside of a water tank forming a closed space into two parts is provided, and the partition wall is divided by the partition wall. A water supply tank is formed in one of the spaces, and a deaeration tank is formed in the other space, and a space between the partition wall and a ceiling of the water tank is formed above the deaeration tank. The point is that it is formed as a communication space that communicates the gas phase space and the gas phase space formed above the water supply tank.

【0011】本発明に係る給水の脱酸素装置の第2特徴
構成は、請求項2に記載のごとく、上記第1特徴構成に
おける原水受入機構を、受け入れる原水を給水槽内の水
面に向けて噴射するように構成してある点にある。
According to a second aspect of the present invention, there is provided a water supply deoxygenating apparatus, wherein the raw water received by the raw water receiving mechanism according to the first aspect is injected toward the water surface in the water supply tank. The point is that it is configured.

【0012】本発明に係る給水の脱酸素装置の第3特徴
構成は、請求項3に記載のごとく、上記第1特徴構成又
は第2特徴構成において、脱気槽に溶存酸素抽出ガスを
供給可能なシールガス供給路を接続して、酸素抽出ガス
混合機構への溶存酸素抽出ガスの供給量が所定量以下に
なった時に、前記シールガス供給路から前記溶存酸素抽
出ガスを供給するように構成してある点にある。
According to a third aspect of the water supply deoxidizing apparatus according to the present invention, in the first aspect or the second aspect, a dissolved oxygen extraction gas can be supplied to the deaeration tank. A configuration is such that when the supply amount of the dissolved oxygen extraction gas to the oxygen extraction gas mixing mechanism becomes equal to or less than a predetermined amount, the dissolved oxygen extraction gas is supplied from the seal gas supply passage. It is in the point that has been.

【0013】本発明に係る給水の脱酸素装置の第4特徴
構成は、請求項4に記載のごとく、閉鎖空間を形成する
水槽の内部を二分割する区画壁を設けて、その区画壁で
分割された一方の空間で給水槽を形成すると共に、他方
の空間で脱気槽を形成して、前記区画壁に、脱気槽と給
水槽との両者の水位下の位置に、前記脱気槽内の脱気水
を前記給水槽に向かう一方向に、所定の条件下で通流す
る通水管路を設けてある点にある。
A fourth characteristic configuration of the water supply deoxidizer according to the present invention is that, as set forth in claim 4, a partition wall for dividing the inside of a water tank forming a closed space into two is provided, and the partition wall is divided by the partition wall. A water supply tank is formed in one of the spaces, and a deaeration tank is formed in the other space, and the deaeration tank is provided on the partition wall at a position below the water level of both the deaeration tank and the water supply tank. The present invention is characterized in that a water pipe is provided for flowing degassed water in one direction toward the water supply tank under predetermined conditions.

【0014】本発明に係る給水の脱酸素装置の第5特徴
構成は、請求項5に記載のごとく、上記第1〜第4の何
れかの特徴構成に構成された脱酸素装置が、ボイラに併
設され、給水管路がボイラ給水管路として設けられてい
ると共に、酸素抽出ガス混合機構に溶存酸素抽出ガスを
供給する酸素抽出ガス供給装置を、圧力変動吸着分離法
により空気中の窒素を分離して供給する窒素PSA装置
で構成して、前記窒素PSA装置の窒素を分離した後に
排気を排出する排気路を、前記ボイラへの燃焼用空気供
給路に接続してある点にある。
According to a fifth aspect of the present invention, there is provided a water supply deoxidizing apparatus according to the fifth aspect, wherein the deoxygenating apparatus having any one of the first to fourth aspects is provided in a boiler. A water supply line is installed as a boiler water supply line, and an oxygen extraction gas supply device that supplies dissolved oxygen extraction gas to the oxygen extraction gas mixing mechanism separates nitrogen in the air by pressure fluctuation adsorption separation method. The nitrogen PSA device is configured to supply the exhaust gas after the nitrogen is separated from the nitrogen PSA device, and an exhaust passage for discharging the exhaust gas is connected to a combustion air supply passage to the boiler.

【0015】本発明に係る給水の脱酸素装置の第6特徴
構成は、請求項6に記載のごとく、上記第1〜第6の何
れかの特徴構成における給水槽に、原水を加温可能な加
温機構を設けると共に、その水温を検出する温度センサ
を設けて、前記加温機構に、前記温度センサで検出する
水温を30〜90℃の温度範囲内に調節可能な温度調節
機構を設けてある点にある。
According to a sixth aspect of the present invention, there is provided a water supply deoxidizing apparatus capable of heating raw water in the water supply tank according to any one of the first to sixth aspects. A heating mechanism is provided, and a temperature sensor for detecting the water temperature is provided, and the heating mechanism is provided with a temperature adjustment mechanism capable of adjusting a water temperature detected by the temperature sensor within a temperature range of 30 to 90 ° C. At one point.

【0016】〔特徴構成の作用及び効果〕上記本発明に
係る給水の脱酸素装置によれば、給水槽と脱気槽とを一
体に形成してあるから、構造が簡単になる他、夫々に、
以下のような独特の作用効果を奏する。
[Function and Effect of Characteristic Configuration] According to the water supply deoxidizing apparatus according to the present invention, since the water supply tank and the deaeration tank are integrally formed, the structure is simplified and each of them is separately provided. ,
It has the following unique effects.

【0017】上記本発明に係る給水の脱酸素装置の第1
特徴構成によれば、製作及び設置が容易であり、且つ、
十分に溶存酸素を低減できるようになる。つまり、給水
槽と脱気槽とを閉鎖空間を形成する一つの水槽として形
成したから、組立のための溶接長を短縮でき、溶接施工
等の製造のための工数を低減できる。また、前記水槽に
区画壁を設けて、前記給水槽と前記脱気槽とを形成して
あるから、設置の際にこれらを接続する配管を予め組み
付けておくことができて、配管工事を別途施工する必要
が無く、設置が簡単になる。また、前記区画壁と前記水
槽の天井との間に空間を設けて、前記給水槽の水面上の
気相空間と前記脱気槽の水面上の気相空間とを連通する
ように構成してあるから、前記給水槽にシールガスを導
入する槽外配管を設けなくても、前記脱気槽に供給され
る原水に混入して送り込まれ、原水を脱酸素処理した後
の溶存酸素抽出ガスが前記脱気槽の水面上を覆うように
なると同時に、前記給水槽の水面上にも送り込まれ、こ
れを覆うようになる。従って、給水槽にも溶存酸素抽出
ガスが供給されるから、一時給水槽に貯留される原水に
空気中の酸素が飽和に近付くまで溶け込むということを
防止でき、さらに、水面上を溶存酸素抽出ガスがシール
ガスとして覆うことにより、給水槽においても脱酸素処
理が可能になる。
[0017] The first embodiment of the feed water deoxidizer according to the present invention is described.
According to the characteristic configuration, manufacture and installation are easy, and
The dissolved oxygen can be sufficiently reduced. That is, since the water supply tank and the deaeration tank are formed as one water tank forming a closed space, the welding length for assembly can be shortened, and the number of steps for manufacturing such as welding work can be reduced. Further, since the water tank is provided with a partition wall to form the water supply tank and the deaeration tank, piping for connecting these can be assembled in advance at the time of installation. There is no need for construction and installation is simplified. Further, a space is provided between the partition wall and the ceiling of the water tank, so that a gas phase space on the water surface of the water supply tank and a gas phase space on the water surface of the deaeration tank communicate with each other. Therefore, even if there is no external pipe for introducing a seal gas into the water supply tank, the dissolved oxygen extraction gas after being mixed with the raw water supplied to the deaeration tank and sent in, and after the raw water has been deoxygenated, At the same time as it covers the water surface of the deaeration tank, it is also sent over the water surface of the water supply tank and covers it. Therefore, since the dissolved oxygen extraction gas is also supplied to the water supply tank, it is possible to prevent oxygen in the air from dissolving in the raw water stored in the temporary water supply tank until the oxygen approaches saturation, and furthermore, to dissolve the dissolved oxygen extraction gas on the water surface. Is covered as a seal gas, so that deoxidation can be performed even in the water supply tank.

【0018】上記本発明に係る給水の脱酸素装置の第2
特徴構成によれば、上記第1特徴構成の作用効果を奏す
る中で、殊に、給水槽においても原水に脱酸素処理を施
すことが可能になる。つまり、原水受入機構から受け入
れる原水を給水槽内の水面に噴射することで、その水面
を覆う溶存酸素抽出ガスが原水中に巻き込まれて原水を
曝気処理できるようになる。この曝気処理により、前記
給水槽内の原水中の溶存酸素が溶存酸素抽出ガス中に移
行するから、前記給水槽内においても前記原水から溶存
酸素を抽出する脱酸素処理が可能になるのである。
[0018] The second embodiment of the water supply deoxidizer according to the present invention is described.
According to the characteristic configuration, the dewatering treatment can be performed on the raw water, especially in the water supply tank, in addition to the effects of the first characteristic configuration. In other words, by injecting the raw water received from the raw water receiving mechanism onto the water surface in the water supply tank, the dissolved oxygen extraction gas covering the water surface is entrained in the raw water and the raw water can be aerated. Since the dissolved oxygen in the raw water in the water supply tank is transferred into the dissolved oxygen extraction gas by the aeration treatment, the deoxygenation processing for extracting the dissolved oxygen from the raw water in the water supply tank becomes possible.

【0019】上記本発明に係る給水の脱酸素装置の第3
特徴構成によれば、上記第1特徴構成又は第2特徴構成
の作用効果を奏しながら、原水中に混入した溶存酸素抽
出ガスの脱気槽への供給量が不足した場合にも、給水槽
及び脱気槽の中に貯留する水への酸素の再溶解を防止で
きる。つまり、酸素抽出ガス混合機構への溶存酸素抽出
ガスの供給量が不足し、或いは給水管路を経ての脱気槽
からの脱気水の供給量が増加して、前記脱気槽の水面が
低下した場合や、前記原水供給管路を経ての原水の供給
量が減少して、この供給量に応じて原水中に供給される
溶存酸素抽出ガスの脱気槽への供給量が減少し、または
前記脱気槽への原水の供給が停止されて、原水と共に前
記脱気槽に供給される溶存酸素抽出ガスの供給が停止さ
れた場合等のように、前記給水槽内或いは脱気槽内の水
位が低下するために、前記給水槽及び脱気槽を一体に形
成した水槽の上部に形成される気相空間内に外気が洩れ
込んで、両水面が酸素含有雰囲気に曝され、酸素が再溶
解するおそれがあるが、これは、前記酸素抽出ガス混合
機構への溶存酸素抽出ガスの供給量が所定量に満たない
ときに相当するから、シールガス供給路から溶存酸素抽
出ガスが前記脱気槽に供給され、前記脱気槽内に外気が
洩れ込むことを防止でき、前記給水槽の水面上も覆うよ
うになるから、常に槽内の気相空間内で酸素分圧が高く
なることを回避できるのである。即ち、前記所定量と
は、一定の量ではなく、前記気相空間内に外気が洩れ込
むのを防止するのに必要な溶存酸素抽出ガスの供給量を
指すのである。
The third embodiment of the water supply deoxidizer according to the present invention.
According to the characteristic configuration, even when the supply amount of the dissolved oxygen extraction gas mixed into the raw water to the deaeration tank is insufficient while exhibiting the operational effects of the first characteristic configuration or the second characteristic configuration, It is possible to prevent redissolution of oxygen in water stored in the degassing tank. That is, the supply amount of the dissolved oxygen extraction gas to the oxygen extraction gas mixing mechanism is insufficient, or the supply amount of the deaeration water from the deaeration tank via the water supply pipe increases, and the water level of the deaeration tank rises. In the case of a decrease, the supply amount of the raw water through the raw water supply pipe decreases, and the supply amount of the dissolved oxygen extraction gas supplied to the raw water to the deaeration tank decreases according to the supply amount, Or, as in the case where the supply of raw water to the deaeration tank is stopped and the supply of dissolved oxygen extraction gas supplied to the deaeration tank together with the raw water is stopped, the inside of the water supply tank or the inside of the deaeration tank is used. Because the water level of the water tank decreases, outside air leaks into a gas phase space formed above the water tank in which the water supply tank and the degassing tank are integrally formed, and both water surfaces are exposed to an oxygen-containing atmosphere, and oxygen is removed. There is a possibility of redissolving, but this may be caused by the dissolved oxygen extraction gas to the oxygen extraction gas mixing mechanism. Corresponds to the case where the supply amount is less than the predetermined amount, so that the dissolved oxygen extraction gas is supplied from the seal gas supply path to the degassing tank, and it is possible to prevent the outside air from leaking into the degassing tank, This also covers the water surface of the water tank, so that it is possible to avoid always increasing the oxygen partial pressure in the gas phase space in the water tank. That is, the predetermined amount is not a fixed amount but a supply amount of the dissolved oxygen extraction gas necessary to prevent the outside air from leaking into the gas phase space.

