JP3544130B2 - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery Download PDF

Info

Publication number
JP3544130B2
JP3544130B2 JP37238798A JP37238798A JP3544130B2 JP 3544130 B2 JP3544130 B2 JP 3544130B2 JP 37238798 A JP37238798 A JP 37238798A JP 37238798 A JP37238798 A JP 37238798A JP 3544130 B2 JP3544130 B2 JP 3544130B2
Authority
JP
Japan
Prior art keywords
battery
active material
positive electrode
aqueous solvent
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37238798A
Other languages
Japanese (ja)
Other versions
JP2000195557A (en
Inventor
裕之 長谷部
公一 水島
尚 山内
修司 山田
麻子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP37238798A priority Critical patent/JP3544130B2/en
Publication of JP2000195557A publication Critical patent/JP2000195557A/en
Application granted granted Critical
Publication of JP3544130B2 publication Critical patent/JP3544130B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオンを吸蔵放出できる活物質を正極、負極とする非水溶媒二次電池に関する物であり、更に詳しくは、各種安全性、特に内部短絡を引き起こす各種事故に対する安全性を改善する電池に関する物である。
【0002】
【従来の技術】
近年、リチウム電池やリチウムイオン電池という非水電解液を使用た二次電池が、ニッケルカドミウム二次電池やニッケル水素二次電池を比較し、エネルギー密度が高く、また3V以上の高い電圧を示すという特徴を有することから、携帯電子機器の電源として広く使用されるようになってきた。
【0003】
ところが、このような二次電池はエネルギー密度が大きなことから、設計以上の大電流で充電や放電を行うと電池内部で発熱が進み、電解液や電極活物質が熱暴走をおこし、電池が発火する危険性がある。そこで、これらの電池には過大電流による充電や放電時に電流経路を遮断するPTC素子や電流遮断機構が装着され安全性が確保されている。しかし、電池内部で何らかの原因、例えば落下衝撃による電極構造体の変形や、各種事故による電池の圧縮などにより電池内部で正極と負極が接触し、大電流での短絡が電池内部で発生する内部短絡事故が生じると、電池が充電状態の場合には短絡個所でのジュール発熱は過大な放電反応に伴う発熱により電池が過熱し発火にいたる事例が避けられなかった。
【0004】
このような事例は従来実用化されているレベルの放電容量の電池では発熱量に対して電池表面からの放熱量が多いため、その発生頻度は非常に低く、実用上は安全性に問題無いレベルの製品となっている。
【0005】
しかし、電池の高容量化・高エネルギー密度化が進むにつれ、電池安全性が低下して来ており、大きな問題となりつつある。
【0006】
【発明が解決しようとする課題】
本発明は、高容量電池ないしは高エネルギー密度化された電池、言い換えれば放電容量に比較して電池表面積が比較的小さい電池においても、上述の内部短絡に対して十分なる安全性を確保しうる電池特性を提示することを目的としている。
【0007】
【課題を解決するための手段】
本願発明者らは、上述の問題を解決するために、各種特性を有する電池の試作を行うとともに、内部短絡を模擬する安全性試験である釘刺し試験を多数回実施し、その挙動解析を鋭意行った。その結果本願を出願するに至ったものである。
【0008】
本願の電池は、正極と負極をセパレータを介して捲回してなる電極群と、該電極群を収納した有底金属製電池缶と、該有底金属製電池缶へ非水電解液を注入した後、該電池缶を気密封止する電池封口部とより構成される円筒型の密閉型電池において、該電池公称容量をP(mAh)、 該電池表面積をS(cm)、 該電池をP(mA)で放電させた際の放電容量をC1(mAh)、 該電池を3×P(mA)で放電させた際の放電容量をC3(mAh)とした場合にP/S>45の領域において、0.2<C3/C1<0.7の関係式を満足すると共に、該正極が活物質と導電助材、バインダーを含む活物質層が電子導電性の集電体層へ塗着された構造を有し、該活物質層の密度が3.41g/cm 以上であることを特徴とする非水溶媒二次電池である。
【0009】
更に該正極が活物質と導電助材、バインダーを含む活物質層が電子導電性の集電体層へ塗着された構造を有し、該活物質層の密度が3.2g/cm以上であることが好ましい。
【0010】
正極の活物質、導伝助材、バインダーからなる活物質層の密度が3.2g/cm以下の場合には電池容量を維持しながら安全性を確保しうる放電特性を得ることが困難となる。
【0011】
このような非水溶媒二次電池を構成するための電極材料としては、正極にLiCoO、LiNiO等で示される複合酸化物(LiMnは除く)、ないしは、LiNi1−x−yCo(但し、0.≦x≦0.9、0≦y≦0.2、x+y≦0.5、MはB、Mn、Alから選ばれる少なくとも1種の元素を含む)、更に好ましくは前記組成式のXの範囲が0.≦x≦0.4である複合酸化物等を用いる事ができるが、Liを活物質とする非水溶媒二次電池用正極として使用することが可能であれば特段限定されるものではない。
