JP3543665B2 - GPS receiving terminal with communication function - Google Patents

GPS receiving terminal with communication function Download PDF

Info

Publication number
JP3543665B2
JP3543665B2 JP06761299A JP6761299A JP3543665B2 JP 3543665 B2 JP3543665 B2 JP 3543665B2 JP 06761299 A JP06761299 A JP 06761299A JP 6761299 A JP6761299 A JP 6761299A JP 3543665 B2 JP3543665 B2 JP 3543665B2
Authority
JP
Japan
Prior art keywords
satellite
gps
signal
gps receiving
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06761299A
Other languages
Japanese (ja)
Other versions
JP2000266834A (en
Inventor
秀樹 上柳
聡 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP06761299A priority Critical patent/JP3543665B2/en
Publication of JP2000266834A publication Critical patent/JP2000266834A/en
Application granted granted Critical
Publication of JP3543665B2 publication Critical patent/JP3543665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、携帯電話、衛星携帯電話、PHSなどの通信手段を持つGPS(Global Positioning System)の受信端末に関するものである。
【0002】
【従来の技術】
図5に通信機能付きGPS受信端末の概略構成を示す。図中、SV1〜SV3はGPSの可視衛星であり、その衛星番号、ドップラー周波数等の情報は基地局30がGPSアンテナ31で受信した信号から求めて通信手段22,21を介してGPS受信端末10に知らされる。GPS受信端末10では、GPSアンテナ11で受信した可視衛星からの信号を捕捉・追跡するための周波数同期及び位相同期の処理のみを行い、自己の現在位置を計算するために必要なデータを通信手段21,22を介して基地局30に送る。基地局30ではGPS受信端末10から送られてきたデータに基づいてGPS受信端末10の位置等を計算する。その位置計算の精度を上げるために基地局30ではFM放送受信アンテナ32等から受信したDGPS補正情報を利用することもある。計算された端末10の位置情報は基地局30で利用するか、または用途によっては、通信手段22,21を介してGPS受信端末10にも送信される。
【0003】
【発明が解決しようとする課題】
この通信機能付きGPS受信端末は、パーソナルナビゲーションシステムや徘徊老人の探索、防犯用の位置検出システム等に利用されるものであり、携帯に適するように小型軽量化が望まれると共に、長時間の使用を可能とするために、電池の消費電力を低減することが望まれる。
【0004】
通信機能付きGPS受信端末においては、上述のように、端末本体で位置を割り出す演算を行う必要はなく、基地局で位置を割り出す演算を行う。また、GPSの可視衛星に関わる情報も基地局から与えられるので、カーナビゲーションシステムに組み込まれたGPS受信装置とは異なり、可視衛星の衛星番号を知るための探索処理を行わなくてよい。このため、通信機能を持たないGPS受信端末に比べて、必要な回路は小さくなり、測位に要する時間も短縮できる。
【0005】
しかしながら、通信機能を有しているので、GPS受信機能と通信機能が同時に使用される場合、消費電力が大きくなる。また、位相同期を取るための相関演算を高速化するために複数の相関器を同時に動作させようとすると、さらに消費電力が増大する。また、相関演算の高速化を追求すると、誤衛星ロックの可能性も増大する。
【0006】
本発明はこのような事情に鑑みてなされたものであり、通信機能付きGPS受信端末において、できるだけ小さな回路で、消費電力を増大させることなく、最大の演算速度を得ることが課題である。
【0007】
【課題を解決するための手段】
本発明の通信機能付きGPS受信端末では、GPS受信部から出力される信号を一旦メモリに取り込み、それを何回か繰り返して利用する方式が基本となっており、繰り返し利用するその利用の仕方を工夫して最小の回路構成で最大の効率を得ることを可能としている。
【0008】
具体的には、請求項1の発明によれば、GPSアンテナ11と、GPSアンテナ11により受信されたGPS信号を周波数変換するGPS受信部(RFフロントエンド部12)と、GPS受信部から出力される信号を蓄積するメモリ13と、メモリ13から読み出される信号とGPS受信部から出力される信号を切り替える切替器14と、メモリ13から読み出された信号が切替器14から出力されている期間にはGPS受信部の電源供給を遮断する制御回路19と、端末位置等の演算機能を持つ基地局30と信号をやり取りする通信手段21と、通信手段21により基地局30から知らされた可視衛星の情報に基づいて可視衛星を捕捉するための疑似雑音符号信号を複数の異なる位相で発生させる疑似雑音符号信号発生器18と、切替器14から出力される信号と疑似雑音符号信号との相関を求める複数の相関器16と、通信手段21を介して基地局30に送るべき位置計算用のデータを出力する複数の自動追跡部17とを備えることを特徴とするものである。
【0009】