【0020】上記本発明に係る給水の脱酸素装置の第4
特徴構成によれば、構造を簡単にして製造コストを低減
しながら、酸素抽出ガス混合機構を備える脱酸素機構を
さらに効率的にする。つまり、給水槽と脱気槽とを、一
体に形成した水槽に設けて、前記水槽内を前記給水槽と
前記脱気槽とに分割した区画壁に通水管路を設けた構成
により、脱気水を原水に還流可能な構成となるが、その
ための別途の槽外配管を必要としない。従って、溶接施
工コスト及び配管コストを低減できると同時に、槽外配
管がない一体構成であるから、前記通水管路を有してお
りながら、その設置が極めて容易になる。また、前記通
水管路から、所定の条件下で脱気水が原水中に流入する
ように構成したことで、前記給水槽内の原水中の溶存酸
素は希釈され、原水供給管路に送り込まれる原水中の溶
存酸素濃度は、常に原水受入機構から受け入れられる原
水の溶存酸素濃度以下に維持される。従って、一般に脱
気装置の脱酸素処理可能量は、ボイラ付設のものであれ
ば、ボイラの最大蒸発量を基準に設定されるが、常用時
のボイラの蒸発量は、前記最大蒸発量の1/3〜1/2
であるから、前記原水供給管路の設けられる酸素抽出ガ
ス混合機構は余剰の能力を有しているのである。従っ
て、前記酸素抽出ガス混合機構の能力に合わせて原水を
循環すれば、常用時には、前記通水管路から脱気水が給
水槽に還流されることになる。その結果、前記給水槽内
の原水中の溶存酸素を常に希釈しておくことが可能にな
り、前記脱気槽における脱気水中の残存酸素濃度(脱酸
素処理後の溶存酸素濃度)を一層低く維持できるように
なる。
The fourth embodiment of the water supply deoxidizer according to the present invention is described.
According to the characteristic configuration, the deoxidizing mechanism including the oxygen extraction gas mixing mechanism is made more efficient while simplifying the structure and reducing the manufacturing cost. In other words, the water supply tank and the deaeration tank are provided in an integrally formed water tank, and a dewatering pipe is provided in the water tank by dividing the inside of the water tank into the water supply tank and the deaeration tank. Water can be returned to the raw water, but no extra-tank piping is required. Therefore, the welding construction cost and the piping cost can be reduced, and at the same time, since it has an integral structure without piping outside the tank, the installation is extremely easy while having the water passage. Further, from the water supply pipe, the deoxygenated water is configured to flow into the raw water under predetermined conditions, so that the dissolved oxygen in the raw water in the water supply tank is diluted and sent to the raw water supply pipe. The dissolved oxygen concentration in the raw water is always maintained at or below the dissolved oxygen concentration received from the raw water receiving mechanism. Therefore, in general, the amount of deoxidation that can be performed by the deaerator is set on the basis of the maximum evaporation amount of the boiler if it is provided with a boiler. However, the evaporation amount of the boiler in normal use is one of the maximum evaporation amount. / 3 to 1/2
Therefore, the oxygen extraction gas mixing mechanism provided with the raw water supply pipe has a surplus capacity. Therefore, if the raw water is circulated according to the capacity of the oxygen extraction gas mixing mechanism, the degassed water is returned to the water supply tank from the water passage in normal use. As a result, the dissolved oxygen in the raw water in the water supply tank can be constantly diluted, and the residual oxygen concentration (dissolved oxygen concentration after the deoxygenation treatment) in the deaerated water in the deaeration tank can be further reduced. Be able to maintain.

【0021】上述の通り、前記給水槽が前記脱気槽と前
記区画壁で分割されただけで一体に形成した水槽内に形
成されたものであるから、前記通水管路は前記区画壁を
貫通するだけでよいから、前記給水槽に前記脱気槽から
前記脱気水を還流するための配管は必要としない簡単な
構造で上記の効果をもたらすのである。ここに、所定の
条件下とは、上記の通り、通常は、前記酸素抽出ガス混
合機構を介しての原水供給量に余剰のある時を指す。こ
の他、前記脱気槽の水位が前記給水槽の水位より所定高
さ以上に高くなった場合にも前記通水管路は前記脱気水
を前記貯水槽に向けて通流させる。
As described above, since the water supply tank is formed in the water tank which is formed only by being divided by the deaeration tank and the partition wall, the water flow pipe penetrates through the partition wall. Therefore, the above-described effects can be obtained with a simple structure that does not require a pipe for returning the degassed water from the degassing tank to the water supply tank. Here, the predetermined condition usually refers to a time when there is a surplus in the raw water supply via the oxygen extraction gas mixing mechanism as described above. In addition, even when the water level of the deaeration tank becomes higher than the water level of the water supply tank by a predetermined height or more, the water flow conduit allows the deaeration water to flow toward the water storage tank.

【0022】上記本発明に係る給水の脱酸素装置の第5
特徴構成によれば、上記第1〜第4の何れかの特徴構成
の作用効果を奏しながら、これをボイラに併設した場合
に、酸素抽出ガス供給装置を効率的に運用でき、同時
に、ボイラの効率も向上できる。つまり、窒素PAS装
置は、空気中の窒素を99〜99.99%の純度で分離
するものであるから、窒素を採取した後の排ガスは酸素
の比率が例えば27%程度にまで高くなっている。従っ
て、これをボイラの燃焼用空気供給路に供給すれば、酸
素富化空気を供給することになり、燃焼器における燃焼
温度を高めることが可能になる。その結果、設置が容易
で、且つ取り扱いやすい設備でボイラの防食を図りなが
ら、ボイラの効率を高めることも可能になる。
The fifth aspect of the above-described feed water deoxygenation apparatus according to the present invention.
According to the characteristic configuration, the oxygen extraction gas supply device can be efficiently operated when the boiler is installed together with the boiler, while exhibiting the operation and effect of any of the first to fourth characteristic configurations. Efficiency can also be improved. That is, since the nitrogen PAS apparatus separates nitrogen in air with a purity of 99 to 99.99%, the exhaust gas after sampling nitrogen has a high oxygen ratio of, for example, about 27%. . Therefore, if this is supplied to the combustion air supply path of the boiler, oxygen-enriched air will be supplied, and the combustion temperature in the combustor can be increased. As a result, it is possible to increase the efficiency of the boiler while preventing corrosion of the boiler with equipment that is easy to install and handle.

【0023】上記本発明に係る給水の脱酸素装置の第6
特徴構成によれば、上記第1〜第5の何れかの特徴構成
の作用効果を奏する中で、ランニングコストを低減でき
るようになる。つまり、給水槽内の原水を30〜90℃
の温度範囲内で、設定温度に維持して原水を酸素抽出ガ
ス混合機構に供給すれば、上記温度範囲に原水の温度を
維持することで酸素等ガスの溶解度が低下するから、気
泡中の溶存酸素抽出ガスにおける酸素の平衡分圧が上昇
し、攪拌混合された溶存酸素抽出ガスの気泡中に溶存酸
素が逸出し易くなる。従って、溶存酸素抽出ガスの純度
を低くしても、或いは、前記溶存酸素抽出ガスの供給量
を幾分少なくしても、脱気水中の残存酸素濃度(脱酸素
処理後の溶存酸素濃度)を低く維持することが可能にな
る。因みに、上記の加温温度範囲は、温排水によっても
加温できる程度の温度であり、ボイラに併設した場合に
は、その廃蒸気によって加温することができ、廃熱によ
り脱気効率を向上できるのである。
The sixth aspect of the water supply deoxidizer according to the present invention.
According to the characteristic configuration, the running cost can be reduced while the operation and effect of any of the first to fifth characteristic configurations are exhibited. In other words, the raw water in the water tank is 30-90 ° C.
If the raw water is supplied to the oxygen-extracting gas mixing mechanism while maintaining the set temperature within the above temperature range, the solubility of the gas such as oxygen is reduced by maintaining the temperature of the raw water within the above temperature range. The equilibrium partial pressure of oxygen in the oxygen-extracted gas increases, and the dissolved oxygen easily escapes into the bubbles of the dissolved-oxygen-extracted gas mixed and stirred. Therefore, even if the purity of the dissolved oxygen extraction gas is lowered or the supply amount of the dissolved oxygen extraction gas is somewhat reduced, the residual oxygen concentration in the degassed water (the dissolved oxygen concentration after the deoxygenation treatment) is reduced. It can be kept low. By the way, the above-mentioned heating temperature range is a temperature that can be heated by hot wastewater, and when it is installed in a boiler, it can be heated by its waste steam, and the degassing efficiency is improved by waste heat. You can.

【0024】[0024]

【発明の実施の形態】以下、本発明に係る給水の脱酸素
装置に関する実施の形態の一例ついて図面を参照しなが
ら説明する。尚、先に従来の技術の項で説明に使用した
図3と同一の機能若しくは同様の機能を有する要素に
は、先に図3に付した符号と同一若しくは関連する符号
を付して、重複する説明の一部は省略する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a water supply deoxidizing apparatus according to an embodiment of the present invention; Elements having the same or similar functions as those of FIG. 3 used in the description of the related art are given the same or related reference numerals as those of FIG. A part of the description will be omitted.

【0025】本発明に係る給水の脱酸素装置において
は、例えば図1に示すように、給水槽3と、脱気槽4と
は一体に形成する。つまり、一つの閉鎖空間を形成する
水槽1の内部を横方向に二分割する区画壁2を設け、そ
の区画壁2で分割された一方の空間で前記給水槽3を形
成し、他方の空間で前記脱気槽4を形成する。前記給水
槽3には、所定水位下の範囲で原水Wcを受け入れるボ
ールタップ弁からなる原水受入機構10を設ける。前記
原水受入機構10であるボールタップ弁の出口開口に
は、受け入れる原水Wcを前記給水槽3内の水面に向け
て噴射する給水ノズル10aを付設する。前記脱気槽4
には、前記原水Wcに対して脱酸素処理を施した後の脱
気水Wdを給水利用箇所に供給する給水管路7を接続す
る。そして、前記給水槽3と前記脱気槽4とは、前記給
水槽3に受け入れた原水Wcを供給する原水供給管路5
で接続し、前記原水供給管路5の排出端部5aは、前記
脱気槽4の水面下で底部近傍に下方に向けて開口させ
る。
In the water supply deoxidizer according to the present invention, for example, as shown in FIG. 1, the water supply tank 3 and the deaeration tank 4 are formed integrally. That is, the partition wall 2 which divides the inside of the water tank 1 forming one closed space into two in the horizontal direction is provided, and the water supply tank 3 is formed in one space divided by the partition wall 2 and in the other space. The deaeration tank 4 is formed. The water supply tank 3 is provided with a raw water receiving mechanism 10 composed of a ball tap valve that receives raw water Wc in a range below a predetermined water level. At the outlet opening of the ball tap valve which is the raw water receiving mechanism 10, a water supply nozzle 10a for injecting the received raw water Wc toward the water surface in the water supply tank 3 is attached. The deaeration tank 4
Is connected to a water supply pipe 7 for supplying the deaerated water Wd obtained by subjecting the raw water Wc to a deoxygenation treatment to a water supply utilization point. The water supply tank 3 and the deaeration tank 4 are connected to a raw water supply pipe 5 for supplying the raw water Wc received in the water supply tank 3.
The discharge end 5a of the raw water supply pipe 5 is opened downward below the water surface of the degassing tank 4 near the bottom.

【0026】前記原水供給管路5には、前記原水Wc中
に溶存酸素抽出ガスGを供給して混合する酸素抽出ガス
混合機構8を設け、その酸素抽出ガス混合機構8に前記
溶存酸素抽出ガスGを供給する酸素抽出ガス供給装置9
として、圧力変動吸着分離法により空気中の窒素を分離
して供給する窒素PSA装置9Aを設け、前記溶存酸素
抽出ガスGとして、空気から分離した純度を約99.5
%に調整した窒素ガスを供給する。前記原水供給管路5
を通流する過程で、前記酸素抽出ガス混合機構8で攪拌
混合された前記溶存酸素抽出ガスGが微細気泡となり、
前記原水Wc中の溶存酸素をその微細気泡中に抽出す
る。つまり、前記脱気槽4内の脱気水Wd中には、前記
原水Wc中の溶存酸素を抽出して含む溶存酸素抽出ガス
Gの気泡を混合した脱気水Wdとして送り込まれる。こ
うして、前記溶存酸素抽出ガスGを原水Wc中に混合
し、溶存酸素を前記溶存酸素抽出ガスGの気泡中に抽出
して、脱気水Wdを生成し、前記脱気水Wdに同伴する気
泡を前記脱気槽4で前記脱気水Wdから気液分離し、前
記脱気水Wdを前記給水管路7から供給するのである。
前記気泡は、前記原水供給管路5の排出端部5aを出た
ところから前記脱気水Wdの水面に向けて浮上し、前記
脱気水Wd中から離脱するようになる。その結果、脱気
水Wd中の残存酸素濃度(脱酸素処理後の溶存酸素濃
度)は、少なくとも1ppm以下に低減されるのであ
る。
The raw water supply pipe 5 is provided with an oxygen extraction gas mixing mechanism 8 for supplying and mixing the dissolved oxygen extraction gas G into the raw water Wc. Oxygen extraction gas supply device 9 for supplying G
A nitrogen PSA unit 9A for separating and supplying nitrogen in the air by a pressure fluctuation adsorption separation method is provided, and as the dissolved oxygen extraction gas G, the purity separated from the air is about 99.5.
% Nitrogen gas is supplied. The raw water supply line 5
In the process of flowing, the dissolved oxygen extraction gas G stirred and mixed by the oxygen extraction gas mixing mechanism 8 becomes fine bubbles,
The dissolved oxygen in the raw water Wc is extracted into the fine bubbles. In other words, the deaerated water Wd in the deaeration tank 4 is sent as deaerated water Wd in which bubbles of a dissolved oxygen extraction gas G containing extracted and dissolved oxygen in the raw water Wc are mixed. Thus, the dissolved oxygen extraction gas G is mixed into the raw water Wc, and the dissolved oxygen is extracted into the bubbles of the dissolved oxygen extraction gas G to generate deaerated water Wd, and the bubbles accompanying the deaerated water Wd are generated. Is gas-liquid separated from the degassed water Wd in the degassing tank 4, and the degassed water Wd is supplied from the water supply line 7.
The air bubbles float from the discharge end 5a of the raw water supply pipe 5 toward the surface of the deaerated water Wd, and separate from the deaerated water Wd. As a result, the concentration of residual oxygen in the degassed water Wd (the concentration of dissolved oxygen after the deoxygenation treatment) is reduced to at least 1 ppm or less.

【0027】前記酸素抽出ガス混合機構8は、前記原水
供給管路5に介装され、供給ポンプ5bにより供給され
る原水Wc中に前記溶存酸素抽出ガスGを供給する抽出
ガス供給部8aと、前記原水Wcを前記溶存酸素抽出ガ
スGと共に攪拌混合して、前記溶存酸素抽出ガスGの微
細気泡を形成する攪拌混合部8bと、その攪拌混合部8
bの出口下流側の前記原水供給管路5に設けた混合圧力
調節弁8cとで構成したものである。前記溶存酸素抽出
ガスGは、前記窒素PSA装置9Aからの窒素ガスの供
給路に備える流量調節弁9bを開度調節して、前記原水
供給管路5に設けられた流量計5cで検出する原水供給
量に対して所定の流量となるようにその供給量が調整さ
れる。前記攪拌混合部8bは、図示の例においては、本
体を形成する直管と、その直管内に帯板をその直管の軸
芯周りに捻って形成した旋回羽根とからなり、その旋回
羽根を前記直管内に固定したスタティックミキサで構成
してある。前記抽出ガス供給部8aは、そのスタティッ
クミキサの軸芯に沿って前記原水供給管路5内に挿入さ
れ、前記旋回羽根の直近に先端開口を有する溶存酸素抽
出ガス供給ノズルを備えている。この溶存酸素抽出ガス
供給ノズルへは、前記窒素PSA装置9Aからの窒素ガ
スGが供給される。この窒素ガスGは、前記原水供給管
路5に備える前記流量計5cで検出する原水Wcの流量
に対して容積比(標準状態)で0.2〜1の範囲で設定
された供給比率となるように、供給量が調節される。ま
た、前記混合圧力調節弁8cは、前記スタティックミキ
サの出口下流側に設けてあり、前記供給ポンプ5bの吐
出圧力以下の範囲内で、前記酸素抽出ガス混合機構8に
おける水圧を調整する。その圧力調節範囲は、196〜
981kPa(1〜10kgf/cm2 )である。前記溶存酸
素ガス供給ノズルの先端開口の位置は、前記本体を形成
する直管の軸芯に合わせ、前記旋回羽根の入口側端部に
近く配置されていることが望ましい。
The oxygen extraction gas mixing mechanism 8 is interposed in the raw water supply pipe 5 and supplies the dissolved oxygen extraction gas G into the raw water Wc supplied by the supply pump 5b. A stirring and mixing section 8b for mixing the raw water Wc with the dissolved oxygen extraction gas G to form fine bubbles of the dissolved oxygen extraction gas G;
and a mixing pressure control valve 8c provided in the raw water supply pipe line 5 downstream of the outlet b. The dissolved oxygen extraction gas G is supplied to the raw water detected by a flow meter 5c provided in the raw water supply pipe 5 by adjusting the opening of a flow control valve 9b provided in a supply path of nitrogen gas from the nitrogen PSA device 9A. The supply amount is adjusted so as to have a predetermined flow rate with respect to the supply amount. In the example shown in the figure, the stirring and mixing section 8b includes a straight pipe forming a main body, and a swirl blade formed by twisting a band plate around the axis of the straight pipe in the straight pipe. It is composed of a static mixer fixed in the straight pipe. The extraction gas supply unit 8a is provided with a dissolved oxygen extraction gas supply nozzle that is inserted into the raw water supply pipe 5 along the axis of the static mixer and has a tip opening in the immediate vicinity of the swirling blade. The nitrogen gas G from the nitrogen PSA device 9A is supplied to the dissolved oxygen extraction gas supply nozzle. The nitrogen gas G has a supply ratio set in a volume ratio (standard state) of 0.2 to 1 with respect to the flow rate of the raw water Wc detected by the flow meter 5c provided in the raw water supply pipe line 5. Thus, the supply is regulated. The mixing pressure control valve 8c is provided downstream of the outlet of the static mixer, and adjusts the water pressure in the oxygen extraction gas mixing mechanism 8 within a range not higher than the discharge pressure of the supply pump 5b. The pressure adjustment range is from 196 to
981 kPa (1 to 10 kgf / cm 2 ). It is desirable that the position of the distal end opening of the dissolved oxygen gas supply nozzle is located near the inlet side end of the swirling blade in accordance with the axis of a straight pipe forming the main body.

【0028】前記区画壁2の上縁部と前記水槽1の蓋L
で形成される天井1aとの間の空間で、前記脱気槽4の
上方に形成される気相空間と前記給水槽3の上方に形成
される気相空間とを連通する連通空間18を形成する。
さらに、前記区画壁2には、前記脱気槽4と前記給水槽
3との両者の水位下の位置に、前記脱気槽4内の脱気水
Wdを前記給水槽3に向かう一方向に、所定の条件下で
通流する通水管路6を設ける。前記蓋Lは、前記水槽1
の側壁の上縁部の上に載置する。前記所定の条件の一つ
は、前記脱気槽4の水位と前記給水槽3の水位との差を
基準とするものであり、前記所定の条件下で前記通水管
路6を一方向に開閉するために、前記通水管路6は湾曲
させて前記脱気槽4の側で下方に向かわせ、その上下方
向に向かう部分に、その上下の差圧で受動的に開閉する
逆止弁6aを設ける。この逆止弁6aは、例えば、その
弁体を1以上の適宜の嵩比重を備えるように構成して、
前記通水管路6の下方に向かわせて湾曲させた縦管部に
弁座を設け、その弁座の上側に前記弁体を着座させてお
く構造が採用可能である。このような構成により、前記
脱気槽4における水頭と前記給水槽3における水頭との
差により前記弁体を押し上げることで開弁させることが
できる。この構造であれば、前記水頭の差が小さけれ
ば、前記弁体の重量により、閉弁するようになるから、
前記給水槽3内の原水Wcが前記脱気槽4内に流れ込む
ことを防止できる。
The upper edge of the partition wall 2 and the lid L of the water tank 1
In the space between the ceiling 1a and the space formed above, a communication space 18 communicating between a gas phase space formed above the degassing tank 4 and a gas phase space formed above the water supply tank 3 is formed. I do.
Further, on the partition wall 2, the deaerated water Wd in the deaeration tank 4 is moved to a position below the water level of both the deaeration tank 4 and the water supply tank 3 in one direction toward the water supply tank 3. , A water passage 6 for flowing under predetermined conditions is provided. The lid L is attached to the water tank 1
On the upper edge of the side wall. One of the predetermined conditions is based on the difference between the water level of the deaeration tank 4 and the water level of the water supply tank 3, and opens and closes the water passage 6 in one direction under the predetermined conditions. In order to do so, the water pipe 6 is bent downward toward the degassing tank 4 and a check valve 6a that opens and closes passively with a differential pressure between the upper and lower parts is provided in a part of the pipe in the vertical direction. Provide. The check valve 6a is configured so that, for example, the valve body has one or more appropriate bulk specific gravities,
It is possible to adopt a structure in which a valve seat is provided in a vertical pipe portion curved downward toward the water passage 6 and the valve body is seated above the valve seat. With such a configuration, the valve can be opened by pushing up the valve body by the difference between the water head in the deaeration tank 4 and the water head in the water supply tank 3. With this structure, if the difference between the heads is small, the valve will close due to the weight of the valve body,
Raw water Wc in the water supply tank 3 can be prevented from flowing into the deaeration tank 4.

【0029】前記給水槽3の上方の気相空間と前記脱気
槽4の上方空間とを前記連通空間18を介して連通さ
せ、前記給水槽3の水面下と前記脱気槽4の水面下とも
前記通水管路6により所定の条件下で連通させるように
構成する。例えば、図2に示すように、この脱酸素装置
を簡易ボイラ或いは小型ボイラ等のボイラ15に付設し
た場合には、例えばボイラ15の蒸気発生量が1ton/h
の場合、常用時の蒸気量は300kg/h程度である。従っ
て、常用時は概ね300〜500kg/h程度の脱気水Wd
が、給水管路7から前記ボイラ15に供給される。そこ
で、前記ボイラ15の能力に合わせて前記原水供給管路
5を介して前記給水槽3から前記酸素抽出ガス混合機構
8に1ton/h の原水Wcを定量供給しておれば、500
〜700kg/hの脱気水Wdが余分に前記脱気槽4に供給
されることになる。そこで、その余剰の脱気水Wdが前
記給水槽3に還流できる。こうして、脱気水Wd内の約
半量乃至2/3を循環することで、給水槽3内に一時貯
留される原水Wc中の溶存酸素を希釈でき、その後の脱
酸素処理によってさらに溶存酸素濃度を低減して、従来
の脱酸素装置に比して脱気水中の溶存酸素濃度を遙かに
低く維持できるのである。
The gas phase space above the water supply tank 3 and the space above the degassing tank 4 are communicated via the communication space 18 so that the water level of the water supply tank 3 and the water level of the degassing tank 4 are lowered. Both are configured to communicate with each other under predetermined conditions through the water passage 6. For example, as shown in FIG. 2, when this deoxidizer is attached to a boiler 15 such as a simple boiler or a small boiler, for example, the steam generation amount of the boiler 15 is 1 ton / h.
In the case of, the steam amount in normal use is about 300 kg / h. Therefore, during normal use, the deaerated water Wd of about 300 to 500 kg / h
Is supplied from the water supply line 7 to the boiler 15. Therefore, if 1 ton / h of raw water Wc is supplied from the water supply tank 3 to the oxygen extraction gas mixing mechanism 8 via the raw water supply pipe 5 in a fixed amount according to the capacity of the boiler 15, 500
The deaerated water Wd of up to 700 kg / h is supplied to the deaeration tank 4 in excess. Then, the surplus deaerated water Wd can be returned to the water supply tank 3. In this way, by circulating about half to 2/3 of the degassed water Wd, the dissolved oxygen in the raw water Wc temporarily stored in the water supply tank 3 can be diluted, and the dissolved oxygen concentration can be further reduced by the subsequent deoxygenation treatment. Thus, the concentration of dissolved oxygen in the degassed water can be kept much lower than that of the conventional deoxidizer.

【0030】一方、前記ボールタップ弁に付設された給
水ノズル10aから噴出する原水Wcは、前記水面に吹
き付けられ、前記水面を覆う気体を巻き込んで前記原水
Wcの水面下に貫入する。そこで、巻き込まれた気体は
気泡となって前記水面下の原水Wc中を浮上するように
なる。この浮上する気泡を形成する気体は、前記脱気槽
4内で脱気水Wd中から離脱した、即ち、原水Wcから抽
出した酸素を含む溶存酸素抽出ガスGであるが、その中
の酸素の比率は空気に比して極めて低く、前記給水槽3
内で原水Wc中を浮上する気泡によって、前記原水Wc中
の溶存酸素が予備抽出されるのである。尚、前記水槽1
の天井1aには、前記原水受入機構10の上方の位置に
前記気相空間内のガスを外部に排出する排出口19を形
成してあり、その排出口19は、ゴムシートを弁体とし
たリード弁19aが逆止弁として設けられ、前記気相空
間内の余剰シールガスは排出できながら、前記排出口1
9から外気が前記気相空間内に洩れ込むことを防止して
ある。
On the other hand, the raw water Wc spouting from the water supply nozzle 10a attached to the ball tap valve is blown onto the water surface, entrains gas covering the water surface, and penetrates below the water surface of the raw water Wc. Thus, the entrained gas becomes bubbles and floats in the raw water Wc below the water surface. The gas that forms the floating bubbles is a dissolved oxygen extraction gas G that has separated from the degassed water Wd in the degassing tank 4, that is, contains dissolved oxygen extracted from the raw water Wc. The ratio is extremely low compared to air.
The dissolved oxygen in the raw water Wc is preliminarily extracted by the bubbles floating in the raw water Wc. The water tank 1
The ceiling 1a has a discharge port 19 at a position above the raw water receiving mechanism 10 for discharging gas in the gas phase space to the outside, and the discharge port 19 has a rubber sheet as a valve body. A reed valve 19a is provided as a check valve, and while the excess seal gas in the gas phase space can be discharged,
9 prevents the outside air from leaking into the gas phase space.

【0031】また、前記給水槽3は、槽内の水面より高
く形成した堰を設けて、前記原水受入機構10の側から
前記区画壁2に向けて、第一区画3a、第二区画3b、
第三区画3cの三領域に区画する。夫々の区画3a、3
b、3cの間の堰には、水面下の位置に流通孔を設けて
ある。前記ボールタップ弁のフロートは、前記第二区画
3bに位置させてある。そして、前記第一区画3aに、
その槽内に一時貯留される原水Wcを加温可能な加温機
構12を設けると共に、その水温を検出する温度センサ
13を、前記第一区画3aと第二区画3bとの間を区画
する堰に設けた、前記第一区画3aから第二区画3bへ
の流通孔の高さに合わせて設ける。前記給水管路7は、
前記第三区画3cの底部に接続される。前記第二区画3
bと前記第三区画3cとの間の堰に設ける前記第二区画
3bから前記第三区画3cへの流通孔は、前記第一区画
3aから第二区画3bへの流通孔の高さより高くする。
こうして、前記温度センサ13では、第二区画3bへ流
入する原水の温度を検出できるように構成する。
Further, the water supply tank 3 is provided with a weir formed to be higher than the water surface in the tank, and the first section 3a, the second section 3b, and the like from the raw water receiving mechanism 10 toward the section wall 2.
It is divided into three areas of the third section 3c. Each section 3a, 3
The weir between b and 3c has a flow hole at a position below the water surface. The float of the ball tap valve is located in the second section 3b. And, in the first section 3a,
A heating mechanism 12 capable of heating the raw water Wc temporarily stored in the tank is provided, and a temperature sensor 13 for detecting the water temperature is provided by a weir for partitioning between the first section 3a and the second section 3b. Provided in accordance with the height of the flow hole from the first section 3a to the second section 3b. The water supply line 7 is
It is connected to the bottom of the third section 3c. The second section 3
The flow hole from the second section 3b to the third section 3c provided in the weir between b and the third section 3c is higher than the height of the flow hole from the first section 3a to the second section 3b. .
Thus, the temperature sensor 13 is configured to detect the temperature of the raw water flowing into the second section 3b.

【0032】前記加温機構12は、前記給水槽3内の原
水Wc中に浸漬された水蒸気加熱の伝熱管で構成してあ
り、この加温機構12は、前記温度センサ13で検出す
る水温を所定の温度範囲内に調節する温度調節機構14
を設けて構成してある。この温度調節機構14を前記加
温機構12への水蒸気供給路に設けた流量調節弁で構成
し、前記温度センサ13で検出する温度に応じて前記流
量調節弁を開度調節して、給水槽3内の原水Wcの温度
を30〜90℃の範囲内に設定された目標温度を基に調
節する。図示のように、前記温度センサ13を、前記第
一区画3aから第二区画3bへの流通孔の位置で原水W
cの温度を検出するようにすることで、少なくとも前記
第二区画3bにおける原水Wcの温度を、所定範囲に確
実に維持するのである。こうして、前記原水供給管路5
に供給する原水Wcの温度を30〜90℃の範囲内に維
持することで、原水Wc中における酸素の溶解度を低下
させ、前記酸素抽出ガス混合機構8で混合される溶存酸
素抽出ガスGの気泡中に前記原水Wc中の溶存酸素が逸
出し易くなるようにするのである。
The heating mechanism 12 is constituted by a steam-heated heat transfer tube immersed in the raw water Wc in the water supply tank 3. The heating mechanism 12 detects the water temperature detected by the temperature sensor 13. Temperature adjusting mechanism 14 for adjusting the temperature within a predetermined temperature range
Is provided. The temperature control mechanism 14 is constituted by a flow rate control valve provided in a steam supply path to the heating mechanism 12, and the opening of the flow rate control valve is adjusted in accordance with the temperature detected by the temperature sensor 13. The temperature of the raw water Wc in 3 is adjusted based on the target temperature set in the range of 30 to 90 ° C. As shown in the figure, the temperature sensor 13 is connected to the raw water W at the position of the flow hole from the first section 3a to the second section 3b.
By detecting the temperature of c, at least the temperature of the raw water Wc in the second section 3b is reliably maintained in a predetermined range. Thus, the raw water supply line 5
By maintaining the temperature of the raw water Wc supplied to the water within the range of 30 to 90 ° C., the solubility of oxygen in the raw water Wc is reduced, and bubbles of the dissolved oxygen extraction gas G mixed by the oxygen extraction gas mixing mechanism 8 are generated. The dissolved oxygen in the raw water Wc is made to escape easily.

【0033】この脱酸素装置が上述のようにボイラ15
へのボイラ用給水を供給することを目的とする場合に
は、脱気水Wd中の溶存酸素濃度を0.5ppm以下に
維持することが望ましく、このためには、前記目標温度
は、30℃以上に設定されていることが好ましく、この
脱酸素装置の脱気効率を向上させることができる。前記
脱気水Wd中の溶存酸素濃度は、前記窒素PSA装置9
Aから供給する窒素ガスの純度、その原水Wcの流量に
対する供給比率(標準状態)、前記酸素抽出ガス混合機
構8における管内圧力、前記原水Wcの温度等を適宜調
整することにより調節できる。
As described above, this deoxygenating apparatus is used for the boiler 15
In order to supply boiler feed water to the deaerated water Wd, it is desirable to maintain the concentration of dissolved oxygen in the degassed water Wd at 0.5 ppm or less. The above setting is preferable, and the deaeration efficiency of the deoxidizer can be improved. The dissolved oxygen concentration in the degassed water Wd is determined by the nitrogen PSA device 9
It can be adjusted by appropriately adjusting the purity of the nitrogen gas supplied from A, its supply ratio to the flow rate of the raw water Wc (standard state), the pipe pressure in the oxygen extraction gas mixing mechanism 8, the temperature of the raw water Wc, and the like.

【0034】前記加温機構12は、給水槽3が前記脱気
槽4と区画壁2で区画されただけの構成であるから、前
記脱気槽4を間接的に保温する機能も有しており、前記
脱気槽4における脱気効率をさらに高めている。尚、こ
の加温機構12は、供給される原水Wcの他に併設され
たボイラ15からの蒸気を回収した蒸気回収水が前記給
水槽3に還流される場合には、前記蒸気回収水の温度が
60〜80℃であるから、この温熱を利用でき、例えば
前記目標温度が60℃前後に設定されている場合には作
動させなくてもよいこともある。
The heating mechanism 12 has a function of indirectly keeping the temperature of the deaeration tank 4 because the water supply tank 3 is constituted only by the deaeration tank 4 and the partition wall 2. As a result, the degassing efficiency in the degassing tank 4 is further increased. In addition, when the steam recovery water obtained by collecting the steam from the attached boiler 15 in addition to the supplied raw water Wc is returned to the water supply tank 3, the heating mechanism 12 controls the temperature of the steam recovery water. Is 60 to 80 ° C., and this heat can be used. For example, when the target temperature is set to around 60 ° C., the operation may not be required.

【0035】以上説明した給水の脱酸素装置は、図2に
示したように、ボイラ15に併設されたものであり、前
記給水管路7は、ボイラ給水管路16として設けられて
いる。そして前記窒素PSA装置9Aの窒素を分離した
後に排気を排出する排気路9aは、前記ボイラ15への
燃焼用空気供給路17に接続してある。前記排気路9a
に排出されるガスは、空気中の窒素を吸着分離した残り
のガスであり、空気中の酸素が殆ど残ったものであり、
前記燃焼用空気供給路17には、例えば酸素濃度28%
の酸素富化空気が供給されることになる。従って、従来
のようなコストアップを招く酸素を使用することなく、
ボイラにおける燃焼温度を高めて、ボイラ効率を大きく
改善できるという付加的な効果も有するものである。
As shown in FIG. 2, the above-described deoxygenating device for water supply is provided in addition to the boiler 15, and the water supply line 7 is provided as a boiler water supply line 16. An exhaust passage 9a for exhausting exhaust gas after separating nitrogen from the nitrogen PSA device 9A is connected to a combustion air supply passage 17 to the boiler 15. The exhaust path 9a
Is the gas remaining after adsorbing and separating nitrogen in the air, almost all of the oxygen in the air remains,
In the combustion air supply passage 17, for example, an oxygen concentration of 28%
Of oxygen-enriched air will be supplied. Therefore, without using oxygen that causes a cost increase as in the past,
This has the additional effect that the boiler efficiency can be greatly improved by increasing the combustion temperature in the boiler.

【0036】さらに、前記脱気槽4には、前記溶存酸素
抽出ガスGを供給可能なシールガス供給路11を接続し
てあり、前記酸素抽出ガス混合機構8への溶存酸素抽出
ガスGの供給量が所定量以下になった時に、前記シール
ガス供給路11に備えるシールガス供給弁11aを開く
ことで、前記脱気槽4に、前記溶存酸素抽出ガスGを供
給するように構成してある。この脱酸素装置では、通常
は前記シールガス供給弁11aは閉じているが、ボイラ
の停止時等、この脱酸素装置を待機状態とした際に、ス
タンバイスイッチをONにすることで前記シールガス供
給弁11aが開弁されるように構成してある。
Further, the degassing tank 4 is connected with a seal gas supply path 11 capable of supplying the dissolved oxygen extraction gas G, and supplies the dissolved oxygen extraction gas G to the oxygen extraction gas mixing mechanism 8. When the amount becomes equal to or less than a predetermined amount, the seal gas supply valve 11a provided in the seal gas supply path 11 is opened to supply the dissolved oxygen extraction gas G to the deaeration tank 4. . In this deoxidizer, the seal gas supply valve 11a is normally closed, but when the deoxygenator is in a standby state, such as when the boiler is stopped, a standby switch is turned on to supply the seal gas. The valve 11a is configured to be opened.

【0037】こうして、脱気槽4で気液分離される溶存
酸素抽出ガスGが前記脱気槽4のみならず前記給水槽3
でもシールガスとして機能しており、大気中の酸素が前
記給水槽3内及び前記脱気槽4内に洩れ込んで、前記給
水槽3内の原水Wc及び前記脱気槽4内の脱気水Wd中に
溶け込むことを防止しているのであるが、ボイラの停止
中等で、前記酸素抽出ガス混合機構8への溶存酸素抽出
ガスGの供給が停止される場合のように、前記脱気槽4
に溶存酸素抽出ガスGが供給されなくなる場合には、上
述のように、前記シールガス供給弁11aが開弁される
ことで、前記シールガス供給路11からの溶存酸素抽出
ガスGによって、前記脱気槽4の水面上の気相空間が
(従って、前記給水槽3の水面上の気相空間も)覆われ
るようになり、前記脱気槽4内に(これと共に前記給水
槽3内にも)外気が洩れ込んで、脱気水Wd(或いは原
水Wc)の水面に接し、洩れ込んだ外気の中の酸素が槽
内の水に溶け込むことを防止している。このシールガス
供給路11から供給する溶存酸素抽出ガスGは、間欠的
に供給するが、このように間欠的に供給しても、そのシ
ール効果を十分に果たすことができる。例えば、前記気
相空間内の溶存酸素抽出ガスGを、外気よりも幾分高い
圧力で供給してあれば、その槽外への洩れ出し時間内
は、前記気相空間内の雰囲気を維持できるからである。
In this way, the dissolved oxygen extraction gas G separated into gas and liquid in the deaeration tank 4 is supplied not only to the deaeration tank 4 but also to the water supply tank 3.
However, it functions as a seal gas, and oxygen in the atmosphere leaks into the water supply tank 3 and the deaeration tank 4, and raw water Wc in the water supply tank 3 and deaeration water in the deaeration tank 4 Although the dissolution into the Wd is prevented, the supply of the dissolved oxygen extraction gas G to the oxygen extraction gas mixing mechanism 8 is stopped when the boiler is stopped or the like.
When the dissolved oxygen extraction gas G is no longer supplied to the gas, the sealing gas supply valve 11a is opened as described above, and The gas-phase space on the water surface of the air tank 4 (and, therefore, the gas-phase space on the water surface of the water supply tank 3) is covered, and the inside of the deaeration tank 4 (and also the water supply tank 3) is covered. 3) The outside air leaks and comes into contact with the surface of the degassed water Wd (or raw water Wc) to prevent the oxygen in the leaked outside air from dissolving in the water in the tank. Although the dissolved oxygen extraction gas G supplied from the seal gas supply path 11 is supplied intermittently, even if it is supplied intermittently as described above, the sealing effect can be sufficiently achieved. For example, if the dissolved oxygen extraction gas G in the gas phase space is supplied at a somewhat higher pressure than the outside air, the atmosphere in the gas phase space can be maintained during the leakage time to the outside of the tank. Because.

【0038】上記溶存酸素抽出ガスGの供給量が所定量
以下になった時の一例は、上述の溶存酸素抽出ガスの供
給停止(即ち、脱酸素装置の待機状態)であるが、この
供給停止に限らず、前記脱気槽4内への溶存酸素抽出ガ
スGの供給量が少なくなった場合にも、外気の洩れ込み
のおそれがあれば、前記シールガス供給路11からの溶
存酸素抽出ガスGを前記脱気槽4内に供給するのであ
る。例えば、給水利用箇所における脱気水Wdの使用量
が増加し、前記給水管路7からの前記脱気水Wdの供給
量と、原水供給管路5から前記酸素抽出ガス混合機構8
への原水Wcの供給量とのバランスが崩れて、前記脱気
槽4内の水位が低下し、気相空間の圧力が(従って、前
記給水槽3内の気相空間の圧力も)低下する場合も上記
所定量以下になった時であり、前記シールガス供給路1
1から溶存酸素抽出ガスGを前記脱気槽4内に供給す
る。このシールガス供給路11は、前記脱気槽4内に開
口していてもよいが、前記給水槽3に開口していてもよ
い。前記連通空間18によって両者の気相空間が連通す
るように構成してあるからである。また、前記シールガ
ス供給路11は、前記脱気槽内の水面以下に開口させて
あってもよい。浮上する気泡が脱酸素に寄与し、浮上し
て水面から離脱した溶存酸素抽出ガスGは、前記水面上
を覆い、シールガスとして機能するようになるのであ
る。
One example of the case where the supply amount of the dissolved oxygen extraction gas G becomes a predetermined amount or less is the above-mentioned supply stop of the dissolved oxygen extraction gas (that is, the standby state of the deoxidizer). Not only when the supply amount of the dissolved oxygen extraction gas G into the degassing tank 4 is reduced, if there is a possibility of leakage of outside air, the dissolved oxygen extraction gas from the seal gas supply path 11 G is supplied into the deaeration tank 4. For example, the usage of the degassed water Wd at the water supply utilization point increases, the supply amount of the degassed water Wd from the water supply line 7 and the oxygen extraction gas mixing mechanism 8 from the raw water supply line 5.
The balance with the supply amount of the raw water Wc to the deaeration tank 4 is lost, and the water level in the degassing tank 4 decreases, and the pressure in the gas phase space (accordingly, the pressure in the gas phase space in the water supply tank 3) also decreases. This is also the case when the amount is below the predetermined amount, and the sealing gas supply path 1
From 1, a dissolved oxygen extraction gas G is supplied into the deaeration tank 4. The seal gas supply path 11 may be open in the deaeration tank 4 or may be open in the water supply tank 3. This is because the communication space 18 allows the two gas-phase spaces to communicate with each other. Further, the seal gas supply passage 11 may be opened below the water level in the degassing tank. The floating bubbles contribute to deoxygenation, and the dissolved oxygen extraction gas G that has floated and separated from the water surface covers the water surface and functions as a seal gas.

【0039】以上のように本発明に係る給水の脱酸素装
置を構成した利点を要約すると、 [1] 給水槽3と脱気槽4とを一体の水槽1に形成し
てあるから、両者の製造コストを低減できた。殊に、溶
接施工距離が短縮できた。 [2] 給水槽3と脱気槽4とを一体に形成してあるか
ら、前記給水槽3から原水Wcを前記酸素抽出ガス混合
機構8を経て前記脱気槽4に供給する原水供給管路5を
予め両者に接続しておくことができて、配管の位置合わ
せの手間がなくなり、装置の設置が容易になると同時
に、設置の施工コストを低減できた。 [3] 給水槽3と脱気槽4とを一体に形成してあるか
ら、前記給水槽3へのシールガスの供給管路を槽外に別
途設ける必要がなくなった。従って、このための配管の
位置合わせ等が必要なくなり、設置工数を大きく低減で
きた。 [4] 給水槽3と脱気槽4とを一体に形成してあるか
ら、前記脱気槽4から前記給水槽3に脱気水Wdを還流
することが容易になり、しかも、還流路を形成する槽外
配管が不要となり、区画壁2に通水管路6を設けるだけ
でよいから、前記脱気水Wdを前記給水槽3に還流する
ことが、設備コストの増大を招くことなく実現できた。 [5] 給水槽3と脱気槽4とを一体に形成してあるか
ら、脱酸素処理のために前記給水槽3内の原水Wc及び
前記脱気槽4内の脱気水Wdを同時に加温することがで
きる。従って、両者を別々に加温することなく、加温機
構12を単純な構成で設けることができた。 [6] 給水槽3の液面上の気相空間を溶存酸素抽出ガ
スGで覆い、原水受入機構10から原水Wcを液面に向
けて噴射するように構成してあるから、その噴射された
原水Wcにより前記気相空間内の溶存酸素抽出ガスGを
前記水面下に巻き込むことができ、前記給水槽3におい
ても原水Wcに対して予備脱気を施すことが可能になっ
た。 [7] 酸素抽出ガス混合機構8に溶存酸素抽出ガスG
を供給する酸素抽出ガス供給装置9として、窒素PSA
装置9Aを用いたから、予備窒素ボンベの保管、窒素ボ
ンベの交換等の手間を要しないで99〜99.99%の
範囲内で純度を調整した窒素ガスを供給でき、しかも、
この給水の脱酸素装置をボイラに付設する場合には、前
記窒素PSA装置9Aの排ガスを燃焼用酸素富化空気と
して使用できるようになった。尚、溶存酸素抽出ガスG
として純度99.99%以上の高純度窒素を使用すれ
ば、脱気水Wd中の溶存酸素濃度を0.05ppm以下
にまで低減できるから、溶存酸素濃度0.05ppm以
下の高純度水或いは超純水を生成する純水製造装置のた
めの脱酸素装置としても使用できる。 [8] 酸素抽出ガス混合機構8をスタティックミキサ
で構成してあるから、混合機構に可動部分がなく、動作
が安定していると同時に、故障のおそれもなくなった。
また、動作部分がないから、内部圧力は安定しており、
溶存酸素抽出ガスGを混合する原水Wcの圧力の調整も
容易である。 [9] 脱気槽4と給水槽3との間に脱気水Wdを前記
給水槽3に還流する通水管路6を設けてあるから、脱気
水Wdが原水Wc中に混合されて繰り返し脱酸素処理され
るようになり、前記脱気水Wd中の残存酸素濃度(脱酸
素処理後の溶存酸素濃度)をさらに低く維持できるよう
になった。 [10]脱気槽4と給水槽3との間に脱気水Wdを前記
給水槽3に還流する通水管路6を設けたことで、前記脱
気水Wdの余剰量は前記脱気槽4から前記給水槽3に還
流され、前記給水管路7からの前記脱気水Wdの供給量
が変動しても、前記酸素抽出ガス混合機構8への前記原
水Wcの供給量を変化させる必要がなく、前記原水供給
管路5を経て前記原水Wcを送給する供給ポンプ5bに
そのための制御機構を設ける必要がない。つまり、定量
供給の条件で前記供給ポンプ5bを運転しておればよい
のである。従って、前記酸素抽出ガス供給装置9として
の前記窒素PSA装置9Aも、その窒素供給量を大きく
変動することなく運転でき、その運転制御も複雑なもの
にしなくてよい。 [11]給水槽3に、原水Wcを加温する加温機構12
を設けたから、脱酸素装置内の全域にわたって溶存酸素
の放出を促進し、脱気水Wd中の残存酸素濃度(脱酸素
処理後の溶存酸素濃度)をさらに低減できるようになっ
た。 [12]脱気槽4に、溶存酸素抽出ガスGを供給可能な
シールガス供給路11を接続したから、ボイラの停止等
で、脱酸素装置を待機状態にした場合でも、前記脱気槽
4及び給水槽3の水面上の気相空間内をシールガスとし
て前記溶存酸素抽出ガスで覆うことができるから、前記
脱気槽4内の残留水を再処理することなく脱気水Wdと
して使用できるようになった。尚、前記シールガスとし
て供給する溶存酸素抽出ガスGは、積極的に圧送する必
要はなく、外気が水槽1内に洩れ込まない程度の供給で
十分である。また、脱気水Wdの使用量と、原水供給管
路5への原水Wcの供給量とのバランスが崩れ、前記脱
気水Wdの水位が急激に低下するような場合でも、外気
の水槽1内への洩れ込みを防止でき、給水利用箇所にお
ける脱気水Wdの需要の変動に対しても、脱気水Wdの質
を低下させることなく脱酸素処理できるようになった。
As described above, the advantages of the water supply deoxidizer according to the present invention can be summarized as follows: [1] Since the water supply tank 3 and the deaeration tank 4 are formed in the integral water tank 1, Manufacturing costs were reduced. In particular, the welding work distance could be shortened. [2] Since the water supply tank 3 and the deaeration tank 4 are integrally formed, a raw water supply pipe for supplying raw water Wc from the water supply tank 3 to the deaeration tank 4 via the oxygen extraction gas mixing mechanism 8 5 could be connected to both in advance, so that there was no need for the work of positioning the pipes, and the installation of the apparatus was facilitated, and at the same time, the installation construction cost was reduced. [3] Since the water supply tank 3 and the deaeration tank 4 are integrally formed, there is no need to separately provide a supply pipe for the seal gas to the water supply tank 3 outside the tank. Therefore, it is not necessary to adjust the positions of the pipes for this purpose, and the number of installation steps can be greatly reduced. [4] Since the water supply tank 3 and the deaeration tank 4 are integrally formed, it is easy to recirculate the deaerated water Wd from the deaeration tank 4 to the water supply tank 3, and furthermore, a return path is provided. Since the external pipe to be formed is not required and only the water pipe 6 is required to be provided in the partition wall 2, it is possible to recirculate the deaerated water Wd to the water supply tank 3 without increasing the equipment cost. Was. [5] Since the water supply tank 3 and the deaeration tank 4 are integrally formed, raw water Wc in the water supply tank 3 and deaeration water Wd in the deaeration tank 4 are simultaneously added for deoxygenation treatment. Can be warmed. Therefore, the heating mechanism 12 can be provided with a simple configuration without separately heating the two. [6] The gas phase space on the liquid surface of the water supply tank 3 is covered with the dissolved oxygen extraction gas G, and the raw water receiving mechanism 10 is configured to inject the raw water Wc toward the liquid surface. With the raw water Wc, the dissolved oxygen extraction gas G in the gas phase space can be entrained below the surface of the water, and the raw water Wc can be preliminarily degassed in the water supply tank 3 as well. [7] Dissolved oxygen extraction gas G in the oxygen extraction gas mixing mechanism 8
PSA to supply oxygen
Since the apparatus 9A is used, it is possible to supply nitrogen gas of which purity is adjusted within the range of 99 to 99.99% without trouble such as storage of a spare nitrogen cylinder and replacement of the nitrogen cylinder, and
In the case where the deoxygenating device for the feed water is attached to the boiler, the exhaust gas of the nitrogen PSA device 9A can be used as oxygen-enriched air for combustion. In addition, dissolved oxygen extraction gas G
If high-purity nitrogen with a purity of 99.99% or more is used, the concentration of dissolved oxygen in the degassed water Wd can be reduced to 0.05 ppm or less. It can also be used as a deoxidizer for a pure water production device that produces water. [8] Since the oxygen extraction gas mixing mechanism 8 is constituted by a static mixer, the mixing mechanism has no moving parts, the operation is stable, and there is no fear of failure.
Also, since there is no moving part, the internal pressure is stable,
Adjustment of the pressure of the raw water Wc to be mixed with the dissolved oxygen extraction gas G is also easy. [9] Since the water passage 6 for returning the deaerated water Wd to the water supply tank 3 is provided between the deaeration tank 4 and the water supply tank 3, the deaerated water Wd is mixed with the raw water Wc and repeated. Deoxygenation treatment has been performed, and the residual oxygen concentration in the degassed water Wd (dissolved oxygen concentration after deoxygenation treatment) can be maintained even lower. [10] By providing the water passage 6 for returning the deaerated water Wd to the water supply tank 3 between the deaeration tank 4 and the water supply tank 3, the excess amount of the deaerated water Wd is reduced by the deaeration tank. 4, the supply amount of the raw water Wc to the oxygen extraction gas mixing mechanism 8 needs to be changed even if the supply amount of the deaerated water Wd from the water supply line 7 fluctuates. There is no need to provide a control mechanism for the supply pump 5b for feeding the raw water Wc via the raw water supply pipe 5. In other words, the supply pump 5b only needs to be operated under the condition of the fixed amount supply. Therefore, the nitrogen PSA device 9A as the oxygen extraction gas supply device 9 can also be operated without greatly changing the nitrogen supply amount, and its operation control does not have to be complicated. [11] Heating mechanism 12 for heating raw water Wc in water supply tank 3
Because of this, the release of dissolved oxygen is promoted over the entire region in the deoxidizer, and the residual oxygen concentration in the degassed water Wd (the dissolved oxygen concentration after the deoxygenation treatment) can be further reduced. [12] Since the seal gas supply path 11 capable of supplying the dissolved oxygen extraction gas G is connected to the deaeration tank 4, even when the boiler is stopped and the deoxygenator is in a standby state, the deaeration tank 4 is not used. Further, since the inside of the gas phase space above the water surface of the water supply tank 3 can be covered with the dissolved oxygen extraction gas as a seal gas, the residual water in the deaeration tank 4 can be used as deaerated water Wd without reprocessing. It became so. The dissolved oxygen extraction gas G to be supplied as the seal gas does not need to be actively pumped, and it is sufficient to supply the dissolved oxygen extraction gas G to the extent that the outside air does not leak into the water tank 1. Further, even when the balance between the usage of the degassed water Wd and the supply of the raw water Wc to the raw water supply pipe 5 is lost, and the water level of the degassed water Wd suddenly drops, the outside water tank 1 can be used. Leakage into the inside can be prevented, and even when the demand for the degassed water Wd at the water supply utilization point fluctuates, the deoxygenation treatment can be performed without deteriorating the quality of the degassed water Wd.

【0040】〔別実施形態〕上記実施の形態において示
さなかった本発明に係る給水の脱酸素装置の他の実施の
形態について以下に説明する。
[Another Embodiment] Another embodiment of the water supply deoxidizing apparatus according to the present invention, which is not shown in the above embodiment, will be described below.

【0041】〈1〉 上記実施の形態に於いては、原水
受入機構10をボールタップ弁で構成する例について説
明したが、給水槽3内の水位を所定範囲内に維持しなが
ら原水Wcを受け入れ得る機構であれば、どのような機
構で前記原水受入機構10を構成してもよい。例えば、
前記給水槽3内に原水Wcの水位を検出する水位センサ
を設けて、検出する水位を所定範囲内に維持するように
開閉される開閉弁で構成してあってもよい。
<1> In the above embodiment, the example in which the raw water receiving mechanism 10 is constituted by a ball tap valve has been described. However, the raw water Wc can be received while maintaining the water level in the water supply tank 3 within a predetermined range. The raw water receiving mechanism 10 may be configured by any mechanism as long as it is a mechanism. For example,
The water supply tank 3 may be provided with a water level sensor for detecting the water level of the raw water Wc, and may be configured with an on-off valve that is opened and closed so as to maintain the detected water level within a predetermined range.

【0042】〈2〉 上記実施の形態に於いては、原水
受入機構10の出口開口に、受け入れる原水Wcを給水
槽3内の水面に向けて噴射する給水ノズル10aを付設
する例について説明したが、前記給水ノズル10aを設
けることなく、前記受け入れる原水Wcを前記出口開口
からそのまま流下若しくは滴下させるだけでもよい。前
記受け入れる原水Wcの流下若しくは滴下によっても、
水面上の溶存酸素抽出ガスGを原水Wcの水面下に巻き
込むことで曝気できるからである。
<2> In the above embodiment, an example was described in which the water supply nozzle 10a for injecting the raw water Wc to be received toward the surface of the water in the water supply tank 3 was provided at the outlet opening of the raw water receiving mechanism 10. Instead of providing the water supply nozzle 10a, the raw water Wc to be received may be simply flowed down or dropped from the outlet opening. By flowing down or dripping of the receiving raw water Wc,
This is because the dissolved oxygen extraction gas G on the water surface can be aerated by involving it under the water surface of the raw water Wc.

【0043】〈3〉 上記実施の形態に於いては、原水
供給管路5の排出端部5aを、前記脱気槽4の水面下で
底部近傍に開口させる例について説明したが、前記排出
端部の構成は任意であり、水面上方の気相空間内に開口
する噴霧ノズルで構成してあってもよい。また、前記排
出端部をジェットノズルで形成して、前記気相空間に、
脱気水Wdの水面に向けて配置してあってもよい。
<3> In the above embodiment, an example was described in which the discharge end 5a of the raw water supply pipe 5 was opened below the water surface of the degassing tank 4 and near the bottom. The configuration of the unit is arbitrary, and may be configured by a spray nozzle that opens into the gas phase space above the water surface. Further, the discharge end is formed by a jet nozzle, and
It may be arranged toward the surface of the deaerated water Wd.

【0044】〈4〉 上記実施の形態に於いては、酸素
抽出ガス供給装置9として窒素PSA装置9Aを設ける
例について説明したが、前記酸素抽出ガス供給装置9
は、不活性ガスを加圧注入してあるボンベであってもよ
く、その他の不活性ガス発生装置であってもよく、例え
ば液化窒素容器であってもよい。
<4> In the above embodiment, the example in which the nitrogen PSA device 9A is provided as the oxygen extraction gas supply device 9 has been described.
May be a cylinder into which an inert gas is injected under pressure, or may be another inert gas generator, for example, a liquefied nitrogen container.

【0045】〈5〉 上記実施の形態に於いては、酸素
抽出ガス混合機構8をスタティックミキサで構成した例
について説明したが、これは溶存酸素抽出ガスGを原水
Wcと攪拌混合できる手段であればどのように構成して
あってもよく、例えば、原水供給用の供給ポンプ5bを
兼ねる渦流ポンプで構成してあってもよい。この渦流ポ
ンプの吸入側に前記溶存酸素抽出ガスGを供給するよう
に構成すれば、その内部で吸入した原水Wcと溶存酸素
抽出ガスGとを攪拌混合し、気液二相流として吐出させ
ることができるからである。
<5> In the above embodiment, an example was described in which the oxygen extraction gas mixing mechanism 8 was constituted by a static mixer. However, this is a means capable of stirring and mixing the dissolved oxygen extraction gas G with the raw water Wc. Any configuration may be used, for example, a vortex pump serving also as a supply pump 5b for supplying raw water may be used. If the dissolved oxygen extraction gas G is configured to be supplied to the suction side of the vortex pump, the raw water Wc and the dissolved oxygen extraction gas G, which are sucked therein, are stirred and mixed, and discharged as a gas-liquid two-phase flow. Because it can be.

【0046】〈6〉 上記実施の形態に於いては、スタ
ティックミキサの出口下流側の原水供給管路5に圧力調
節弁を設けた例について説明したが、前記原水供給管路
5の脱気槽4内の排出端部5aに噴射ノズルを設けて、
その絞り効果で酸素抽出ガス混合機構8における水圧を
維持するように構成してあってもよい。
<6> In the above embodiment, an example was described in which the pressure control valve was provided in the raw water supply line 5 downstream of the outlet of the static mixer, but the deaeration tank of the raw water supply line 5 was described. 4, an ejection nozzle is provided at the discharge end 5a,
The water pressure in the oxygen extraction gas mixing mechanism 8 may be maintained by the throttle effect.

【0047】〈7〉 上記実施の形態に於いては、区画
壁2に配置した通水管路6を湾曲させて脱気槽4の側で
下方に向かわせ、その通水管路6を一方向に開閉するた
めに、前記その上下方向に向かう部分に、その上下の差
圧で受動的に開閉する逆止弁6aを設ける例について説
明したが、前記脱気槽4の水位と給水槽3の水位との差
を検出して、その水位差に基づいて制御機構により能動
的に開閉する開閉弁を設けてもよい。要は、前記給水槽
3の側から前記脱気槽4の側に向けて前記通水管路6を
経て原水Wcが流入しなければよいのである。この場合
においては、例えば、前記脱気槽4内の水頭と、前記給
水槽3内の水頭とを検出して、前記脱気槽4内の水頭が
前記給水槽3内のそれより大きいときに前記開閉弁を開
弁するように構成してあればよい。
<7> In the above embodiment, the water passage 6 disposed on the partition wall 2 is curved so as to face downward on the side of the degassing tank 4, and the water passage 6 is moved in one direction. A description has been given of an example in which a check valve 6a that opens and closes passively with a differential pressure between the upper and lower sides thereof is provided in a portion facing the vertical direction for opening and closing. May be provided to detect the difference between them and to open and close the valve actively by the control mechanism based on the difference in water level. In short, it is only necessary that the raw water Wc does not flow from the water supply tank 3 side to the deaeration tank 4 through the water passage 6. In this case, for example, when the head in the deaeration tank 4 and the head in the water supply tank 3 are detected, and the head in the deaeration tank 4 is larger than that in the water supply tank 3, What is necessary is just to comprise so that the said on-off valve may be opened.

【0048】〈8〉 上記実施の形態に於いては、水槽
1の天井1aに、原水受入機構10の上方の位置で形成
した、気相空間内のガスを外部に排出する排出口19
に、逆止弁としてリード弁19aを設けた例について説
明したが、この排出口19の位置は好ましい例を示した
ものであって、他の位置に形成されていてもよい。ま
た、逆止弁に代えて、密に形成されたフィルタを前記排
出口19に設けてあってもよい。要するに、前記気相空
間内の余剰ガスを排出し、外気を吸入しなければよいの
である。従って、前記排出口19にフィルタを設ける場
合には、前記気相空間を常に正圧に保つようにしてあっ
てもよい。
<8> In the above embodiment, a discharge port 19 formed in the ceiling 1a of the water tank 1 at a position above the raw water receiving mechanism 10 for discharging gas in the gas phase space to the outside.
Although the example in which the reed valve 19a is provided as the check valve has been described, the position of the discharge port 19 is a preferred example, and may be formed at another position. Further, a densely formed filter may be provided at the outlet 19 instead of the check valve. In short, it is only necessary to discharge the excess gas in the gas phase space and not to suck in the outside air. Therefore, when a filter is provided at the outlet 19, the gas space may always be maintained at a positive pressure.

【0049】〈9〉 上記実施の形態に於いては、給水
槽3内の原水Wcを加温可能な加温機構12と、その水
温を検出する温度センサ13と、前記温度センサ13で
検出する水温を所定の温度範囲内に調節する温度調節機
構14とを設けた例について説明したが、前記加温機構
12及び前記温度センサ13は、脱気槽4に設けて、前
記脱気槽4内の脱気水Wdを加温するように構成しても
よい。前記原水Wcは、前記脱気水Wdと区画壁2で仕切
られているだけであるから、この構成によっても前記給
水槽3内の原水Wcを加温できるからである。また、原
水Wcに溶存酸素抽出ガスGを攪拌混合して溶存酸素を
抽出した後の脱気水Wdを前記脱気槽4内で加温するこ
とでも溶存酸素の抽出をさらに促進できるのである。
<9> In the above embodiment, a heating mechanism 12 capable of heating the raw water Wc in the water supply tank 3, a temperature sensor 13 for detecting the temperature of the water, and detection by the temperature sensor 13 Although the example in which the temperature control mechanism 14 for adjusting the water temperature within a predetermined temperature range is provided has been described, the heating mechanism 12 and the temperature sensor 13 are provided in the deaeration tank 4 and the inside of the deaeration tank 4 is provided. May be configured to heat the degassed water Wd. This is because the raw water Wc is only separated from the degassed water Wd by the partition wall 2, and thus the raw water Wc in the water supply tank 3 can be heated also by this configuration. The extraction of dissolved oxygen can be further promoted by heating the degassed water Wd in the degassing tank 4 after stirring and mixing the dissolved oxygen extraction gas G with the raw water Wc to extract the dissolved oxygen.

【0050】〈10〉上記実施の形態に於いては、給水
槽3と、脱気槽4とは一体に形成するのに、一つの閉鎖
空間を形成する水槽1の内部を横方向に二分割する区画
壁2を設け、その区画壁2で分割された一方の空間で前
記給水槽3を形成し、他方の空間で前記脱気槽4を形成
する例について説明したが、前記水槽1の内部を上下に
二分割してあってもよい。例えば、前記区画壁2で前記
水槽1の上部空間内に第二の水槽を形成して、この第二
の水槽を前記脱気槽4とし、前記水槽1の底に前記給水
槽3を形成してもよい。前記区画壁2の上縁部と前記天
井1aとの間の連通空間18は、前記区画壁2の側部と
前記水槽1の側壁との間の空間を介して前記給水槽3の
水面上の気相空間と連通させることができるのである。
具体的な例を挙げれば、前記区画壁2で前記水槽1の内
部に前記脱気槽4の底と側壁を形成し、形成した側壁と
前記水槽1の側壁との間に上下を連通させる空間を形成
することもできる。この場合、前記通水管路6は、上記
底から前記給水槽3の水面下にまで管路を引き下げ、こ
の通水管路6に制御可能な開閉弁を設けておけばよい。
また、この区画壁2は、有底の筒で構成し、前記水槽1
の中に支持してあってもよい。さらに、前記水槽1を区
画する区画壁2で上下に区画し、その区画壁2を前記脱
気槽4の底とし、この底に管を気密に立設し、その管内
空間を前記底の下方と連通する開口を設けて、前記底の
下方の給水槽3の水面上の上部空間と、前記脱気槽4の
水面上の上部空間とを、前記管内空間を連通区間18と
して連通するように構成してもよい。尚、前記給水槽3
と前記脱気槽4との上下位置関係は逆であってもよい。
<10> In the above embodiment, although the water supply tank 3 and the deaeration tank 4 are formed integrally, the inside of the water tank 1 forming one closed space is divided into two parts in the horizontal direction. An example in which the partition wall 2 is provided, and the water supply tank 3 is formed in one space divided by the partition wall 2 and the deaeration tank 4 is formed in the other space has been described. May be divided into upper and lower parts. For example, a second water tank is formed in the space above the water tank 1 by the partition wall 2, the second water tank is used as the deaeration tank 4, and the water supply tank 3 is formed at the bottom of the water tank 1. You may. A communication space 18 between the upper edge of the partition wall 2 and the ceiling 1a is provided on the water surface of the water supply tank 3 via a space between a side portion of the partition wall 2 and a side wall of the water tank 1. It can communicate with the gas phase space.
As a specific example, a space in which the bottom and the side wall of the deaeration tank 4 are formed inside the water tank 1 by the partition wall 2, and the upper and lower sides are communicated between the formed side wall and the side wall of the water tank 1. Can also be formed. In this case, the water passage 6 may be lowered from the bottom to below the water surface of the water supply tank 3, and a controllable on-off valve may be provided in the water passage 6.
The partition wall 2 is formed of a bottomed cylinder,
It may be supported inside. Further, the water tank 1 is vertically divided by a partition wall 2, and the partition wall 2 is used as a bottom of the deaeration tank 4, and a pipe is erected on this bottom in an airtight manner. And an upper space above the water surface of the water supply tank 3 below the bottom and an upper space above the water surface of the deaeration tank 4 so as to communicate the pipe space as a communication section 18. You may comprise. The water tank 3
The vertical positional relationship between the gas and the degassing tank 4 may be reversed.

【0051】〈11〉上記実施の形態に於いては、本発
明に係る給水の脱酸素装置が、ボイラ15に併設された
ものである例について説明したが、この脱酸素装置は、
ボイラ給水用に限らず、空調用温水や給湯用温水等の温
水配管における赤水防止用に備えられる脱酸素装置とし
ても有効であり、また、冷水配管に供給する冷水におけ
る赤水防止用の脱酸素装置としても有効に機能する。さ
らに、薬剤投入をしないから、飲食物用或いは洗浄用の
高純度水、超純水等にも有用であり、殊に、溶存酸素抽
出ガスGとして高純度窒素を用いる場合には、0.05
ppm以下の溶存酸素濃度の脱気水Wdを、無添加で供
給出来るのである。上記実施の形態で説明した構成の脱
酸素装置を用いる場合には、窒素PSA装置9Aで分離
する窒素の純度を99.99%にまで高めることでこれ
を実現することも可能である。
<11> In the above-described embodiment, an example has been described in which the water supply deoxidizer according to the present invention is provided in addition to the boiler 15.
It is effective not only for boiler water supply but also as a deoxygenation device provided for preventing red water in hot water pipes such as hot water for air conditioning and hot water for hot water supply, and also for deoxidizing red water in cold water supplied to cold water pipes. Also works effectively. Furthermore, since no chemical is introduced, it is also useful for high-purity water for food and drink or for cleaning, ultrapure water, etc. In particular, when high-purity nitrogen is used as the dissolved oxygen extraction gas G, 0.05
Degassed water Wd having a dissolved oxygen concentration of not more than ppm can be supplied without addition. In the case of using the deoxygenation apparatus having the configuration described in the above embodiment, this can be realized by increasing the purity of nitrogen separated by the nitrogen PSA apparatus 9A to 99.99%.

【0052】〈12〉上記〈11〉の他、例えば、温水
配管における赤水防止用に供する場合には、脱気水Wd
中の残存酸素濃度が0.5ppm以下となる必要があ
り、例えば前記原水Wcの温度が50〜90℃に維持さ
れる場合には、前記原水Wcの供給量に対する前記酸素
抽出ガス混合装置8に供給する溶存酸素抽出ガスGの供
給量(標準状態)の容積比率として定義される抽出ガス
供給率を、0.01〜0.2に設定し、前記原水Wcの
温度が30℃以上50℃未満の温度範囲内に維持される
場合には、前記抽出ガス供給率を0.25〜0.5の範
囲内に設定すればよい。この条件であれば、前記脱気水
Wd中の残存酸素濃度が0.5ppm以下に維持できる
から、前記温水配管中で赤水が発生することを防止でき
る。
<12> In addition to the above <11>, for example, when used for preventing red water in hot water piping, the deaerated water Wd
It is necessary that the concentration of residual oxygen in the water is 0.5 ppm or less. For example, when the temperature of the raw water Wc is maintained at 50 to 90 ° C., the oxygen extraction gas mixing device 8 with respect to the supply amount of the raw water Wc The extraction gas supply rate defined as the volume ratio of the supply amount (standard state) of the dissolved oxygen extraction gas G to be supplied is set to 0.01 to 0.2, and the temperature of the raw water Wc is 30 ° C. or more and less than 50 ° C. If the temperature is maintained within the temperature range described above, the extraction gas supply rate may be set within the range of 0.25 to 0.5. Under this condition, the concentration of residual oxygen in the degassed water Wd can be maintained at 0.5 ppm or less, so that generation of red water in the hot water pipe can be prevented.

【0053】他方、冷水配管における赤水防止用に供す
る場合には、脱気水Wd中の残存酸素濃度が1.0pp
m以下となるようにすればよく、例えば上述の加温機構
12を設けることなく、温度センサ13の検出温度が0
〜30℃である場合に、その検出温度に応じて、前記抽
出ガス供給率を、0.5〜1.0の範囲内で設定すれば
よい。この条件であれば、前記脱気水Wd中の残存酸素
濃度が1.0ppm以下に維持できるから、前記冷水配
管中で赤水が発生することを防止できる。
On the other hand, when used for preventing red water in the cold water pipe, the residual oxygen concentration in the deaerated water Wd is 1.0 pp.
m, for example, the temperature detected by the temperature sensor 13 is 0 without providing the heating mechanism 12 described above.
When the temperature is in the range of ~ 30 ° C, the extraction gas supply rate may be set in the range of 0.5 to 1.0 according to the detected temperature. Under these conditions, the concentration of residual oxygen in the degassed water Wd can be maintained at 1.0 ppm or less, so that generation of red water in the cold water pipe can be prevented.

【0054】[0054]

【発明の効果】以上説明したように、本発明によって、
小型且つ簡単な設備によって、設置が容易であり、取り
扱いも容易であり、初期コストのみならずランニングコ
ストを低減できる装置で、低酸素濃度の脱酸素水を供給
できた。
As described above, according to the present invention,
With a device that is easy to install and handle with small and simple equipment, and can reduce not only the initial cost but also the running cost, deoxygenated water with a low oxygen concentration could be supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る脱酸素装置の一例を示す構成説明
FIG. 1 is a configuration explanatory view showing an example of a deoxidizer according to the present invention.

【図2】本発明に係る脱酸素装置の適用例を示す構成説
明図
FIG. 2 is a configuration explanatory view showing an application example of the deoxidizer according to the present invention.

【図3】従来の脱酸素装置を説明する構成説明図FIG. 3 is a configuration explanatory view illustrating a conventional oxygen scavenger.