【0012】
これら複合酸化物は、たとえばリチウム、コバルト、ニッケルの酸化物、水酸化物、炭酸塩を出発原料として、これらを組成に応じて十分に混合した後、酸素存在雰囲気下で600〜1000℃で焼成することにより得られる。
【0013】
一方負極としても、リチウムを吸蔵、放出可能な物であれば特段限定されるものでは無く、易黒鉛化炭素、難黒鉛化炭素等の炭素質材料、金属リチウム、リチウム合金、金属間化合物等の金属材料が使用可能であるが、特にグラファイト類(天然グラファイト、人造グラファイト、繊維状グラファイト、球状グラファイト等)が電池特性上からは好適である。
【0014】
電解液としては、プロピレンカーボネート、エチレンカーボネート、メチルエチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチルラクトン、テトラヒドロフラン等の単独もしくは、混合溶媒をベースとして、LiClO、LiAsF、LiPF、LiBF等を適宜混合した物が使用可能である。
【0015】
また、セパレータもその選択を特に限定する必要はないが、ポリエチレンやポリプロピレンへ微細な孔を多数穿孔したる膜の単層膜ないしは複層膜が実用上は好適である。
【0016】
本願出願人らは、内部短絡事故の際に電池が発火に至る現象を各種試験により鋭意検討した結果、内部短絡が起きると電池内部で下記の順に反応が進行し、最終的に電池発火にいたることを突き止めた。
【0017】
1)充電状態の電池の内部で短絡が発生する
2)短絡個所に電池の大放電特性によって規制される電流が流れる
3)短絡個所が前記電流によるジュール発熱により発熱する
4)充電状態となり不安定化した正極活物質の熱分解温度に発熱が達する
5)正極の熱分解が開始し、発熱する
6)電解液に着火し電池から火炎が放出される
従って、内部短絡系の事故に対して発火を抑制するためには、上記の単位反応のどこかを抑制すれば、発火に至る事なく安全に推移することになる。
【0018】
これに関しても、鋭意検討の結果、2)の内部短絡時に短絡個所に流れる電流によるジュール発熱に起因する電池の加熱速度が、電池外面からの放熱とのバランスによって決まることから、大電流放電特性を制御する事で発熱速度を抑制することで放熱量に対して発熱量を少なくし、正極活物質の熱分解温度にまで電池温度を至らせない事が有効である事を見出した。
【0019】
このことを更に定量的に詳述する。
【0020】
電池内部で短絡が発生すると、通常実用になっているリチウムイオン二次電池においては、5〜20mΩ程度の低抵抗で短絡される。そのため、電池電圧が大電流においても低下しないと仮定すると、10mΩで短絡した場合に420Aという大電流が流れ、短絡個所ではなんと1秒あたり1764Jもの熱が発生することになる。従って短絡個所のごく近傍に関しては数10m秒の内に平均的な正極活物質の熱分解温度の開始温度である200℃を超えてしまい、このような短時間では熱拡散が十分には進まず、電池外面からの放熱による冷却が殆ど行われないため、非常に大量の熱を発生しながら正極活物質が熱分解を速やかに開始することになる。一旦熱分解反応が開始すると、連鎖反応で周辺の正極活物質が急速に熱分解を開始するため、一瞬にして発火に至る。
【0021】
しかし、実際の電池においては、このような低抵抗で短絡されると、電極の電気抵抗や活物質内部や電解液中のイオン拡散等に起因する分極が生じ、電池電圧が低下し、電流が制限される。そのため、ジュール発熱他の発熱が少なくなり、電池の温度上昇が緩やかになる。ある程度温度上昇が緩やかになると、電池外面からの放熱と平衡が生じ、短絡発生直後は電池の温度上昇が認められるものの、その後電池温度は平衡に達し、やがて電池温度は低下に転ずる。このため正極活物質の熱分解開始温度に達する事無く、電池に充電されていたエネルギーが放電され安全な状態となる。
【0022】
この時の発熱量は電池の放電特性(放電電流を変化させた時の放電容量の変化度合い)が同一であれば公称容量(電池を5時間で放電しうる程度の低電流で放電した際の放電容量)に比例し、放熱量は電池表面積に比例することが各種試験の結果判明した。この時の公称容量をP(mAh)、電池表面積をS(cm)とすると、P/Sが45以下の場合には大電流放電特性が優れていても、電池の容量、言い換えれば電池を発熱させるためのエネルギー量が小さいか、発熱を放熱させる電池表面積が大きいため、電池温度は正極活物質の熱分解反応を開始するまでは上昇しないことが明らかとなった。
【0023】
また、P/Sが45以上の領域においても、大電流放電特性が実用上問題無い程度まで抑制されていれば、短絡個所での短絡電流値が抑制されるため、やはり正極活物質の熱分解反応の開始温度までは電池温度が上昇しないことが確認された。本来であれば、短絡時の電流値を測定評価するべきであるが、通常数10Aもの大電流となるため、本願発明者らはその指標となるべきものを鋭意検討の結果、通常の試験においても支障無く測定が行える公称容量を1時間で放電しうる電流値での放電容量に対する、公称容量を1時間で放電しうる電流値の3倍の電流値での放電容量の比が指標となりうることを見出した。
【0024】
これらの知見に基づき、本発明を出願するに至ったのである。
【0025】
【発明の実施の形態】
以下実施例をもとに詳細に説明を行う。
【0026】
前述のメカニズムを確認するために、下記の実施例1〜および比較例1〜に示す各種放電容量、放電特性を有する電池を作成し、内部短絡を模擬する試験である釘刺し試験を行い、その挙動を観察した。
(実施例1〜7、比較例1〜11)
下記の方法によりリチウムイオン二次電池用の正極と負極を作製した.
正極:
活物質として電池高容量化の観点から期待されているNi系活物質を使用した。LiCo0.2Ni0.8100gへ導電材としてアセチレンブラックを4g添加し、PVdF3g(固形分)とともに十分混連しペースト化したものを、アルミ箔へ塗布・乾燥後、プレスにより正極活物質密度を所定の密度とし作成した。なお、電極の塗布量は1mA/cmで充放電をした際の容量が4mA/cmとなるようにした。
【0027】
負極:
繊維状グラファイトであるMCF80gへ鱗片状グラファイトであるSFG−6(ロンザ製)を20gとPVdFを6g(固形分)添加し、十分混練し、ペーストとしたものを銅箔へ塗布・乾燥後、プレスをおこなって作製した。なお、電極の塗布量は1mA/cmで充放電をした際の容量が4.2mA/cmとなるようにした。
【0028】
これらの電極を厚さ15ミクロンのポリエチレン製の微多孔膜をセパレータとして捲回し、18650型(直径18mm、長さ65mmの円筒型電池)の電池用電極群を作成した。ついで、この電極群をNiメッキを施した軟鋼製の有底円筒缶に挿入し、EC(エチレンカーボネート)とMEC(メチルエチルカーボネート)を体積比率で1:2に混合した溶媒へLiPFを1モル/lとなるように混合した電解液を注液した後、電流遮断機構、PTC素子、正極端子板を重ねて封口を行った。この様にして作成された円筒型電池の構成図を図1に示す。
【0029】
この際正極の密度を各種調製する事により放電電流に対する放電容量の関係、いわゆる放電特性を調整した。電池内に入っている正極活物質の量から計算される容量を公称容量P(mAh)とした。
【0030】
次いで、これらを0.5×P(mA)の電流で4.2Vまで定電流で、4.2Vになってからは定電圧で計5時間充電を行なった後、0.5×P(mA)で3Vまで放電するサイクルを3回繰り返した後、充電条件は同一で放電電流値をP(mA)と3×P(mA)にした際の放電容量を測定し、それぞれC1(mAh)、C3(mAh)とした。これらの測定結果と、正極の密度PD(g/cm)、および18650型を表面積S(cm)を表1にまとめて示す。
【表1】

Figure 0003544130
これらの電池の内、比較例1、2および実施例1、2、3の電池に関しては放電電流を更に広い範囲で振り放電容量の測定を行った。この関係図2に示す。
【0031】
次いで、これらの電池を充電制御装置の許容範囲上限である4.3Vに充電し、釘刺し試験を行った。試験は充電した電池を横向きに置き、その中央部へSUS304製で直径3mmの釘を油圧プレスにて電池を貫通するまで突き刺して実施した。この際の電池温度の変化を電池に貼付した熱電対によって測定するとともに、目視にて電池の状態を観察した。
【0032】
この結果を表2に示す。なお、表2には表1のP/S、C3/C1の値もあわせて記した。
【表2】
Figure 0003544130
表2の結果を図示したのが図3である。
【0033】
図3より明らかなとおり、P/Sが45以上の領域において、C3/C1が0.8以上の電池では内部短絡の模擬試験である釘刺し試験において、発火にいたることがわかる、またC3/C1が0.8以上でも一部の電池においては電池温度が上昇し漏液を起こす事から、更に好ましい範囲としてはC3/C1が0.7以下が安全である。
【0034】
また、C3/C1が0.2以下の電池では、極端に大電流特性が低下してしまい、このような電池の主たる用途であるパーソナルコンピュータでは、ハードディスクの起動が困難となったり、デジタルセルラー電話では送信時に電池切れアラームが点灯したりというトラブルの原因となるため、実用上問題が多いため、使用は困難である。
【0035】
また、正極密度が3.2g/cm以下の場合にはC3/C1が大きくなる傾向があり、P/Sが45以上の領域においては3.2g/cm以上の正極密度とすることが安全性確保の観点からは好適であることがわかる。
【0036】
以上詳述した以外の電池構成や、電池寸法においても、電池缶が軟鋼やアルミ等の金属であり、正極活物質がLiCoO、LiNiO、LiNiCo1−Xないしは、これらに各種元素を少量添加した系である限りは、請求項に記した条件を充たすことにより、内部短絡に対する安全性が確保されることが別途行った試験により確認された。
【0037】
【発明の効果】
内部短絡系の電池安全性と電池放電特性、電池容量、電池表面積の関係を明確にし、安全な電池を示した。このことはこれからの高容量電池、高エネルギー密度電池の開発にとって寄与するところ絶大であり、その工業的寄与は大なる物がある。
【図面の簡単な説明】
【図1】実施例にて作成したリチウムイオン二次電池を示す図である。
【図2】実施例1、2、3、比較例1、2の放電特性を示す図である。
【図3】実施例1〜7、比較例1〜11の釘刺し試験結果とP/S、C3/C1の関係を示す図である。
【符号の説明】
1:負極
2:セパレータ
3:正極
4:缶
5:封口体
6:安全弁
7:PTC素子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous solvent secondary battery in which an active material capable of inserting and extracting lithium ions is used as a positive electrode and a negative electrode. More specifically, the present invention relates to various kinds of safety, particularly to improving safety against various accidents that cause internal short circuits. It is about batteries.
[0002]
[Prior art]