ここで、自動追跡部17は相関器16よりも少数とし、複数の相関器16に同一周波数で位相をずらした複数の疑似雑音符号信号をそれぞれ入力し、切替器14から出力される信号との相関を求めることにより、同一の衛星番号の疑似雑音符号信号について位相の異なる複数の相関を同時に発生させ、キャリア相関値がピークとなる位相を1つの自動追跡部の位相同期に用いることにより、位相同期を確立するまでの時間を短縮できる。また、ピーク近傍の複数のキャリア相関値の和を求めて、予め決められた閾値と比較することにより、急峻なピークは誤衛星ロックとして排除することができる。また、GPS受信部からの信号を、C/Aコードのコード長である1msの間に複数回サンプリングしてメモリに蓄積する処理を所定の時間継続し、サンプリング開始時刻からC/Aコードのコード長である1msの整数倍の長さ分のデータについて、1ms毎に時間軸をシフトさせて重ね合わせたデータを相関器の入力とすることにより、キャリア対ノイズ比を高くすることができる。
【0010】
また、1つ目の衛星を捕捉・追跡したときに求まる回路に固有のオフセットを、2つ目以降の衛星の捕捉・追跡時に流用することにより演算時間をさらに短縮できる。また、1つ目の衛星を捕捉・追跡した後、2つ目以降の衛星を捕捉・追跡する際に、1つ目の衛星の疑似雑音符号の特定のチップ(例えば1番目のチップ)と2つ目以降の衛星の疑似雑音符号の同じチップを受信する時間の差をチップ数単位で演算し、基地局に送信するようにしても良い。また、GPS受信部からの信号をメモリに蓄積する際に、その蓄積する量を可変とすることにより、受信状況が良いときには測位時間を短縮することができる。
【0011】
【発明の実施の形態】
(実施例1)
図1は請求項1のGPS受信端末10の構成を一例として示すブロック図である。図中、11はGPSアンテナ、12はGPS受信部としてのRFフロントエンド部であり、GPS衛星からの1.57542GHzの高周波を受信し、周波数変換して、数MHz程度のデジタル信号として出力する。13はメモリであり、RFフロントエンド部12から出力されるデジタル信号を所定の時間にわたり蓄積する。14は切替器であり、RFフロントエンド部12から出力されるデータをそのまま相関器16に送るか、あるいは、一旦メモリ13に格納されたデータを読み出したデータを相関器16に送るかを選択する。15は加算器であり、後述の実施例4では、1ms毎にデータを加算することにより、キャリア対ノイズ比を改善するために使用している。16は相関器であり、n個(nは3以上の整数)の相関器を同時に動作させることにより、位相同期を速やかに確立できるようにしている。すなわち、疑似雑音符号信号発生器18により、可視衛星の番号の疑似雑音符号を発生させると共に、その位相を少しずつずらしたn個の疑似雑音符号信号を発生させて、第1番目から第n番目の相関器16にそれぞれ入力し、切替器14から出力される信号との間で相関を取る。これにより、キャリア相関値がピークとなる位相を短時間で見つけることができる。17は自動追跡部であり、m個(mは3以上の整数でn>m)の自動追跡部により、それぞれ異なる可視衛星からの信号をロックして、図5の通信手段21,22を介して基地局30に送信する。基地局30では、3個以上の衛星からの信号を解析して、GPS受信端末10の位置を計算する。また、基地局30からは可視衛星に関する情報を通信手段22,21を介してGPS受信端末10に予め知らせておく。これにより、GPS受信端末側では、可視衛星の番号を探す必要はなく、複数の相関器16は、基地局10から知らされた衛星番号の疑似雑音符号との位相同期を取るための処理からスタートすることができ、測位に要する時間を短縮できる。また、制御回路19では、各部の動作を制御すると共に、メモリ13から相関器16にデータを読み出している期間中は、RFフロントエンド部12の動作を停止させて、消費電力を低減している。
【0012】
本実施例では、(n−m+1)個の相関器16が1つの自動追跡部17を共用している。このように相関器16と自動追跡部17の数が異なるときには、1つの自動追跡部に複数の相関器を割り当てる。一般に、自動追跡部は、可視衛星の数だけあれば十分なので、相関器の数よりも少なくなることが多い。また、1つ目の衛星を捕捉・追跡したときに求まる回路に固有のオフセット(つまり、衛星からの疑似雑音符号と受信機の疑似雑音符号とのずれ)を、2つ目以降の衛星の捕捉・追跡時に流用することにより、2つ目以降の衛星の捕捉・追跡を容易に行える。なお、1つ目の衛星を捕捉・追跡した後、2つ目以降の衛星を捕捉・追跡する際には、1つ目の衛星の疑似雑音符号の特定のチップ(例えば1番目のチップ)と2つ目以降の衛星の同じチップを受信する時間の差をチップ数単位で演算し、基地局に送信するようにしても良い。
【0013】
(実施例2)
図2は請求項2の説明図である。図中の曲線はキャリア相関値のカーブを示している。グラフの横軸は位相のずれ、縦軸はキャリア相関値であり、グラフ上にプロットされた点×はある時刻での第1番目から第n番目までの相関器によって得られたキャリア相関値である。このように、複数の相関器により同時に複数のキャリア相関値が得られるので、キャリア相関値がピークとなる位相を短時間に求めることができる。また、GPS受信部と相関器を同時に動作させるのではなく、GPS受信部が動作しているときは、相関器の動作を停止させて、受信したデータをメモリに一旦格納し、メモリからデータを読み出している期間では、GPS受信部の動作を停止させて、相関器の動作を開始させることにより、消費電力のピークを低減することができる。さらに、メモリからデータを読み出す速度は、メモリにデータを格納するときの速度よりも速くすることにより、相関器における相関演算の速度を速くすることができ、GPS受信部からのデータを直接利用する場合に比べて、すべての可視衛星を捕捉するまでに要する時間を短縮することができ、それだけトータルの消費電力を低減することができる。
【0014】
(実施例3)