【符号の説明】[Explanation of symbols]

1 水槽 1a 天井 2 区画壁 3 給水槽 4 脱気槽 5 原水供給管路 6 通水管路 7 給水管路 8 酸素抽出ガス混合機構 9 酸素抽出ガス供給装置 9A 窒素PSA装置 9a 排気路 10 原水受入機構 11 シールガス供給路 12 加温機構 13 温度センサ 14 温度調節機構 15 ボイラ 16 ボイラ給水管路 17 燃焼用空気供給路 18 連通空間 G 溶存酸素抽出ガス Wc 原水 Wd 脱気水 DESCRIPTION OF SYMBOLS 1 Water tank 1a Ceiling 2 Partition wall 3 Water supply tank 4 Deaeration tank 5 Raw water supply line 6 Water supply line 7 Water supply line 8 Oxygen extraction gas mixing mechanism 9 Oxygen extraction gas supply apparatus 9A Nitrogen PSA apparatus 9a Exhaust path 10 Raw water reception mechanism DESCRIPTION OF SYMBOLS 11 Seal gas supply path 12 Heating mechanism 13 Temperature sensor 14 Temperature control mechanism 15 Boiler 16 Boiler water supply pipe 17 Combustion air supply path 18 Communication space G Dissolved oxygen extraction gas Wc Raw water Wd Deaerated water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 朗 京都府京都市南区久世殿城町600番地の1 株式会社タクマ京都工場内 (72)発明者 田中 俊彦 京都府京都市南区久世殿城町600番地の1 株式会社タクマ京都工場内 (72)発明者 尾川 晃一 大阪府大阪市北区芝田1丁目4番14号 芝 田町ビル4階 クラレケミカル株式会社内 (72)発明者 高野 和潔 岡山県岡山市長岡4番地73 山陽電子工業 株式会社内 (72)発明者 太田 幸人 岡山県備前市鶴海4342 クラレケミカル株 式会社内 Fターム(参考) 4D011 AA15 AD03 4D037 AA08 AB11 BA23 BB01 BB02 BB05 BB06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Mori 600-1, Kuzedenjo-cho, Minami-ku, Kyoto, Kyoto Prefecture Inside Takuma Kyoto Plant (72) Inventor Toshihiko Tanaka 600, Kusedenjo-cho, Minami-ku, Kyoto, Kyoto No. 1 Inside the Takuma Kyoto Factory (72) Inventor Koichi Ogawa 1-14-14 Shibata, Kita-ku, Osaka City, Osaka Prefecture Kuraray Chemical Co., Ltd. (72) Inventor Kazuki Takano Okayama, Okayama 73, Sanyo Denshi Kogyo Co., Ltd. (72) Inventor Yukito Ota 4342 Tsuruumi, Bizen-shi, Okayama Kuraray Chemical Co., Ltd. F-term (reference) 4D011 AA15 AD03 4D037 AA08 AB11 BA23 BB01 BB02 BB05 BB06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水位を所定範囲内に維持しながら原水を
受け入れる原水受入機構を備える給水槽と、前記給水槽
に受け入れた原水を供給する原水供給管路で前記給水槽
に接続され、前記原水を脱酸素処理した後の脱気水を給
水利用箇所に供給する給水管路に接続してある脱気槽と
を備え、前記原水供給管路に、前記原水に溶存酸素抽出
ガスを供給して混合する酸素抽出ガス混合機構を設け
て、前記溶存酸素抽出ガスを混合した原水を前記脱気槽
で気液分離し、前記原水中の溶存酸素を低減する給水の
脱酸素装置であって、 閉鎖空間を形成する水槽の内部を二分割する区画壁を設
けて、その区画壁で分割された一方の空間で前記給水槽
を形成すると共に、他方の空間で前記脱気槽を形成し
て、前記区画壁と前記水槽の天井との間の空間を、前記
脱気槽の上方に形成される気相空間と前記給水槽の上方
に形成される気相空間とを連通する連通空間に形成して
ある給水の脱酸素装置。
A water supply tank provided with a raw water receiving mechanism for receiving raw water while maintaining a water level within a predetermined range; and a raw water supply pipe connected to the water supply tank through a raw water supply pipe for supplying raw water received in the water tank. A deaeration tank connected to a water supply pipe that supplies deaerated water after the deoxygenation treatment to a water supply utilization point, and to the raw water supply pipe, supply dissolved oxygen extraction gas to the raw water. An oxygen extraction gas mixing mechanism for mixing, wherein the raw water mixed with the dissolved oxygen extraction gas is gas-liquid separated in the degassing tank to reduce dissolved oxygen in the raw water; Providing a partition wall that divides the inside of the water tank that forms the space into two, forming the water supply tank in one space divided by the partition wall, and forming the deaeration tank in the other space, Space between the partition wall and the ceiling of the aquarium, Water deoxygenation device that is formed in the communicating space which communicates the gas phase space and upward vapor space formed is formed above the supply water tank air tank.
【請求項2】 前記原水受入機構を、受け入れる原水を
前記給水槽内の水面に向けて噴射するように構成してあ
る請求項1記載の給水の脱酸素装置。
2. The deoxygenating device for feed water according to claim 1, wherein the raw water receiving mechanism is configured to jet raw water to be received toward a water surface in the water supply tank.
【請求項3】 前記脱気槽に前記溶存酸素抽出ガスを供
給可能なシールガス供給路を接続して、前記酸素抽出ガ
ス混合機構への溶存酸素抽出ガスの供給量が所定量以下
になった時に、前記シールガス供給路から前記溶存酸素
抽出ガスを供給するように構成してある請求項1又は2
に記載の給水の脱酸素装置。
3. The supply of the dissolved oxygen extraction gas to the oxygen extraction gas mixing mechanism is less than a predetermined amount by connecting a seal gas supply path capable of supplying the dissolved oxygen extraction gas to the degassing tank. 3. The system according to claim 1, wherein the dissolved oxygen extraction gas is supplied from the seal gas supply passage at times.
A deoxygenation device for water supply according to item 1.
【請求項4】 水位を所定範囲内に維持しながら原水を
受け入れる原水受入機構を備える給水槽と、前記給水槽
に受け入れた原水を供給する原水供給管路で前記給水槽
に接続され、前記原水を脱酸素処理した後の脱気水を給
水利用箇所に供給する給水管路に接続してある脱気槽と
を備え、前記原水供給管路に、前記原水に溶存酸素抽出
ガスを供給して混合する酸素抽出ガス混合機構を設け
て、前記溶存酸素抽出ガスを混合した原水を前記脱気槽
で気液分離し、前記原水中の溶存酸素を低減する給水の
脱酸素装置であって、 閉鎖空間を形成する水槽の内部を二分割する区画壁を設
けて、その区画壁で分割された一方の空間で前記給水槽
を形成すると共に、他方の空間で前記脱気槽を形成し
て、前記区画壁に、前記脱気槽と前記給水槽との両者の
水位下の位置に、前記脱気槽内の脱気水を前記給水槽に
向かう一方向に、所定の条件下で通流する通水管路を設
けてある給水の脱酸素装置。
4. A water supply tank having a raw water receiving mechanism for receiving raw water while maintaining a water level within a predetermined range, and a raw water supply pipe for supplying the raw water received in the water tank, wherein the raw water is connected to the water tank. A deaeration tank connected to a water supply pipe that supplies deaerated water after the deoxygenation treatment to a water supply utilization point, and to the raw water supply pipe, supply dissolved oxygen extraction gas to the raw water. An oxygen extraction gas mixing mechanism for mixing, wherein the raw water mixed with the dissolved oxygen extraction gas is gas-liquid separated in the degassing tank to reduce dissolved oxygen in the raw water; Providing a partition wall that divides the inside of the water tank that forms the space into two, forming the water supply tank in one space divided by the partition wall, and forming the deaeration tank in the other space, On the partition wall, both the deaeration tank and the water supply tank The position of the lower position, said degassed water deaeration tank in one direction toward the supply water tank, deoxygenation apparatus feedwater is provided with a water pipe passage flowing under a predetermined condition.
【請求項5】 ボイラに併設され、前記給水管路がボイ
ラ給水管路として設けられていると共に、前記酸素抽出
ガス混合機構に溶存酸素抽出ガスを供給する酸素抽出ガ
ス供給装置を、圧力変動吸着分離法により空気中の窒素
を分離して供給する窒素PSA装置で構成して、前記窒
素PSA装置の窒素を分離した後に排気を排出する排気
路を、前記ボイラへの燃焼用空気供給路に接続してある
請求項1〜4の何れか1項に記載の給水の脱酸素装置。
5. An oxygen extraction gas supply device, which is provided alongside a boiler, wherein the water supply line is provided as a boiler water supply line, and an oxygen extraction gas supply device for supplying a dissolved oxygen extraction gas to the oxygen extraction gas mixing mechanism is provided. A nitrogen PSA device that separates and supplies nitrogen in the air by a separation method and connects an exhaust path of the nitrogen PSA apparatus that discharges exhaust gas after separating nitrogen to a combustion air supply path to the boiler. The deoxygenation device for water supply according to any one of claims 1 to 4, wherein
【請求項6】 前記給水槽に、前記原水を加温可能な加
温機構を設けると共に、その水温を検出する温度センサ
を設けて、前記加温機構に、前記温度センサで検出する
水温を30〜90℃の温度範囲内に調節可能な温度調節
機構を設けてある請求項1〜5の何れか1項に記載の給
水の脱酸素装置。
6. A heating mechanism capable of heating the raw water is provided in the water supply tank, and a temperature sensor for detecting the water temperature is provided. The water temperature detected by the temperature sensor is set to 30 in the heating mechanism. The deoxygenation device for feed water according to any one of claims 1 to 5, further comprising a temperature control mechanism capable of adjusting the temperature within a temperature range of -90 ° C.
JP2000279353A 2000-09-14 2000-09-14 Deoxygenation device for water supply Expired - Lifetime JP3737687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279353A JP3737687B2 (en) 2000-09-14 2000-09-14 Deoxygenation device for water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279353A JP3737687B2 (en) 2000-09-14 2000-09-14 Deoxygenation device for water supply

Publications (2)

Publication Number Publication Date
JP2002086136A true JP2002086136A (en) 2002-03-26
JP3737687B2 JP3737687B2 (en) 2006-01-18

Family

ID=18764369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279353A Expired - Lifetime JP3737687B2 (en) 2000-09-14 2000-09-14 Deoxygenation device for water supply

Country Status (1)

Country Link
JP (1) JP3737687B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525226A (en) * 2002-05-02 2005-08-25 マクナルティ,ピーター,ドラモンド Water treatment system and method
JP2007263384A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Operation method of boiler device, and boiler device
JP2007263385A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP2008279403A (en) * 2007-05-14 2008-11-20 Shimizu Corp In situ cleaning method of contaminated soil and contaminated underground water
JP2010137200A (en) * 2008-12-15 2010-06-24 Japan Organo Co Ltd Water treatment apparatus and water treatment method
JP2011245472A (en) * 2010-04-26 2011-12-08 Kurita Water Ind Ltd Device and method for nitrogen substitution type deoxygenation
CN114249415A (en) * 2021-12-22 2022-03-29 北京城市排水集团有限责任公司 Precise aeration device and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525226A (en) * 2002-05-02 2005-08-25 マクナルティ,ピーター,ドラモンド Water treatment system and method
JP4632782B2 (en) * 2002-05-02 2011-02-16 マクナルティ,ピーター,ドラモンド Water treatment system and method
JP2007263384A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Operation method of boiler device, and boiler device
JP2007263385A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP4735363B2 (en) * 2006-03-27 2011-07-27 栗田工業株式会社 Operation method of boiler device and boiler device
JP2008279403A (en) * 2007-05-14 2008-11-20 Shimizu Corp In situ cleaning method of contaminated soil and contaminated underground water
JP2010137200A (en) * 2008-12-15 2010-06-24 Japan Organo Co Ltd Water treatment apparatus and water treatment method
JP2011245472A (en) * 2010-04-26 2011-12-08 Kurita Water Ind Ltd Device and method for nitrogen substitution type deoxygenation
CN114249415A (en) * 2021-12-22 2022-03-29 北京城市排水集团有限责任公司 Precise aeration device and method

Also Published As

Publication number Publication date
JP3737687B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
KR100671104B1 (en) Method, device and system for controlling dissolved amount of gas
US20020195404A1 (en) Method of operating a chemical feeder
CA2626748C (en) A gravity separator, and a method for separating a mixture containing water, oil, and gas
CN207287159U (en) It is a kind of using receiving the new ultramicro air bubble generating means of micron hydropneumatics
US4265167A (en) Deoxygenating unit
JP2002086136A (en) Device for deoxidizing feed water
US4216711A (en) Deoxygenation system for production of beer
JP2013136017A (en) Ozone liquid generator
JP4018099B2 (en) Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen
CN210858690U (en) Three-phase separator system for gas well liquid drainage process
CN1150968C (en) Process and devices for enriching liquid with gas, preferably for enriching water with oxygen
CN108371846B (en) Gas-liquid separation device
CN216841598U (en) Horizontal well integrated negative pressure gas production system
CN207012820U (en) A kind of preparation facilities of bottled gas solution
NO336662B1 (en) Apparatus for removing suspended material from a liquid and use of the apparatus.
CN210219304U (en) Leakage-proof gas and liquid storage device
CN108178223A (en) Air-dissolving air-float gas-liquid mixed screening plant and the air-dissolving air-float system for including it
CN107308831A (en) A kind of preparation facilities and canning method of bottled gas solution
CN208802891U (en) A kind of energy dissipating gas operated device for fluid delivery system in sewage treatment
JP4133045B2 (en) Gas dissolver and water treatment apparatus equipped with them
JP4573141B1 (en) Gas dissolving device
JPH0429703A (en) Accumulator
JP2008126225A (en) Amphibious gas-liquid separating device
CN204802986U (en) Multi -functional liquid filling machine
CN107307741A (en) Non-pressure water tank with decompression function

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051027

R150 Certificate of patent or registration of utility model

Ref document number: 3737687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term