In recent years, secondary batteries using non-aqueous electrolytes such as lithium batteries and lithium ion batteries have higher energy density and higher voltage of 3V or more than nickel cadmium secondary batteries and nickel hydrogen secondary batteries. Due to its characteristics, it has been widely used as a power source for portable electronic devices.
[0003]
However, such secondary batteries have a high energy density, so if they are charged or discharged with a higher current than the design, heat is generated inside the batteries, and the electrolyte or electrode active material may cause thermal runaway, causing the batteries to ignite. There is a danger of doing. Therefore, these batteries are equipped with a PTC element that interrupts a current path when charging or discharging due to an excessive current, and a current interrupting mechanism to ensure safety. However, the positive electrode and negative electrode come into contact inside the battery due to some cause inside the battery, such as deformation of the electrode structure due to a drop impact, or compression of the battery due to various accidents, etc., and a short circuit with a large current occurs inside the battery. In the event of an accident, when the battery is in a charged state, Joule heat generated at the short-circuited location was inevitably overheated due to the heat generated by the excessive discharge reaction, resulting in ignition.
[0004]
In such a case, since the amount of heat released from the battery surface is larger than the amount of heat generated by a battery with a discharge capacity of a level practically used in the past, the frequency of occurrence is very low, and there is no problem in safety in practical use Products.
[0005]
However, as the capacity and energy density of batteries have increased, the safety of batteries has been reduced, and this has become a major problem.
[0006]
[Problems to be solved by the invention]
The present invention is directed to a high-capacity battery or a battery having a high energy density, in other words, a battery capable of securing sufficient safety against the above-described internal short circuit even in a battery having a relatively small battery surface area as compared with a discharge capacity. It is intended to present characteristics.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors of the present application have made prototypes of batteries having various characteristics, and have performed a number of nail penetration tests, which are safety tests that simulate internal short circuits, and have been diligently analyzing the behavior thereof. went. As a result, the present application was filed.