図3は請求項3の説明図である。図中の2つの曲線はキャリア相関値のカーブを示している。グラフの横軸は位相のずれ、縦軸はキャリア相関値であり、グラフ上にプロットされた点×はある時刻での第1番目から第n番目までの相関器によって得られたキャリア相関値である。左側のカーブは所望の衛星(SV1とする)のキャリア相関値のカーブ、右側のカーブは所望の衛星ではない別の衛星(SV2とする)のキャリア相関値のカーブである。所望の衛星SV1と受信機の間に遮蔽物があり受信状態が悪く、所望の衛星ではない別の衛星SV2と受信機の間に遮蔽物が少ないとき、このように各々の衛星から受信する信号強度がおよそ等しくなる場合がある。このような場合は、破線で表しているような低い閾値を設定しなくてはならず、一点のみの相関値であれば、所望の衛星ではない別の衛星の相関も所望の衛星の相関と見誤ることがある。しかし、一般に所望の衛星ではない別の衛星の相関値のカーブは所望の衛星の相関値のカーブに比べて急峻であるので、×で表される相関値の和をとり、その和を判断基準にすると、一点だけの相関値で相関を判断したときに、所望の衛星ではない別の衛星の相関値を所望の衛星の相関値と間違える誤衛星ロックが生じることを回避できる。
【0015】
(実施例4)
図4は請求項4の説明図である。この例では、GPS受信部から出力されるデータをメモリに格納する際に、1msに2048回のサンプリングを行い、これを1ms毎に時間軸をシフトさせて、3ms分重ね合わせてメモリの別アドレスに格納する様子を示している。ここで、1msというのは、疑似雑音符号(PNコード)のうち、民間に開放されているC/Aコードのコード長に相当する。前記別アドレスに格納されたデータをメモリから読み出して相関器に送ると、重ね合わせた後のデータも、やはり1msに2048回のサンプリングが行われたかのように相関器からは見えるが、キャリア対ノイズ比は改善される。なぜなら、キャリア成分はC/Aコードのコード長である1ms毎に相関があるが、ノイズ成分はガウス分布となり、重ね合わせると、キャリア成分の増加率の方がノイズ成分の増加率を上回るからである。これにより、簡単な回路構成で、キャリア対ノイズ比を高くして、ノイズ成分の影響を最小限に抑えることが可能となる。 本実施例のように、メモリのデータを時間軸をシフトさせて重ね合わせる処理を行う場合には、メモリに蓄積すべきデータ量は多く必要となるが、受信状況が良好なときには、本実施例の処理を省略することにより、メモリに蓄積するデータ量を少なくして、処理を高速化することもできる。
【0016】
なお、本実施例では、時間軸をシフトさせて重ね合わせたデータをメモリ13の別のアドレスに格納する例を説明したが、図1の構成のように、切替器14と相関器16の間に加算器15を配置する場合には、図4(a)の3ms分のデータをメモリ13から1ms以内の短時間で読み出して加算器15のバッファに蓄積し、図4(b)のように時間軸をシフトさせて加算した後のデータを加算器15から1ms当たり2048サンプルのレートで相関器16に出力しても良い。この場合、メモリ13の容量を少なくできる。
【0017】
【発明の効果】
請求項1の発明によれば、メモリ内部にGPS受信部からの信号を一旦格納することによって、高速に演算することが可能になり、通常、高速性とトレードオフの関係にある誤ロックの問題も回避することが可能となる。また、メモリから信号を読み出している期間にはGPS受信部の電源供給を遮断できるので、消費電力が少なくて済み、回路規模も小さくて済む。
【0018】
請求項2の発明によれば、複数の相関器に同一周波数で位相をずらした複数の疑似雑音符号信号をそれぞれ入力し、切替器から出力される信号との相関を求めることにより、同一の衛星番号の疑似雑音符号信号について位相の異なる複数の相関を同時に発生させることにより、キャリア相関値のピークを高速に演算することができる。
請求項3の発明によれば、複数のキャリア相関値のピーク近傍の和を求めて、所定の閾値と比較することにより、ターゲットの衛星の受信状況が悪いときに、誤まって別の衛星からの信号にロックすることを防ぐことができる。
【0019】
請求項4の発明によれば、GPS受信部からの信号を、C/Aコードのコード長である1msの間に複数回サンプリングしてメモリに蓄積する処理を所定の時間継続し、サンプリング開始時刻からC/Aコードのコード長である1msの整数倍の長さ分のデータについて、1ms毎に時間軸をシフトさせて重ね合わせたデータを相関器の入力とすることにより、キャリア対ノイズ比を高くすることができ、基地局からのドップラー周波数と実際のドップラー周波数とのずれを感知することができる。
【0020】
請求項5の発明によれば、1つ目の衛星を捕捉・追跡したときに求まる回路に固有のオフセットを、2つ目以降の衛星の捕捉・追跡時に流用することにより、2つ目以降の衛星の捕捉・追跡に要する時間を短縮できる。
請求項6の発明によれば、1つ目の衛星を捕捉・追跡した後、2つ目以降の衛星を捕捉・追跡する際に、1つ目の衛星の疑似雑音符号の特定のチップと2つ目以降の衛星の疑似雑音符号の同じチップを受信する時間の差をチップ数単位で演算し、基地局に送信するようにしたので、2つ目以降の衛星の捕捉・追跡に要する時間を短縮できる。
請求項7の発明によれば、GPS受信部からの信号をメモリに蓄積する際に、その蓄積する量を可変とすることにより、高速に相関をとることができる。
【図面の簡単な説明】
【図1】本発明の通信機能付きGPS受信端末の構成を示すブロック図である。
【図2】請求項2の発明の説明図である。
【図3】請求項3の発明の説明図である。
【図4】請求項4の発明の説明図である。
【図5】従来の通信機能付きGPS受信端末の使用状況を示す説明図である。
【符号の説明】
10 GPS受信端末
11 GPSアンテナ
12 RFフロントエンド部
13 メモリ
14 切替器
15 加算器
16 相関器
17 自動追跡部
18 疑似雑音符号発生器
19 制御回路
21 通信手段(GPS受信端末側)
22 通信手段(基地局側)
30 基地局
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a GPS (Global Positioning System) receiving terminal having communication means such as a mobile phone, a satellite mobile phone, and a PHS.
[0002]
[Prior art]
FIG. 5 shows a schematic configuration of a GPS receiving terminal with a communication function. In the figure, SV1 to SV3 are GPS visible satellites, and information such as satellite numbers and Doppler frequencies are obtained from signals received by the base station 30 via the GPS antenna 31 and transmitted to the GPS receiving terminal 10 via the communication means 22 and 21. Will be informed. The GPS receiving terminal 10 performs only frequency synchronization and phase synchronization processing for capturing and tracking a signal from a visible satellite received by the GPS antenna 11, and transmits data necessary for calculating its own current position to a communication unit. It is sent to the base station 30 via 21 and 22. The base station 30 calculates the position and the like of the GPS receiving terminal 10 based on the data sent from the GPS receiving terminal 10. In order to improve the accuracy of the position calculation, the base station 30 may use DGPS correction information received from the FM broadcast receiving antenna 32 or the like. The calculated location information of the terminal 10 is used by the base station 30 or, depending on the application, transmitted to the GPS receiving terminal 10 via the communication means 22 and 21.
[0003]
[Problems to be solved by the invention]
This GPS receiving terminal with a communication function is used for a personal navigation system, a search for a wandering elderly person, a position detection system for crime prevention, and the like. It is desired that the power consumption of the battery be reduced in order to enable the above.
[0004]
In the GPS receiving terminal with a communication function, as described above, it is not necessary to perform the operation to determine the position in the terminal body, but to perform the operation to determine the position in the base station. Further, since information relating to GPS visible satellites is also provided from the base station, unlike a GPS receiver incorporated in a car navigation system, it is not necessary to perform a search process for knowing the satellite number of a visible satellite. For this reason, compared to a GPS receiving terminal without a communication function, the required circuits are smaller and the time required for positioning can be reduced.
[0005]
However, since it has a communication function, when the GPS reception function and the communication function are used at the same time, power consumption increases. Further, if a plurality of correlators are simultaneously operated in order to speed up a correlation operation for achieving phase synchronization, power consumption further increases. Further, if the correlation operation is speeded up, the possibility of erroneous satellite lock increases.
[0006]
The present invention has been made in view of such circumstances, and it is an object of a GPS receiving terminal with a communication function to obtain a maximum calculation speed with a circuit as small as possible without increasing power consumption.
[0007]
[Means for Solving the Problems]
The GPS receiving terminal with a communication function according to the present invention is based on a method in which a signal output from a GPS receiving unit is temporarily stored in a memory and is used repeatedly several times. By devising it, it is possible to obtain the maximum efficiency with the minimum circuit configuration.
[0008]
Specifically, according to the first aspect of the present invention, a GPS antenna 11, a GPS receiving unit (RF front-end unit 12) that converts the frequency of a GPS signal received by the GPS antenna 11, and a signal output from the GPS receiving unit A memory 13 for storing a signal read from the memory 13, a switch 14 for switching between a signal read from the memory 13 and a signal output from the GPS receiver, and a switch 14 for outputting a signal read from the memory 13 from the switch 14. Is a control circuit 19 for shutting off the power supply to the GPS receiver, a communication means 21 for exchanging signals with a base station 30 having an arithmetic function of a terminal position and the like, and a visible satellite transmitted from the base station 30 by the communication means 21. A pseudo-noise code signal generator 18 for generating a pseudo-noise code signal for capturing a visible satellite based on information at a plurality of different phases; A plurality of correlators 16 for obtaining a correlation between a signal output from the CDMA and a pseudo-noise code signal, and a plurality of automatic tracking units 17 for outputting data for position calculation to be transmitted to the base station 30 via the communication means 21. It is characterized by having.