[0008]
The battery of the present application has an electrode group formed by winding a positive electrode and a negative electrode via a separator, a bottomed metal battery can containing the electrode group, and a nonaqueous electrolyte injected into the bottomed metal battery can. Thereafter, in a cylindrical sealed battery comprising a battery sealing portion for hermetically sealing the battery can, the nominal battery capacity is P (mAh), the battery surface area is S (cm 2 ), and the battery is P (P / S> 45) where the discharge capacity when discharged at (mA) is C1 (mAh) and the discharge capacity when the battery is discharged at 3 × P (mA) is C3 (mAh). Wherein the positive electrode satisfies the relational expression of 0.2 <C3 / C1 < 0.7 , and the active material layer containing the active material, the conductive auxiliary material, and the binder is coated on the electron conductive current collector layer. It has a structure, a non-aqueous solvent, wherein the density of the active material layer is 3.41 g / cm 3 or more The next battery.
[0009]
Further, the positive electrode has a structure in which an active material layer containing an active material, a conductive auxiliary material, and a binder is applied to an electron-conductive current collector layer, and the density of the active material layer is 3.2 g / cm 3 or more. It is preferable that
[0010]
When the density of the active material layer composed of the active material, the conductive auxiliary material, and the binder of the positive electrode is 3.2 g / cm 3 or less, it is difficult to obtain discharge characteristics that can ensure safety while maintaining battery capacity. .
[0011]
As an electrode material for constituting such a nonaqueous solvent secondary battery, a composite oxide (excluding LiMn 2 O 4 ) represented by LiCoO 2 , LiNiO 2, or the like for the positive electrode, or LiNi 1-xy is used. Co x M y O 2 (where, 0. ≦ x ≦ 0.9,0 ≦ y ≦ 0.2, x + y ≦ 0.5, M is at least one element selected B, Mn, from Al) More preferably, the range of X in the composition formula is 0.1. A complex oxide satisfying ≦ x ≦ 0.4 can be used, but is not particularly limited as long as it can be used as a positive electrode for a non-aqueous solvent secondary battery using Li as an active material.
[0012]
These composite oxides are, for example, starting from oxides, hydroxides, and carbonates of lithium, cobalt, and nickel, sufficiently mixed according to the composition, and then fired at 600 to 1000 ° C. in an oxygen-containing atmosphere. It is obtained by doing.
[0013]
On the other hand, the negative electrode is not particularly limited as long as it can occlude and release lithium, and may be any of carbonaceous materials such as graphitizable carbon and non-graphitizable carbon, metallic lithium, lithium alloys, and intermetallic compounds. Metal materials can be used, and graphites (natural graphite, artificial graphite, fibrous graphite, spherical graphite, etc.) are particularly preferable from the viewpoint of battery characteristics.
[0014]
Examples of the electrolytic solution include propylene carbonate, ethylene carbonate, methyl ethyl carbonate, dimethyl carbonate, diethyl carbonate, γ-butyl lactone, tetrahydrofuran, etc., alone or based on a mixed solvent, based on LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4, Can be used as appropriate.
[0015]
The selection of the separator is not particularly limited, but a single-layer film or a multi-layer film in which a number of fine holes are perforated in polyethylene or polypropylene is practically suitable.
[0016]
The applicants of the present application have conducted intensive studies on the phenomenon that the battery ignites in the event of an internal short-circuit accident by various tests.As a result, when an internal short-circuit occurs, the reactions proceed in the following order inside the battery, and finally the battery ignites I figured it out.
[0017]
1) A short circuit occurs inside the charged battery. 2) A current regulated by the large discharge characteristics of the battery flows in the short-circuit location. 3) The short-circuit location generates heat due to Joule heat generated by the current. Heat generation reaches the thermal decomposition temperature of the converted positive electrode active material. 5) Thermal decomposition of the positive electrode starts and generates heat. 6) The electrolyte is ignited and a flame is released from the battery. In order to suppress this, if any of the unit reactions described above is suppressed, a safe transition can be achieved without firing.
[0018]
Regarding this, as a result of diligent studies, the heating rate of the battery caused by the Joule heat generated by the current flowing to the short-circuited point at the time of the internal short-circuit of 2) is determined by the balance with the heat radiation from the outer surface of the battery. It has been found that it is effective to reduce the heat generation rate by controlling the heat generation rate so as to reduce the heat generation amount with respect to the heat release amount, and to prevent the battery temperature from reaching the thermal decomposition temperature of the positive electrode active material.
[0019]
This will be described more quantitatively.