[0009]
Here, the automatic tracking unit 17 has a smaller number than the correlator 16, inputs a plurality of pseudo-noise code signals having the same frequency and shifted phases to the plurality of correlators 16, respectively. By calculating the correlation, a plurality of correlations having different phases are simultaneously generated with respect to the pseudo-noise code signal of the same satellite number, and the phase at which the carrier correlation value becomes a peak is used for phase synchronization of one automatic tracking unit. The time required to establish synchronization can be reduced. Further, by calculating the sum of a plurality of carrier correlation values near the peak and comparing the sum with a predetermined threshold, a steep peak can be excluded as an erroneous satellite lock. Further, the process of sampling the signal from the GPS receiving unit a plurality of times during 1 ms, which is the code length of the C / A code, and accumulating the signal in the memory is continued for a predetermined time. The carrier-to-noise ratio can be increased by inputting the correlated data by shifting the time axis every 1 ms and superimposing data on the data corresponding to an integral multiple of the length of 1 ms.
[0010]
Further, the calculation time can be further reduced by diverting the offset unique to the circuit obtained when the first satellite is captured and tracked during the capture and tracking of the second and subsequent satellites. After capturing and tracking the first satellite, when capturing and tracking the second and subsequent satellites, a specific chip (for example, the first chip) of the pseudo noise code of the first satellite and the second A difference in time for receiving the same chip of the pseudo noise code of the third and subsequent satellites may be calculated for each chip number and transmitted to the base station. In addition, when accumulating the signal from the GPS receiver in the memory, the amount of accumulation is variable, so that the positioning time can be shortened when the reception condition is good.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
FIG. 1 is a block diagram showing an example of the configuration of the GPS receiving terminal 10 according to the first embodiment. In the figure, reference numeral 11 denotes a GPS antenna, and reference numeral 12 denotes an RF front end unit serving as a GPS receiving unit, which receives a 1.57542 GHz high frequency from a GPS satellite, converts the frequency, and outputs a digital signal of about several MHz. Reference numeral 13 denotes a memory that stores digital signals output from the RF front-end unit 12 over a predetermined time. Reference numeral 14 denotes a switch for selecting whether to send the data output from the RF front-end unit 12 to the correlator 16 as it is, or to send the data read from the data once stored in the memory 13 to the correlator 16. . Reference numeral 15 denotes an adder, which is used in Example 4 to improve the carrier-to-noise ratio by adding data every 1 ms. Reference numeral 16 denotes a correlator, which operates n (n is an integer of 3 or more) correlators at the same time so that phase synchronization can be quickly established. That is, the pseudo-noise code signal generator 18 generates a pseudo-noise code of the number of the visible satellite, and generates n pseudo-noise code signals whose phases are slightly shifted from the first to n-th. To the correlator 16, and takes a correlation with the signal output from the switch 14. This makes it possible to find the phase at which the carrier correlation value has a peak in a short time. Reference numeral 17 denotes an automatic tracking unit, which locks signals from different visible satellites by m (m is an integer of 3 or more and n> m) automatic tracking units, and transmits the signals via the communication units 21 and 22 of FIG. To the base station 30. The base station 30 analyzes signals from three or more satellites and calculates the position of the GPS receiving terminal 10. The base station 30 notifies the GPS receiving terminal 10 of information on visible satellites via the communication means 22 and 21 in advance. Accordingly, the GPS receiving terminal does not need to search for the number of the visible satellite, and the plurality of correlators 16 start from the processing for achieving phase synchronization with the pseudo noise code of the satellite number notified from the base station 10. And the time required for positioning can be reduced. Further, the control circuit 19 controls the operation of each unit, and stops the operation of the RF front-end unit 12 during the period of reading data from the memory 13 to the correlator 16, thereby reducing power consumption. .
[0012]
In the present embodiment, (n−m + 1) correlators 16 share one automatic tracking unit 17. When the numbers of the correlators 16 and the automatic tracking units 17 are different from each other, a plurality of correlators are assigned to one automatic tracking unit. In general, the number of visible tracking satellites is sufficient for the automatic tracking unit, so that the number is often smaller than the number of correlators. In addition, the circuit-specific offset (that is, the difference between the pseudo-noise code from the satellite and the pseudo-noise code of the receiver) obtained when the first satellite is acquired and tracked is determined by the acquisition of the second and subsequent satellites. -By diverting during tracking, it is possible to easily capture and track the second and subsequent satellites. After capturing and tracking the first satellite, when capturing and tracking the second and subsequent satellites, a specific chip (for example, the first chip) of the pseudo noise code of the first satellite is used. The difference between the times at which the same chip of the second and subsequent satellites receives the same chip may be calculated in units of chips and transmitted to the base station.
[0013]
(Example 2)
FIG. 2 is an explanatory diagram of the second aspect. The curve in the figure shows the curve of the carrier correlation value. The horizontal axis of the graph is the phase shift, the vertical axis is the carrier correlation value, and the point x plotted on the graph is the carrier correlation value obtained by the first to n-th correlators at a certain time. is there. As described above, since a plurality of carrier correlation values are obtained simultaneously by a plurality of correlators, a phase at which the carrier correlation value has a peak can be obtained in a short time. Also, instead of operating the GPS receiver and the correlator simultaneously, when the GPS receiver is operating, the operation of the correlator is stopped, the received data is temporarily stored in the memory, and the data is stored from the memory. In the reading period, the peak of the power consumption can be reduced by stopping the operation of the GPS receiving unit and starting the operation of the correlator. Furthermore, by making the speed of reading data from the memory faster than the speed of storing data in the memory, the speed of the correlation operation in the correlator can be increased, and the data from the GPS receiver is directly used. Compared with the case, the time required to capture all visible satellites can be reduced, and the total power consumption can be reduced accordingly.
[0014]
(Example 3)
FIG. 3 is an explanatory diagram of claim 3. Two curves in the drawing show curves of the carrier correlation value. The horizontal axis of the graph is the phase shift, the vertical axis is the carrier correlation value, and the point x plotted on the graph is the carrier correlation value obtained by the first to n-th correlators at a certain time. is there. The curve on the left is a curve of a carrier correlation value of a desired satellite (SV1), and the curve on the right is a curve of a carrier correlation value of another satellite (SV2) other than the desired satellite. When there is an obstruction between the desired satellite SV1 and the receiver and the receiving condition is poor, and there is little obstruction between the other satellite SV2 which is not the desired satellite and the receiver, the signal received from each satellite is thus obtained. The intensity may be approximately equal. In such a case, it is necessary to set a low threshold value represented by a broken line, and if the correlation value is only one point, the correlation of another satellite that is not the desired satellite is also the same as the correlation of the desired satellite. It can be mistaken. However, since the curve of the correlation value of another satellite that is not the desired satellite is generally steeper than the curve of the correlation value of the desired satellite, the sum of the correlation values represented by x is calculated, and the sum is used as a criterion. Accordingly, when the correlation is determined based on only one correlation value, it is possible to avoid occurrence of erroneous satellite lock in which the correlation value of another satellite other than the desired satellite is mistaken for the correlation value of the desired satellite.
[0015]
(Example 4)
FIG. 4 is an explanatory diagram of claim 4. In this example, when data output from the GPS receiving unit is stored in the memory, sampling is performed 2048 times per 1 ms, the time axis is shifted every 1 ms, and the data is overlapped by 3 ms, and another address of the memory is stored. In the example shown in FIG. Here, 1 ms corresponds to the code length of the C / A code that is open to the public among the pseudo noise codes (PN codes). When the data stored at the different address is read from the memory and sent to the correlator, the superimposed data also appears to the correlator as if sampling was performed 2048 times in 1 ms. The ratio is improved. This is because the carrier component has a correlation every 1 ms, which is the code length of the C / A code, but the noise component has a Gaussian distribution, and when superimposed, the increase rate of the carrier component exceeds the increase rate of the noise component. is there. As a result, with a simple circuit configuration, it is possible to increase the carrier-to-noise ratio and minimize the influence of noise components. In the case of performing a process of superimposing data in the memory by shifting the time axis as in this embodiment, a large amount of data to be stored in the memory is required. By omitting the above processing, the amount of data stored in the memory can be reduced and the processing can be speeded up.
[0016]
In the present embodiment, an example has been described in which data superimposed by shifting the time axis is stored at another address of the memory 13. However, as shown in the configuration of FIG. In the case where the adder 15 is arranged, the data of 3 ms in FIG. 4A is read out from the memory 13 in a short time within 1 ms and stored in the buffer of the adder 15, and as shown in FIG. The data after the addition by shifting the time axis may be output from the adder 15 to the correlator 16 at a rate of 2048 samples per ms. In this case, the capacity of the memory 13 can be reduced.
[0017]
【The invention's effect】
According to the first aspect of the present invention, it is possible to perform high-speed operation by temporarily storing a signal from the GPS receiving unit in the memory, and there is a problem of erroneous locking which is usually in a trade-off relation with high-speed operation. Can also be avoided. In addition, since the power supply to the GPS receiving unit can be cut off during a period in which a signal is being read from the memory, power consumption can be reduced and the circuit scale can be reduced.
[0018]
According to the second aspect of the present invention, a plurality of pseudo-noise code signals having the same frequency and shifted in phase are input to a plurality of correlators, and a correlation with a signal output from a switch is obtained, thereby obtaining the same satellite. By simultaneously generating a plurality of correlations having different phases with respect to the pseudo-noise code signal of the number, the peak of the carrier correlation value can be calculated at high speed.
According to the third aspect of the present invention, the sum of the plurality of carrier correlation values near the peak is obtained and compared with a predetermined threshold value. Can be prevented from being locked to the signal.
[0019]
According to the fourth aspect of the present invention, the process of sampling the signal from the GPS receiving unit a plurality of times during 1 ms which is the code length of the C / A code and storing it in the memory is continued for a predetermined time, and the sampling start time , The carrier-to-noise ratio can be reduced by inputting data obtained by superimposing the data corresponding to an integer multiple of 1 ms which is the code length of the C / A code by shifting the time axis every 1 ms to the correlator. The difference can be sensed between the Doppler frequency from the base station and the actual Doppler frequency.
[0020]
According to the fifth aspect of the present invention, the offset unique to the circuit obtained when the first satellite is captured and tracked is used at the time of capturing and tracking the second and subsequent satellites. The time required for satellite acquisition and tracking can be reduced.