[0020]
When a short circuit occurs inside the battery, the lithium ion secondary battery that is usually put into practical use is short-circuited with a low resistance of about 5 to 20 mΩ. For this reason, assuming that the battery voltage does not decrease even at a large current, a large current of 420 A flows when a short circuit occurs at 10 mΩ, and as much as 1764 J of heat is generated per second at the short circuit point. Therefore, in the immediate vicinity of the short-circuited portion, the temperature exceeds 200 ° C., which is the average starting temperature of the thermal decomposition temperature of the positive electrode active material, within several tens of milliseconds, and thermal diffusion does not proceed sufficiently in such a short time. In addition, since cooling by heat radiation from the outer surface of the battery is hardly performed, the positive electrode active material starts thermal decomposition quickly while generating a very large amount of heat. Once the thermal decomposition reaction starts, the surrounding positive electrode active material rapidly starts to thermally decompose in a chain reaction, and thus instantaneously ignites.
[0021]
However, in an actual battery, when short-circuiting occurs at such a low resistance, polarization occurs due to the electrical resistance of the electrodes, ion diffusion inside the active material or in the electrolyte, and the battery voltage decreases, and the current decreases. Limited. Therefore, Joule heat and other heat generation are reduced, and the temperature rise of the battery becomes slow. When the temperature rise becomes moderate to some extent, heat radiation from the battery outer surface and equilibrium occur, and although the battery temperature rises immediately after the occurrence of a short circuit, the battery temperature reaches equilibrium, and then the battery temperature starts to decrease. Therefore, the energy charged in the battery is discharged without reaching the thermal decomposition start temperature of the positive electrode active material, and the battery enters a safe state.
[0022]
The calorific value at this time is the nominal capacity when the battery has the same discharge characteristics (the degree of change in the discharge capacity when the discharge current is changed) (when the battery is discharged with a low current that can be discharged in 5 hours). As a result of various tests, it was found that the heat dissipation amount was proportional to the battery surface area and the heat release amount was proportional to the battery surface area. Assuming that the nominal capacity at this time is P (mAh) and the battery surface area is S (cm 2 ), when the P / S is 45 or less, even if the large current discharge characteristics are excellent, the battery capacity, in other words, the battery capacity It has been clarified that the battery temperature does not rise until the thermal decomposition reaction of the positive electrode active material is started because the amount of energy for generating heat is small or the surface area of the battery for releasing heat is large.
[0023]
Further, even in the region where the P / S is 45 or more, if the large-current discharge characteristics are suppressed to a level that does not cause a practical problem, the short-circuit current value at the short-circuit location is suppressed. It was confirmed that the battery temperature did not rise until the reaction start temperature. Originally, the current value at the time of short circuit should be measured and evaluated. However, since the current is usually as large as several tens of amps, the inventors of the present application have intensively studied what should be used as an index and found that in a normal test, The ratio of the discharge capacity at a current value three times the current value at which the nominal capacity can be discharged in one hour to the discharge capacity at a current value at which the nominal capacity can be discharged in one hour can be used as an index. I found that.
[0024]
Based on these findings, the present inventors have filed an application.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the embodiment will be described in detail.
[0026]
In order to confirm the mechanism described above, batteries having various discharge capacities and discharge characteristics shown in Examples 1 to 1 and Comparative Examples 1 to 5 below were prepared, and a nail penetration test, which is a test simulating an internal short circuit, was performed. Behavior was observed.
(Examples 1 to 7, Comparative Examples 1 to 11)
A positive electrode and a negative electrode for a lithium ion secondary battery were fabricated by the following method.
Positive electrode:
As the active material, a Ni-based active material expected from the viewpoint of increasing the battery capacity was used. After adding 4 g of acetylene black as a conductive material to 100 g of LiCo 0.2 Ni 0.8 O 2, mixing thoroughly with 3 g (solid content) of PVdF to form a paste, applying the paste on an aluminum foil, drying, and pressing the positive electrode active material by pressing. The material density was determined to be a predetermined density. In addition, the application amount of the electrode was set to 1 mA / cm 2 , and the capacity when charging and discharging was set to 4 mA / cm 2 .
[0027]
Negative electrode:
To 80 g of MCF, which is fibrous graphite, 20 g of SFG-6 (made by Lonza), which is flaky graphite, and 6 g (solid content) of PVdF are added, kneaded well, and the paste is applied to a copper foil, dried, and then pressed. Was prepared. The coating amount of the electrode capacity at the time of the charged and discharged at 1 mA / cm 2 was set to be 4.2 mA / cm 2.
[0028]
These electrodes were wound using a 15-micron-thick polyethylene microporous membrane as a separator to prepare a battery electrode group of 18650 type (a cylindrical battery having a diameter of 18 mm and a length of 65 mm). Next, this electrode group was inserted into a Ni-plated mild steel bottomed cylindrical can, and LiPF 6 was added to a solvent in which EC (ethylene carbonate) and MEC (methyl ethyl carbonate) were mixed at a volume ratio of 1: 2. After injecting the electrolytic solution mixed so as to be mol / l, the current interrupting mechanism, the PTC element, and the positive electrode terminal plate were stacked and sealed. FIG. 1 shows a configuration diagram of the cylindrical battery thus prepared.
[0029]
At this time, the relationship between the discharge capacity and the discharge current, that is, the so-called discharge characteristics, was adjusted by variously adjusting the density of the positive electrode. The capacity calculated from the amount of the positive electrode active material contained in the battery was defined as a nominal capacity P (mAh).
[0030]
Next, after charging them at a constant current of up to 4.2 V at a current of 0.5 × P (mA) and at a constant current of 4.2 V for a total of 5 hours, they were then charged at a constant voltage of 0.5 × P (mA). ), The cycle of discharging to 3 V was repeated three times, and then the charging conditions were the same, and the discharge capacities when the discharge current value was set to P (mA) and 3 × P (mA) were measured, and C1 (mAh), C3 (mAh). Table 1 shows the measurement results, the density PD (g / cm 3 ) of the positive electrode, and the surface area S (cm 2 ) of the 18650 type.
[Table 1]
Figure 0003544130
Of these batteries, with respect to the batteries of Comparative Examples 1 and 2 and Examples 1, 2, and 3, the discharge current was varied over a wider range, and the discharge capacity was measured. This is shown in FIG.
[0031]
Next, these batteries were charged to 4.3 V, which is the upper limit of the allowable range of the charge control device, and a nail penetration test was performed. The test was performed by placing the charged battery sideways and piercing the center of the battery with a SUS304 nail having a diameter of 3 mm until it penetrated the battery with a hydraulic press. The change in battery temperature at this time was measured by a thermocouple attached to the battery, and the state of the battery was visually observed.
[0032]
Table 2 shows the results. Table 2 also shows the values of P / S and C3 / C1 in Table 1.
[Table 2]
Figure 0003544130
FIG. 3 shows the results of Table 2.
[0033]
As is clear from FIG. 3, in the region where P / S is 45 or more, in a battery with C3 / C1 of 0.8 or more, a nail penetration test, which is a simulation test of an internal short circuit, resulted in ignition. Even when C1 is 0.8 or more, in some batteries, the battery temperature rises and liquid leakage occurs. Therefore, it is safe that C3 / C1 is 0.7 or less as a more preferable range.
[0034]
On the other hand, a battery having C3 / C1 of 0.2 or less extremely deteriorates a large current characteristic, and it is difficult for a personal computer, which is a main use of such a battery, to start up a hard disk or to use a digital cellular telephone. This causes troubles such as lighting up of a battery exhaustion alarm at the time of transmission, so that there are many practical problems and it is difficult to use.
[0035]
When the positive electrode density is 3.2 g / cm 3 or less, C3 / C1 tends to be large. In the region where the P / S is 45 or more, the positive electrode density may be 3.2 g / cm 3 or more. It can be seen that it is preferable from the viewpoint of ensuring safety.
[0036]
In the battery configuration and battery dimensions other than those described in detail above, the battery can is made of a metal such as mild steel or aluminum, and the positive electrode active material is LiCoO 2 , LiNiO 2 , LiNi X Co 1-X O 2 , As long as the system was added with a small amount of element, it was confirmed by a test conducted separately that the safety against internal short circuit was secured by satisfying the conditions described in the claims.
[0037]
【The invention's effect】
The relationship between battery safety and battery discharge characteristics, battery capacity, and battery surface area of the internal short circuit was clarified, and a safe battery was shown. This greatly contributes to the development of high-capacity batteries and high-energy density batteries in the future, and their industrial contribution is significant.
[Brief description of the drawings]
FIG. 1 is a view showing a lithium ion secondary battery prepared in an example.
FIG. 2 is a diagram showing discharge characteristics of Examples 1, 2, and 3 and Comparative Examples 1 and 2.
FIG. 3 is a diagram showing the relationship between the nail penetration test results of Examples 1 to 7 and Comparative Examples 1 to 11 and P / S and C3 / C1.
[Explanation of symbols]
1: negative electrode 2: separator 3: positive electrode 4: can 5: sealing body 6: safety valve 7: PTC element

Claims (2)

正極と負極をセパレータを介して捲回してなる電極群と、該電極群を収納した有底金属製電池缶と、該有底金属製電池缶へ非水電解液を注入した後、該電池缶を気密封止する電池封口部とより構成される円筒型の密閉型電池において、
該電池公称容量をP(mAh)、 該電池表面積をS(cm)、 該電池をP(mA)で放電させた際の放電容量をC1(mAh)、 該電池を3×P(mA)で放電させた際の放電容量をC3(mAh)とした場合にP/S>45の領域において、
0.2<C3/C1<0.7
の関係式を満足すると共に
該正極が活物質と導電助材、バインダーを含む活物質層が電子導電性の集電体層へ塗着された構造を有し、該活物質層の密度が3.41g/cm 以上であることを特徴とする非水溶媒二次電池。
An electrode group formed by winding a positive electrode and a negative electrode via a separator, a bottomed metal battery can accommodating the electrode group, and a non-aqueous electrolyte injected into the bottomed metal battery can, and then the battery can A cylindrical sealed battery composed of a battery sealing portion for hermetically sealing
The nominal capacity of the battery is P (mAh), the surface area of the battery is S (cm 2 ), the discharge capacity when the battery is discharged at P (mA) is C1 (mAh), and the battery is 3 × P (mA). In the region of P / S> 45, when the discharge capacity at the time of discharging is C3 (mAh),
0.2 <C3 / C1 < 0.7
As well as satisfy the relation
The positive electrode has a structure in which an active material layer containing an active material, a conductive auxiliary material, and a binder is coated on an electron-conductive current collector layer, and the density of the active material layer is 3.41 g / cm 3 or more. non-aqueous solvent secondary battery, characterized in that there.
該正極活物質がLiNi 1−x−y Co (但し、0≦x≦0.4、0≦y≦0.2、x+y≦0.5、MはB、Mn、Alから選ばれる少なくとも1種の元素を含む)で示される組成を有することを特徴とする請求項1に記載の非水溶媒二次電池。 Positive electrode active material is LiNi 1-x-y Co x M y O 2 ( where, 0 ≦ x ≦ 0.4,0 ≦ y ≦ 0.2, x + y ≦ 0.5, M is B, Mn, an Al The non-aqueous solvent secondary battery according to claim 1, wherein the non-aqueous solvent secondary battery has a composition represented by the following formula (including at least one selected element) .
JP37238798A 1998-12-28 1998-12-28 Non-aqueous solvent secondary battery Expired - Lifetime JP3544130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37238798A JP3544130B2 (en) 1998-12-28 1998-12-28 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37238798A JP3544130B2 (en) 1998-12-28 1998-12-28 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JP2000195557A JP2000195557A (en) 2000-07-14
JP3544130B2 true JP3544130B2 (en) 2004-07-21

Family

ID=18500361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37238798A Expired - Lifetime JP3544130B2 (en) 1998-12-28 1998-12-28 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3544130B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863238B2 (en) * 2000-07-25 2012-01-25 日立マクセルエナジー株式会社 Non-aqueous secondary battery
CN1275347C (en) * 2001-04-16 2006-09-13 三菱化学株式会社 Lithium secondaire battery
US8367255B2 (en) 2006-01-18 2013-02-05 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP5303822B2 (en) * 2006-02-13 2013-10-02 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
JP2013012320A (en) * 2011-06-28 2013-01-17 Toyota Motor Corp Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2000195557A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
JP4915390B2 (en) Non-aqueous electrolyte battery
KR100331209B1 (en) Non-aqueous Electrolyte Secondary Battery
JP2983205B1 (en) Non-aqueous secondary battery
US20070212609A1 (en) Nonaqueous electrolyte secondary battery
JP3529750B2 (en) Non-aqueous electrolyte secondary battery
JP3677845B2 (en) Sealed nonaqueous electrolyte prismatic secondary battery
JP2001338639A (en) Non-aqueous electrolyte battery
JP2009123424A (en) Nonaqueous electrolyte secondary battery
JP2008108454A (en) Nonaqueous electrolyte, and nonaqueous electrolyte battery including the same
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP3544130B2 (en) Non-aqueous solvent secondary battery
JPH10255757A (en) Lithium secondary battery
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JP2939468B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2004228019A (en) Nonaqueous electrolyte secondary battery
JP2928779B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2006004878A (en) Battery
JP4795509B2 (en) Non-aqueous electrolyte battery
JP2004214139A (en) Electrolyte and battery using the same
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP3660853B2 (en) Nonaqueous electrolyte secondary battery
JP3448544B2 (en) Non-aqueous electrolyte battery
JP2000188132A5 (en)
JP2003077478A (en) Lithium ion secondary battery
JP4938923B2 (en) Secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

EXPY Cancellation because of completion of term