According to the invention of claim 6, after capturing and tracking the first satellite, when capturing and tracking the second and subsequent satellites, a specific chip of the pseudo noise code of the first satellite and 2 The difference between the times of receiving the same chip of the pseudo-noise code of the second and subsequent satellites is calculated per chip number and transmitted to the base station, so the time required for acquisition and tracking of the second and subsequent satellites is reduced. Can be shortened.
According to the invention of claim 7, when the signal from the GPS receiving unit is stored in the memory, the amount of storage is variable, so that the correlation can be obtained at high speed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a GPS receiving terminal with a communication function of the present invention.
FIG. 2 is an explanatory diagram of the invention of claim 2;
FIG. 3 is an explanatory view of the invention of claim 3;
FIG. 4 is an explanatory view of the invention of claim 4;
FIG. 5 is an explanatory diagram showing a usage state of a conventional GPS receiving terminal with a communication function.
[Explanation of symbols]
Reference Signs List 10 GPS receiving terminal 11 GPS antenna 12 RF front end unit 13 Memory 14 Switcher 15 Adder 16 Correlator 17 Automatic tracking unit 18 Pseudo noise code generator 19 Control circuit 21 Communication means (GPS receiving terminal side)
22 Communication means (base station side)
30 base stations

Claims (7)

GPSアンテナと、GPSアンテナにより受信されたGPS信号を周波数変換するGPS受信部と、GPS受信部から出力される信号を蓄積するメモリと、メモリから読み出される信号とGPS受信部から出力される信号を切り替える切替器と、メモリから読み出された信号が切替器から出力されている期間にはGPS受信部の電源供給を遮断する制御回路と、端末位置等の演算機能を持つ基地局と信号をやり取りする通信手段と、通信手段により基地局から知らされた可視衛星の情報に基づいて可視衛星を捕捉するための疑似雑音符号信号を複数の異なる位相で発生させる疑似雑音符号信号発生器と、切替器から出力される信号と疑似雑音符号信号との相関を求める複数の相関器と、通信手段を介して基地局に送るべき位置計算用のデータを出力する複数の自動追跡部とを備えることを特徴とする通信機能付きGPS受信端末。A GPS antenna, a GPS receiver for frequency-converting a GPS signal received by the GPS antenna, a memory for storing a signal output from the GPS receiver, a signal read from the memory and a signal output from the GPS receiver. Signals are exchanged between a switch for switching, a control circuit for shutting off power supply to a GPS receiving unit during a period in which a signal read from a memory is output from the switch, and a base station having an arithmetic function for a terminal position and the like. Communication means, a pseudo-noise code signal generator for generating a pseudo-noise code signal for capturing a visible satellite at a plurality of different phases based on information on the visible satellite notified from the base station by the communication means, and a switch. And a plurality of correlators for obtaining a correlation between the signal output from the base station and the pseudo-noise code signal, and data for calculating the position to be transmitted to the base station via the communication means. GPS receiving terminal with a communication function, characterized in that it comprises a plurality of automatic tracking unit for outputting. 請求項1において、自動追跡部は相関器よりも少数とし、複数の相関器に同一周波数で位相をずらした複数の疑似雑音符号信号をそれぞれ入力し、切替器から出力される信号との相関を求めることにより、同一の衛星番号の疑似雑音符号信号について位相の異なる複数の相関を同時に発生させ、キャリア相関値がピークとなる位相を1つの自動追跡部の位相同期に用いることを特徴とする通信機能付きGPS受信端末。In claim 1, the number of auto-tracking units is smaller than the number of correlators, a plurality of pseudo-noise code signals having the same frequency and shifted in phase are input to a plurality of correlators, and the correlation with the signal output from the switch is determined. A plurality of correlations having different phases are simultaneously generated with respect to the pseudo-noise code signals having the same satellite number, and a phase having a peak carrier correlation value is used for phase synchronization of one automatic tracking unit. GPS receiver with function. 請求項2において、ピーク近傍の複数のキャリア相関値の和を予め決められた閾値と比較することを特徴とする通信機能付きGPS受信端末。3. The GPS receiving terminal with a communication function according to claim 2, wherein a sum of a plurality of carrier correlation values near the peak is compared with a predetermined threshold. 請求項1において、GPS受信部からの信号を、C/Aコードのコード長である1msの間に複数回サンプリングしてメモリに蓄積する処理を所定の時間継続し、サンプリング開始時刻からC/Aコードのコード長である1msの整数倍の長さ分のデータについて、1ms毎に時間軸をシフトさせて重ね合わせたデータを相関器の入力とすることを特徴とする通信機能付きGPS受信端末。2. The method according to claim 1, wherein the process of sampling the signal from the GPS receiving unit a plurality of times during 1 ms, which is the code length of the C / A code, and accumulating the signal in the memory is continued for a predetermined period of time. A GPS receiving terminal with a communication function, characterized in that, for data corresponding to an integral multiple of 1 ms, which is the code length of the code, data obtained by superimposing the data by shifting the time axis every 1 ms is input to the correlator. 請求項1において、1つ目の衛星を捕捉・追跡したときに求まる回路に固有のオフセットを、2つ目以降の衛星の捕捉・追跡時に流用することを特徴とする通信機能付きGPS受信端末。2. The GPS receiving terminal with a communication function according to claim 1, wherein an offset unique to a circuit obtained when the first satellite is captured and tracked is used when capturing and tracking the second and subsequent satellites. 請求項1において、1つ目の衛星を捕捉・追跡した後、2つ目以降の衛星を捕捉・追跡する際に、1つ目の衛星の疑似雑音符号の特定のチップと2つ目以降の衛星の疑似雑音符号の同じチップを受信する時間の差をチップ数単位で演算し、基地局に送信することを特徴とする通信機能付きGPS受信端末。2. The method according to claim 1, wherein after capturing and tracking the first satellite, when capturing and tracking the second and subsequent satellites, a specific chip of the pseudo noise code of the first satellite and the second and subsequent satellites are used. A GPS receiving terminal with a communication function, which calculates a difference in time for receiving the same chip with a pseudo noise code of a satellite in units of the number of chips and transmits the result to a base station. 請求項1において、GPS受信部からの信号をメモリに蓄積する際に、その蓄積する量を可変としたことを特徴とする通信機能付きGPS受信端末。2. The GPS receiving terminal with a communication function according to claim 1, wherein when the signal from the GPS receiving unit is stored in the memory, the amount of storage is variable.
JP06761299A 1999-03-12 1999-03-12 GPS receiving terminal with communication function Expired - Fee Related JP3543665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06761299A JP3543665B2 (en) 1999-03-12 1999-03-12 GPS receiving terminal with communication function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06761299A JP3543665B2 (en) 1999-03-12 1999-03-12 GPS receiving terminal with communication function

Publications (2)

Publication Number Publication Date
JP2000266834A JP2000266834A (en) 2000-09-29
JP3543665B2 true JP3543665B2 (en) 2004-07-14

Family

ID=13349962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06761299A Expired - Fee Related JP3543665B2 (en) 1999-03-12 1999-03-12 GPS receiving terminal with communication function

Country Status (1)

Country Link
JP (1) JP3543665B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012137A4 (en) 2006-04-27 2010-03-24 Seiko Epson Corp Global positioning device, global positioning control method, global positioning control program, and recording medium
TW200905232A (en) * 2007-07-20 2009-02-01 Cheng Chieh Technology Co Ltd Patients positing system for medical-care use
JP2008233103A (en) * 2008-05-19 2008-10-02 Seiko Epson Corp Positioning device, its control method, its control program, and recording medium
JP2008233102A (en) * 2008-05-19 2008-10-02 Seiko Epson Corp Positioning device, its control method, its control program, and recording medium
JP2008261870A (en) * 2008-05-19 2008-10-30 Seiko Epson Corp Positioning device, control method of positioning device, its control program and recording medium
JP5338708B2 (en) * 2010-02-19 2013-11-13 カシオ計算機株式会社 Satellite signal receiver
JP5695839B2 (en) * 2010-04-09 2015-04-08 株式会社Kodenホールディングス Receiver
JP5556332B2 (en) * 2010-04-22 2014-07-23 株式会社デンソー Receiver
JP5664053B2 (en) * 2010-09-16 2015-02-04 カシオ計算機株式会社 Satellite signal receiver
JP2014002164A (en) * 2013-08-08 2014-01-09 Casio Comput Co Ltd Satellite signal receiving apparatus
JP2014240843A (en) * 2014-08-25 2014-12-25 株式会社Kodenホールディングス Receiver

Also Published As

Publication number Publication date
JP2000266834A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
JP3947732B2 (en) Correlator for spread spectrum receiver.
US6459405B1 (en) Satellite-based location system employing knowledge-based sequential signal search strategy
US6480150B2 (en) Autonomous hardwired tracking loop coprocessor for GPS and WAAS receiver
JP3543665B2 (en) GPS receiving terminal with communication function
CN102037658B (en) Multiple correlation processing in code space search
JP2002511200A (en) Efficient GPS receiver for signal acquisition
JP2002512741A (en) A low power parallel correlator for measuring correlation between digital signal segments.
JP4399165B2 (en) Method and apparatus for processing GPS signals with a matched filter
JP2002513519A (en) Frequency offset removal before acquisition in GPS receiver
US20030118086A1 (en) Method for performing reacquisition in a positioning receiver, and an electronic device
US20020186794A1 (en) Radiofrequency signal receiver with means for correcting the effects of multipath signals, and method for activating the receiver
US7106783B2 (en) Method and apparatus for searching multipaths of mobile communication system
KR20070011386A (en) Positioning receiver
EP1545019A1 (en) GPS receiver using differential correlation
US7821452B2 (en) Positioning device, positioning control method, and recording medium
JP2003520548A (en) Method and device for detecting a carrier frequency of a base station in a mobile receiver of a cellular mobile radio system functioning with W-CDMA
EP2211203B1 (en) Navigation system with a signal processor
JP2008209287A (en) Satellite navigation receiver
US7499485B2 (en) Method and apparatus for detecting GPS data-bit boundaries and detecting GPS satellite-signal reception
JP2943376B2 (en) Spread spectrum signal demodulator
JP3445186B2 (en) CDMA receiver
JP2003084055A (en) Method of capturing transmission source, and receiver
JP3792145B2 (en) Correlation value identification method
KR101049836B1 (en) Method and apparatus for reducing code phase search space
JP3188516B2 (en) GPS receiver signal processing circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees