JP3543505B2 - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
JP3543505B2
JP3543505B2 JP21141196A JP21141196A JP3543505B2 JP 3543505 B2 JP3543505 B2 JP 3543505B2 JP 21141196 A JP21141196 A JP 21141196A JP 21141196 A JP21141196 A JP 21141196A JP 3543505 B2 JP3543505 B2 JP 3543505B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
output shaft
generator motor
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21141196A
Other languages
Japanese (ja)
Other versions
JPH1054262A (en
Inventor
幸蔵 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP21141196A priority Critical patent/JP3543505B2/en
Publication of JPH1054262A publication Critical patent/JPH1054262A/en
Application granted granted Critical
Publication of JP3543505B2 publication Critical patent/JP3543505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dc Machiner (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハイブリッド型車両に関するものである。
【0002】
【従来の技術】
従来、内燃エンジンと発電機モータとを連結し、内燃エンジンを駆動することによって発生させた出力の一部を発電機モータに伝達し、残りを出力軸に伝達するようにしたハイブリッド型車両が提供されている。
この場合、通常は、前記出力軸に伝達された出力によってハイブリッド型車両を走行させ、その間に、前記発電機モータによって発生させた電流を蓄電手段としてのバッテリに送って充電することができる。そして、発進時において、バッテリからの電流によって電気モータを駆動し、該電気モータのトルクによってハイブリッド型車両を走行させるようになっている(USP3,566,717号公報参照)。
【0003】
この場合、内燃エンジンを効率の高い領域で駆動することができるので、燃費を良くすることができる。また、内燃エンジンを比較的定常的に駆動することができるので、排ガスを少なくすることができる。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来のハイブリッド型車両においては、電気モータ、モータ制御装置等の電気モータ駆動系が故障した場合に、内燃エンジンだけを駆動してハイブリッド型車両を発進させることになるので、駆動力が不足する恐れがある。
【0005】
また、内燃エンジンを駆動することによって発生させた出力を分割するために、プラネタリギヤユニットを使用しているので、電気モータ駆動系が故障すると、内燃エンジンの反力を発電機モータで受けることになり、発進時に常に発電が行われてしまう。したがって、例えば、渋滞路を走行させる場合に発進が繰り返されると、発電ばかりが行われてしまう。
【0006】
そして、バッテリの容量が小さい場合には、蓄電残量、すなわち、バッテリ残量が過度に多くなり、過充電になってバッテリを損傷させてしまう。
本発明は、前記従来のハイブリッド型車両の問題点を解決して、電気モータ駆動系が故障した場合に、駆動力が不足することがなく、蓄電手段の蓄電残量が過度に多くなって蓄電手段を損傷させることがないハイブリッド型車両を提供することを目的とする。
【0007】
【課題を解決するための手段】
そのために、本発明のハイブリッド型車両においては、内燃エンジンと、発電機モータと、駆動輪と連結される出力軸と、前記内燃エンジン、発電機モータ及び出力軸のそれぞれと連結され、前記内燃エンジンの出力を発電機モータ及び出力軸に配分する出力配分装置と、出力軸に連結された電気モータと、蓄電手段と、前記内燃エンジンと出力配分装置との間に配設され、伝達される回転を停止させる回転停止手段と、電気モータ駆動系の故障を検出する故障検出手段と、走行必要負荷を検出する負荷検出手段と、前記蓄電手段の蓄電残量を検出する蓄電残量検出手段と、車速を検出する車速検出手段と、電気モータ駆動系の故障が検出されたときに、前記走行必要負荷、蓄電残量及び車速に基づいて、内燃エンジン及び発電機モータを選択的に駆動する選択駆動手段とを有する。
【0008】
本発明の他のハイブリッド型車両においては、さらに、前記選択駆動手段は、車速が設定値以上である場合は内燃エンジンを駆動し、車速が設定値未満である場合は、走行必要負荷、蓄電残量及び車速に基づいて内燃エンジン及び発電機モータの一方を駆動する。
本発明の更に他のハイブリッド型車両においては、さらに、前記回転停止手段はワンウェイクラッチである。
【0009】
本発明の更に他のハイブリッド型車両においては、さらに、前記内燃エンジンと回転停止手段との間にクラッチが配設される。
本発明の更に他のハイブリッド型車両においては、さらに、前記回転停止手段はブレーキである。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
図2は本発明の第1の実施の形態におけるハイブリッド型車両の駆動装置の概念図である。
図において、11は内燃エンジン(E/G)であり、該内燃エンジン11は図示しないラジエータ等の冷却装置に接続され、前記内燃エンジン11において発生させられた熱は冷却装置によって放出される。また、12は前記内燃エンジン11の回転が伝達される出力軸、13は該出力軸12を介して入力された回転に対して変速を行うとともに、出力を配分する出力配分装置としてのプラネタリギヤユニット(差動歯車装置)、14は該プラネタリギヤユニット13における変速後の回転が出力される出力軸、15は該出力軸14に固定された第1カウンタドライブギヤ、16は伝達軸17を介して前記プラネタリギヤユニット13と連結された発電機モータ(G)である。
【0011】
前記内燃エンジン11とプラネタリギヤユニット13との間には、前記出力軸12とケーシング19とを選択的に連結して、出力軸12に伝達される回転を停止させる回転停止手段としてのワンウェイクラッチFが配設される。該ワンウェイクラッチFは、内燃エンジン11が正方向に回転しているときにフリーになり、出力軸12が内燃エンジン11を逆方向に回転させようとするときにロックする。
【0012】
前記出力軸14はスリーブ形状を有し、前記出力軸12を包囲して配設される。また、前記第1カウンタドライブギヤ15はプラネタリギヤユニット13より内燃エンジン11側に配設される。
前記プラネタリギヤユニット13は、第1の歯車要素としてのサンギヤS、該サンギヤSと噛(し)合するピニオンP、該ピニオンPと噛合する第2の歯車要素としてのリングギヤR、及び前記ピニオンPを回転自在に支持する第3の歯車要素としてのキャリヤCRから成る。
【0013】
また、前記サンギヤSは前記伝達軸17を介して発電機モータ16と、リングギヤRは前記出力軸14を介して第1カウンタドライブギヤ15と、キャリヤCRは出力軸12を介して内燃エンジン11とそれぞれ連結される。
さらに、前記発電機モータ16は、前記伝達軸17に固定され、回転自在に配設されたロータ21、該ロータ21の周囲に配設されたステータ22、及び該ステータ22に巻装されたコイル23から成る。そして、前記発電機モータ16は、伝達軸17を介して伝達される回転、すなわち、内燃エンジン11の出力の一部を受けて電力を発生させる。また、前記コイル23は図示しない蓄電手段としてのバッテリに接続され、該バッテリに電流が供給され充電される。そして、前記ロータ21には、ケーシング19に連結された図示しないブレーキが配設され、該ブレーキを係合させることによってロータ21を停止させることができるようになっている。
【0014】
また、25は電気モータ(M)、26は該電気モータ25の回転が出力される出力軸、27は該出力軸26に固定された第2カウンタドライブギヤである。前記電気モータ25は、前記出力軸26に固定され、回転自在に配設されたロータ37、該ロータ37の周囲に配設されたステータ38、及び該ステータ38に巻装されたコイル39から成る。
【0015】
前記電気モータ25は、コイル39に供給される電流によってトルクを発生させる。そのために、前記コイル39は前記バッテリに接続され、該バッテリから電流が供給されるようになっている。また、ハイブリッド型車両の減速時において、前記電気モータ25は図示しない駆動輪から回転を受けて回生電流を発生させ、該回生電流をバッテリに供給して充電する。
【0016】
ところで、前記駆動輪を内燃エンジン11の回転と同じ方向に回転させるためにカウンタシャフト31が配設され、該カウンタシャフト31にカウンタドリブンギヤ32が固定される。そして、該カウンタドリブンギヤ32と前記第1カウンタドライブギヤ15とが、また、カウンタドリブンギヤ32と前記第2カウンタドライブギヤ27とがそれぞれ噛合させられ、前記第1カウンタドライブギヤ15の回転及び第2カウンタドライブギヤ27の回転がそれぞれ反転されてカウンタドリブンギヤ32に伝達されるようになっている。
【0017】
さらに、前記カウンタシャフト31には、前記カウンタドリブンギヤ32より歯数が少ないデフピニオンギヤ33が固定される。
そして、デフリングギヤ35が配設され、該デフリングギヤ35と前記デフピニオンギヤ33とが噛合させられる。また、前記デフリングギヤ35にディファレンシャル装置36が固定され、前記デフリングギヤ35に伝達された回転がディファレンシャル装置36によって分配され、前記駆動輪に伝達される。
【0018】
このように、内燃エンジン11によって発生させられた回転をカウンタドリブンギヤ32に伝達することができるだけでなく、電気モータ25によって発生させられた回転もカウンタドリブンギヤ32に伝達することができる。また、ワンウェイクラッチFが発電機モータ16の反力を受けることにより、発電機モータ16によって発生させられた回転もカウンタドリブンギヤ32に伝達することができるので、電気モータ25及び発電機モータ16を駆動するモータ・発電機モータ駆動モード、並びに電気モータ25及び内燃エンジン11を駆動するモータ・エンジン駆動モードでハイブリッド型車両を走行させることができる。
【0019】
そして、前記発電機モータ16を制御することによって、前記伝達軸17の回転数を制御し、内燃エンジン11及び電気モータ25をそれぞれ最大効率点で駆動することができる。
次に、前記構成のハイブリッド型車両の動作について説明する。
図3は本発明の第1の実施の形態におけるプラネタリギヤユニットの概念図、図4は本発明の第1の実施の形態における通常走行時のトルク線図、図5は本発明の第1の実施の形態における低速走行時の速度線図である。
【0020】
本実施の形態においては、図3に示すように、プラネタリギヤユニット13(図2)、リングギヤRを介して出力軸14に、キャリヤCRを介して内燃エンジン11に、サンギヤSを介して発電機モータ16にそれぞれ連結され、リングギヤRの歯数をサンギヤSの歯数の2倍にしてある。したがって、内燃エンジン11のトルク(以下「エンジントルク」という。)をTEとし、出力軸14に出力されたトルク(以下「出力トルク」という。)をTOUTとし、発電機モータ16のトルク(以下「発電機モータトルク」という。)をTGとしたとき、
TE:TOUT:TG=3:2:1
になり、通常走行時は、図4に示すように、内燃エンジン11、出力軸14及び発電機モータ16が互いに反力を受け合う。
【0021】
また、内燃エンジン11の回転数(以下「エンジン回転数」という。)をNEとし、出力軸14の回転数(以下「出力軸回転数」という。)をNOUTとし、発電機モータ16の回転数(以下「発電機モータ回転数」という。)をNGとしたとき、モータ・発電機モータ駆動モードにおいて、前記発電機モータ16をモータとして駆動し、内燃エンジン11を停止させると、図5に示すように、エンジントルクTEは発生させられず、エンジン回転数NEは0になる。この場合、発電機モータ16を発電機モータ回転数NGで駆動すると、ワンウェイクラッチFは、出力軸12が内燃エンジン11を逆方向に回転させようとするのを阻止するので、発電機モータトルクTGの反力TFは、ワンウェイクラッチFを介して図示しない駆動装置ケースによって受けられる。なお、このとき、出力軸14は出力軸回転数NOUTで回転させられる。
【0022】
次に、ハイブリッド型車両の駆動力について説明する。
図6は本発明の第1の実施の形態における車速と駆動力との関係図である。なお、図において、横軸に車速Vを、縦軸に駆動力を採ってある。
ハイブリッド型車両の駆動力をQとし、トルクをTW とし、ギヤ比をrとし、図示しない駆動輪のタイヤの半径をRとしたとき、駆動力Qは、
Q=TW ・r/R
で表すことができる。
【0023】
そして、電気モータ25(図2)の駆動力をQMとし、発電機モータ16の駆動力をQGとし、内燃エンジン11の駆動力をQEとする。
一般に、発電機モータ16の駆動力QGは車速Vが低いほど大きい。例えば、車速Vが30〔km/h〕未満の場合、発電機モータ16の駆動力QGは内燃エンジン11の駆動力QEより大きくなる。
【0024】
電気モータ25等の電気モータ駆動系が故障した場合に、内燃エンジン11だけでハイブリッド型車両を走行させると、特に大きな駆動力を必要とする低車速時に駆動力が不足するが、本実施の形態においては、車速Vが30〔km/h〕未満の場合、内燃エンジン11を停止させ、発電機モータ16の駆動力QGによってハイブリッド型車両を走行させることにより、内燃エンジン11だけでハイブリッド型車両を走行させる場合よりも大きな駆動力を得ることができる。
【0025】
図1は本発明の第1の実施の形態におけるハイブリッド型車両の制御回路ブロック図、図7は本発明の第1の実施の形態における駆動手段選択マップを示す図、図8は本発明の第1の実施の形態におけるハイブリッド型車両の動作を示すメインルーチンのフローチャート、図9は本発明の第1の実施の形態における故障処理のサブルーチンのフローチャートである。なお、図7において、横軸にバッテリ残量βを、縦軸に図示しない負荷検出手段によって検出された走行必要負荷、すなわち、アクセルペダル52の踏込量(以下「アクセル開度」という。)αを採ってある。
【0026】
図において、11は内燃エンジン、16は発電機モータ、25は電気モータである。また、41は駆動輪、43は蓄電手段としてのバッテリ、44は該バッテリ43のバッテリ残量βを検出する蓄電残量検出手段としてのバッテリ残量検出装置である。
そして、46は前記内燃エンジン11を制御して駆動したり停止させたりするエンジン制御装置、47は前記発電機モータ16を制御する発電機モータ制御装置、49は前記電気モータ25を制御するモータ制御装置である。なお、内燃エンジン11は、図示しないイグニッションスイッチをオフにしたり、スロットル開度を0にしたりすることによって停止させることができる。
【0027】
また、51はハイブリッド型車両の全体を制御するCPUであり、該CPU51は、アクセル開度α、及び車速検出手段としての車速センサ53によって検出された車速Vを受けて、前記エンジン制御装置46、発電機モータ制御装置47及びモータ制御装置49を制御する。
そして、前記負荷検出手段はアクセル信号を、車速センサ53は車速信号を、バッテリ残量検出装置44はバッテリ残量信号をそれぞれCPU51に対して出力する。
【0028】
また、前記モータ制御装置49の図示しない故障検出手段は、前記電気モータ25、モータ制御装置49等の電気モータ駆動系が故障したときに、故障を検出し、故障検出信号を発生させ、CPU51に対して出力する。
ところで、前記電気モータ25、モータ制御装置49等の電気モータ駆動系が故障した場合に、内燃エンジン11だけを駆動してハイブリッド型車両を発進させると、図6に示すように前記駆動力Qが不足する恐れがある。
【0029】
そこで、CPU51の図示しない選択駆動手段は、前記故障検出手段から故障検出信号を受けると、故障が発生したと判断し、車速Vが30〔km/h〕以上である場合は、内燃エンジン11だけを駆動してハイブリッド型車両を走行させる。
また、前記選択駆動手段は、車速Vが30〔km/h〕未満である場合は、図示しないメモリに格納された図7に示すような駆動手段選択マップを参照し、駆動手段として内燃エンジン11又は発電機モータ16を選択し、選択された駆動手段を駆動してハイブリッド型車両を走行させる。
【0030】
この場合、図6に示すように、内燃エンジン11の駆動力QEは小さく、アクセルペダル52を急激に踏み込んでも駆動力QEを大きくすることはできない。また、急激にエンジン回転数を変化させると排ガスの量が多くなってしまう。
そこで、前記駆動手段選択マップにおいて、アクセル開度αが大きいほど発電機モータ16を駆動する領域が広くされる。また、車速Vが高いほど内燃エンジン11を駆動する領域が広くされる。
【0031】
そして、アクセル開度α及びバッテリ残量βを駆動条件とし、該駆動条件に基づいて駆動手段が選択される。すなわち、バッテリ残量βが80〔%〕以上であるときは、発電機モータ16だけを駆動し、バッテリ残量βが30〔%〕未満であるときは、内燃エンジン11だけを駆動し、発電機モータ16は発電機として使用される。また、バッテリ残量βが30〔%〕以上80〔%〕未満であるときは、アクセル開度α、バッテリ残量β及び車速Vに基づいて、内燃エンジン11又は発電機モータ16を駆動する。
【0032】
例えば、アクセル開度αが70〔%〕、バッテリ残量βが50〔%〕であるときに、車速Vが20〔km/h〕未満であるときは発電機モータ16を駆動してハイブリッド型車両を走行させ、車速Vが20〔km/h〕以上であるときは内燃エンジン11を駆動してハイブリッド型車両を走行させる。
次に、図8のメインルーチンのフローチャートについて説明する。
ステップS1 電気モータ駆動系が故障しているかどうかを判断する。故障している場合はステップS2に、故障していない場合はステップS3に進む。
ステップS2 故障処理を行う。
ステップS3 通常処理を行い、ハイブリッド型車両を通常走行させる。
【0033】
次に、図9の故障処理のサブルーチンのフローチャートについて説明する。
ステップS2−1 アクセル開度α、バッテリ残量β及び車速Vを読み込む。
ステップS2−2 車速Vが30〔km/h〕未満であるかどうかを判断する。車速Vが30〔km/h〕未満である場合はステップS2−6に、30〔km/h〕以上である場合はステップS2−3に進む。
ステップS2−3 内燃エンジン11が駆動されているかどうかを判断する。内燃エンジン11が駆動されている場合はステップS2−5に、駆動されていない場合はステップS2−4に進む。
ステップS2−4 内燃エンジン11を始動する。
ステップS2−5 エンジン駆動処理を行い、内燃エンジン11を駆動する。
ステップS2−6 駆動手段選択マップを参照して駆動条件を判断する。バッテリ残量βが80〔%〕以上であるときはステップS2−7に、バッテリ残量βが30〔%〕未満であるときはステップS2−3に、バッテリ残量βが30〔%〕以上80〔%〕未満であるときは、アクセル開度α、バッテリ残量β及び車速Vに基づいて、ステップS2−7又はステップS2−3に進む。
ステップS2−7 内燃エンジン11が駆動されているかどうかを判断する。内燃エンジン11が駆動されている場合はステップS2−8に、駆動されていない場合はステップS2−9に進む。
ステップS2−8 内燃エンジン11を停止させる。
ステップS2−9 発電機モータ駆動処理を行い、発電機モータ16を駆動する。
【0034】
次に、本発明の第2の実施の形態について説明する。
図10は本発明の第2の実施の形態におけるハイブリッド型車両の駆動装置の概念図である。なお、第1の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。
本実施の形態においては、出力軸12とケーシング19との間に回転停止手段としての湿式摩擦係合要素、すなわち、ブレーキBが配設され、該ブレーキBを係脱するために図示しないブレーキ制御装置が前記CPU51(図1)に接続される。そして、該CPU51は、アクセル開度αが80〔%〕以上で、かつ、車速Vが30〔km/h〕未満の場合に、内燃エンジン11を停止させ、前記ブレーキBを係合させるとともに、発電機モータ16に電流IMを供給する。
【0035】
次に、本発明の第3の実施の形態について説明する。
図11は本発明の第3の実施の形態におけるハイブリッド型車両の駆動装置の概念図である。なお、第1の実施の形態と同じ構造を有するものについては、同じ符号を付与することによってその説明を省略する。
本実施の形態においては、内燃エンジン11と出力軸12との間にクラッチCが配設され、前記出力軸12とケーシング19との間に回転停止手段としてのワンウェイクラッチFが配設される。また、前記クラッチCを係脱するために図示しないクラッチ制御装置が前記CPU51(図1)に接続される。そして、該CPU51は、アクセル開度αが80〔%〕以上で、かつ、車速Vが30〔km/h〕未満の場合に、前記クラッチCを解放させるとともに、発電機モータ16に電流IMを供給する。
【0036】
この場合、発電機モータ16の駆動力QGによって、ハイブリッド型車両を走行させるが、この間、前記クラッチCが解放されるので、内燃エンジン11を停止させる必要がない。
次に、本発明の第4の実施の形態について説明する。
図12は本発明の第4の実施の形態におけるハイブリッド型車両の駆動装置の概念図である。
【0037】
図において、11は内燃エンジン(E/G)、12は出力軸であり、該出力軸12に発電機モータ(G)66が連結される。また、前記出力軸12とケーシング19との間に、回転停止手段としてのワンウェイクラッチFが配設される。
前記発電機モータ66は、回転自在に配設されたロータ71、該ロータ71の周囲において回転自在に配設されたステータ72、及び該ステータ72に巻装されたコイル73から成る。前記発電機モータ66は、出力軸12を介して伝達される回転、すなわち、内燃エンジン11の出力の一部を受けて電力を発生させる。前記コイル73は図示しないバッテリに接続され、該バッテリに電流を供給し充電する。
【0038】
また、25は電気モータ(M)、14は該電気モータ25の回転が出力される出力軸、75は該出力軸14に固定されたカウンタドライブギヤである。前記電気モータ25は、前記出力軸14に固定され、回転自在に配設されたロータ37、該ロータ37の周囲に配設されたステータ38、及び該ステータ38に巻装されたコイル39から成る。
【0039】
前記電気モータ25は、コイル39に供給される電流によってトルクを発生させる。そのために、前記コイル39はバッテリに接続され、該バッテリから電流が供給されるようになっている。また、ハイブリッド型車両の減速時において、前記電気モータ25は駆動輪41(図1)から回転を受けて回生電流を発生させ、該回生電流をバッテリに供給して充電する。
【0040】
そして、前記駆動輪41を内燃エンジン11の回転と同じ方向に回転させるためにカウンタシャフト31が配設され、該カウンタシャフト31にカウンタドリブンギヤ32が固定される。前記カウンタシャフト31には前記カウンタドリブンギヤ32より歯数が少ないデフピニオンギヤ33が固定される。
そして、デフリングギヤ35が配設され、該デフリングギヤ35と前記デフピニオンギヤ33とが噛合させられる。また、前記デフリングギヤ35にディファレンシャル装置36が固定され、前記デフリングギヤ35に伝達された回転がディファレンシャル装置36によって分配させられ、前記駆動輪41に伝達される。
【0041】
なお、前記ワンウェイクラッチFは、内燃エンジン11が正方向に回転しているときにフリーになり、出力軸12が内燃エンジン11を逆方向に回転させようとするときにロックする。
この場合、内燃エンジン11を停止させ、発電機モータ66の駆動力QGによって、ハイブリッド型車両を走行させることができる。
【0042】
【発明の効果】
以上詳細に説明したように、本発明によれば、ハイブリッド型車両においては、内燃エンジンと、発電機モータと、駆動輪と連結される出力軸と、前記内燃エンジン、発電機モータ及び出力軸のそれぞれと連結され、前記内燃エンジンの出力を発電機モータ及び出力軸に配分する出力配分装置と、出力軸に連結された電気モータと、蓄電手段と、前記内燃エンジンと出力配分装置との間に配設され、伝達される回転を停止させる回転停止手段と、電気モータ駆動系の故障を検出する故障検出手段と、走行必要負荷を検出する負荷検出手段と、前記蓄電手段の蓄電残量を検出する蓄電残量検出手段と、車速を検出する車速検出手段と、電気モータ駆動系の故障が検出されたときに、前記走行必要負荷、蓄電残量及び車速に基づいて、内燃エンジン及び発電機モータを選択的に駆動する選択駆動手段とを有する。
【0043】
この場合、内燃エンジンからの出力は出力配分装置によって配分され、出力の一部は発電機モータに伝達され、残りは出力軸に伝達される。
また、内燃エンジンを停止させ、発電機モータを駆動すると、前記回転停止手段は、内燃エンジンを逆方向に回転させようとするのを阻止する。
そして、故障検出手段が電気モータ駆動系の故障を検出すると、選択駆動手段は、前記走行必要負荷、蓄電残量及び車速に基づいて、内燃エンジン及び発電機モータを選択的に駆動する。
【0044】
したがって、電気モータ駆動系が故障したときに、内燃エンジン及び発電機モータが選択されて駆動されるので、駆動力が不足する恐れがなくなる。
また、例えば、渋滞路を走行させる場合に発進が繰り返されても、発電機モータを駆動することができるので、蓄電手段の蓄電残量が過度に多くなるのを防止することができ、蓄電手段を損傷させることがなくなる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態におけるハイブリッド型車両の制御回路ブロック図である。
【図2】本発明の第1の実施の形態におけるハイブリッド型車両の駆動装置の概念図である。
【図3】本発明の第1の実施の形態におけるプラネタリギヤユニットの概念図である。
【図4】本発明の第1の実施の形態における通常走行時のトルク線図である。
【図5】本発明の第1の実施の形態における低速走行時の速度線図である。
【図6】本発明の第1の実施の形態における車速と駆動力との関係図である。
【図7】本発明の第1の実施の形態における駆動手段選択マップを示す図である。
【図8】本発明の第1の実施の形態におけるハイブリッド型車両の動作を示すメインルーチンのフローチャートである。
【図9】本発明の第1の実施の形態における故障処理のサブルーチンのフローチャートである。
【図10】本発明の第2の実施の形態におけるハイブリッド型車両の駆動装置の概念図である。
【図11】本発明の第3の実施の形態におけるハイブリッド型車両の駆動装置の概念図である。
【図12】本発明の第4の実施の形態におけるハイブリッド型車両の駆動装置の概念図である。
【符号の説明】
11 内燃エンジン
12 出力軸
13 プラネタリギヤユニット
16、66 発電機モータ
25 電気モータ
43 バッテリ
44 バッテリ残量検出装置
49 モータ制御装置
51 CPU
53 車速センサ
α アクセル開度
β バッテリ残量
B ブレーキ
C クラッチ
F ワンウェイクラッチ
V 車速
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hybrid vehicle.
[0002]
[Prior art]
Conventionally, there is provided a hybrid vehicle in which an internal combustion engine and a generator motor are connected, a part of an output generated by driving the internal combustion engine is transmitted to the generator motor, and the rest is transmitted to an output shaft. Have been.
In this case, normally, the hybrid vehicle can be driven by the output transmitted to the output shaft, and during that time, the current generated by the generator motor can be sent to the battery as the storage means to be charged. When the vehicle starts moving, the electric motor is driven by the current from the battery, and the hybrid vehicle is driven by the torque of the electric motor (see US Pat. No. 3,566,717).
[0003]
In this case, the internal combustion engine can be driven in a region with high efficiency, so that fuel efficiency can be improved. Further, since the internal combustion engine can be driven relatively constantly, the amount of exhaust gas can be reduced.
[0004]
[Problems to be solved by the invention]
However, in the conventional hybrid vehicle, when an electric motor drive system such as an electric motor or a motor control device fails, only the internal combustion engine is driven to start the hybrid vehicle. There is a risk of running short.
[0005]
In addition, since the planetary gear unit is used to divide the output generated by driving the internal combustion engine, if the electric motor drive system fails, the reaction force of the internal combustion engine is received by the generator motor. However, power is always generated at the start. Therefore, for example, if the vehicle is repeatedly started when traveling on a congested road, only power generation is performed.
[0006]
When the capacity of the battery is small, the remaining power of the battery, that is, the remaining battery power becomes excessively large, and the battery is overcharged and the battery is damaged.
The present invention solves the above-mentioned problems of the conventional hybrid vehicle, and when the electric motor drive system fails, the driving power does not run short, and the remaining power of the power storage means becomes excessively large. It is an object of the present invention to provide a hybrid vehicle that does not damage the means.
[0007]
[Means for Solving the Problems]
Therefore, in the hybrid vehicle according to the present invention, the internal combustion engine, the generator motor, an output shaft connected to driving wheels, and the internal combustion engine, the generator motor and the output shaft are connected to the internal combustion engine, respectively. Power distribution device that distributes the output of the motor to the generator motor and the output shaft, an electric motor connected to the output shaft, power storage means, and rotation transmitted and transmitted between the internal combustion engine and the power distribution device. Rotation stop means for stopping, a failure detection means for detecting a failure of the electric motor drive system, a load detection means for detecting a required load for traveling, a remaining charge detection means for detecting the remaining charge of the storage means, A vehicle speed detecting means for detecting a vehicle speed, and when a failure of the electric motor drive system is detected, an internal combustion engine and a generator motor are selected based on the required running load, the remaining power and the vehicle speed. And a selection drive means for driven.
[0008]
In another hybrid vehicle according to the present invention, the selective driving means drives the internal combustion engine when the vehicle speed is equal to or higher than a set value, and when the vehicle speed is lower than the set value, the required driving load and the remaining charge. One of the internal combustion engine and the generator motor is driven based on the quantity and the vehicle speed.
In still another hybrid vehicle according to the present invention, the rotation stopping means is a one-way clutch.
[0009]
In still another hybrid vehicle according to the present invention, a clutch is further provided between the internal combustion engine and the rotation stopping means.
In still another hybrid vehicle according to the present invention, the rotation stopping means is a brake.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 is a conceptual diagram of a drive device for a hybrid vehicle according to the first embodiment of the present invention.
In the figure, reference numeral 11 denotes an internal combustion engine (E / G). The internal combustion engine 11 is connected to a cooling device such as a radiator (not shown), and heat generated in the internal combustion engine 11 is released by the cooling device. Reference numeral 12 denotes an output shaft to which the rotation of the internal combustion engine 11 is transmitted, and reference numeral 13 denotes a planetary gear unit as an output distribution device that performs a speed change with respect to the rotation input through the output shaft 12 and distributes the output. A differential gear device), 14 is an output shaft from which rotation after the speed change in the planetary gear unit 13 is output, 15 is a first counter drive gear fixed to the output shaft 14, 16 is the planetary gear via a transmission shaft 17. A generator motor (G) connected to the unit 13.
[0011]
A one-way clutch F is provided between the internal combustion engine 11 and the planetary gear unit 13 as a rotation stopping means for selectively connecting the output shaft 12 and the casing 19 to stop rotation transmitted to the output shaft 12. Will be arranged. The one-way clutch F becomes free when the internal combustion engine 11 is rotating in the forward direction, and locks when the output shaft 12 tries to rotate the internal combustion engine 11 in the reverse direction.
[0012]
The output shaft 14 has a sleeve shape and is disposed so as to surround the output shaft 12. The first counter drive gear 15 is disposed closer to the internal combustion engine 11 than the planetary gear unit 13.
The planetary gear unit 13 includes a sun gear S serving as a first gear element, a pinion P meshing (engaging) with the sun gear S, a ring gear R serving as a second gear element meshing with the pinion P, and the pinion P. It comprises a carrier CR as a third gear element rotatably supported.
[0013]
The sun gear S is connected to the generator motor 16 via the transmission shaft 17, the ring gear R is connected to the first counter drive gear 15 via the output shaft 14, and the carrier CR is connected to the internal combustion engine 11 via the output shaft 12. Each is connected.
Further, the generator motor 16 includes a rotor 21 fixed to the transmission shaft 17 and rotatably disposed, a stator 22 disposed around the rotor 21, and a coil wound around the stator 22. 23. The generator motor 16 generates electric power by receiving a rotation transmitted through the transmission shaft 17, that is, a part of the output of the internal combustion engine 11. Further, the coil 23 is connected to a battery (not shown) serving as power storage means, and a current is supplied to the battery to be charged. The rotor 21 is provided with a brake (not shown) connected to the casing 19, and the rotor 21 can be stopped by engaging the brake.
[0014]
Reference numeral 25 denotes an electric motor (M), reference numeral 26 denotes an output shaft from which the rotation of the electric motor 25 is output, and reference numeral 27 denotes a second counter drive gear fixed to the output shaft 26. The electric motor 25 includes a rotor 37 fixed to the output shaft 26 and rotatably disposed, a stator 38 disposed around the rotor 37, and a coil 39 wound around the stator 38. .
[0015]
The electric motor 25 generates torque by a current supplied to the coil 39. For this purpose, the coil 39 is connected to the battery, and the current is supplied from the battery. When the hybrid vehicle is decelerated, the electric motor 25 receives rotation from driving wheels (not shown) to generate a regenerative current, and supplies the regenerative current to the battery to charge it.
[0016]
Incidentally, a counter shaft 31 is provided to rotate the drive wheels in the same direction as the rotation of the internal combustion engine 11, and a counter driven gear 32 is fixed to the counter shaft 31. The counter driven gear 32 and the first counter drive gear 15 are meshed with each other, and the counter driven gear 32 and the second counter drive gear 27 are meshed with each other, so that the rotation of the first counter drive gear 15 and the second counter The rotation of the drive gear 27 is inverted and transmitted to the counter driven gear 32.
[0017]
Further, a differential pinion gear 33 having a smaller number of teeth than the counter driven gear 32 is fixed to the counter shaft 31.
A differential ring gear 35 is provided, and the differential ring gear 35 and the differential pinion gear 33 are meshed. Further, a differential device 36 is fixed to the differential ring gear 35, and the rotation transmitted to the differential ring gear 35 is distributed by the differential device 36 and transmitted to the driving wheels.
[0018]
Thus, not only can the rotation generated by the internal combustion engine 11 be transmitted to the counter driven gear 32, but also the rotation generated by the electric motor 25 can be transmitted to the counter driven gear 32. Further, since the one-way clutch F receives the reaction force of the generator motor 16, the rotation generated by the generator motor 16 can also be transmitted to the counter driven gear 32, so that the electric motor 25 and the generator motor 16 are driven. The hybrid vehicle can be driven in a motor / generator motor driving mode in which the electric motor 25 and the internal combustion engine 11 are driven.
[0019]
By controlling the generator motor 16, the rotation speed of the transmission shaft 17 can be controlled, and the internal combustion engine 11 and the electric motor 25 can be driven at the maximum efficiency points.
Next, the operation of the hybrid vehicle having the above configuration will be described.
FIG. 3 is a conceptual diagram of a planetary gear unit according to the first embodiment of the present invention, FIG. 4 is a torque diagram during normal running in the first embodiment of the present invention, and FIG. 5 is a first embodiment of the present invention. It is a speed diagram at the time of low speed driving | running in a form.
[0020]
In the present embodiment, as shown in FIG. 3, a planetary gear unit 13 (FIG. 2), an output shaft 14 via a ring gear R, an internal combustion engine 11 via a carrier CR, and a generator motor via a sun gear S 16, the number of teeth of the ring gear R is twice the number of teeth of the sun gear S. Therefore, the torque of the internal combustion engine 11 (hereinafter referred to as “engine torque”) is TE, the torque output to the output shaft 14 (hereinafter referred to as “output torque”) is TOUT, and the torque of the generator motor 16 (hereinafter “Torque”). Generator motor torque ”) is TG,
TE: TOUT: TG = 3: 2: 1
In normal running, as shown in FIG. 4, the internal combustion engine 11, the output shaft 14, and the generator motor 16 receive a reaction force from each other.
[0021]
Further, the rotation speed of the internal combustion engine 11 (hereinafter, referred to as “engine rotation speed”) is NE, the rotation speed of the output shaft 14 (hereinafter, “output shaft rotation speed”) is NOUT, and the rotation speed of the generator motor 16. FIG. 5 shows that when the generator motor rotation speed is NG, the generator motor 16 is driven as a motor and the internal combustion engine 11 is stopped in the motor / generator motor drive mode. Thus, the engine torque TE is not generated, and the engine speed NE becomes zero. In this case, when the generator motor 16 is driven at the generator motor speed NG, the one-way clutch F prevents the output shaft 12 from trying to rotate the internal combustion engine 11 in the reverse direction, so that the generator motor torque TG Is received by a drive unit case (not shown) via a one-way clutch F. At this time, the output shaft 14 is rotated at the output shaft rotation speed NOUT.
[0022]
Next, the driving force of the hybrid vehicle will be described.
FIG. 6 is a diagram showing the relationship between the vehicle speed and the driving force according to the first embodiment of the present invention. In the figure, the horizontal axis represents the vehicle speed V, and the vertical axis represents the driving force.
The driving force of the hybrid vehicle is Q, and the torque is T W Assuming that the gear ratio is r and the radius of the tire of a driving wheel (not shown) is R, the driving force Q is
Q = T W ・ R / R
Can be represented by
[0023]
Then, the driving force of the electric motor 25 (FIG. 2) is QM, the driving force of the generator motor 16 is QG, and the driving force of the internal combustion engine 11 is QE.
Generally, the driving force QG of the generator motor 16 increases as the vehicle speed V decreases. For example, when the vehicle speed V is less than 30 [km / h], the driving force QG of the generator motor 16 becomes larger than the driving force QE of the internal combustion engine 11.
[0024]
When the hybrid vehicle is driven only by the internal combustion engine 11 when the electric motor drive system such as the electric motor 25 fails, the driving force becomes insufficient particularly at a low vehicle speed that requires a large driving force. In the case where the vehicle speed V is less than 30 [km / h], the internal combustion engine 11 is stopped, and the hybrid vehicle is driven by the driving force QG of the generator motor 16, so that the hybrid vehicle can be driven only by the internal combustion engine 11. It is possible to obtain a larger driving force than in the case of running.
[0025]
FIG. 1 is a block diagram of a control circuit of a hybrid vehicle according to a first embodiment of the present invention, FIG. 7 is a diagram showing a drive means selection map according to the first embodiment of the present invention, and FIG. FIG. 9 is a flowchart of a main routine showing an operation of the hybrid vehicle according to the first embodiment, and FIG. 9 is a flowchart of a subroutine for failure processing according to the first embodiment of the present invention. In FIG. 7, the horizontal axis indicates the remaining battery power β, and the vertical axis indicates the required traveling load detected by load detection means (not shown), that is, the amount of depression of the accelerator pedal 52 (hereinafter referred to as “accelerator opening”) α. Is taken.
[0026]
In the figure, 11 is an internal combustion engine, 16 is a generator motor, and 25 is an electric motor. Reference numeral 41 denotes drive wheels, reference numeral 43 denotes a battery serving as a power storage means, and reference numeral 44 denotes a battery remaining power detection device serving as a power storage remaining detection means for detecting the remaining battery power β of the battery 43.
Reference numeral 46 denotes an engine control device for controlling the internal combustion engine 11 to drive and stop the engine, 47 denotes a generator motor control device for controlling the generator motor 16, and 49 denotes a motor control for controlling the electric motor 25. Device. The internal combustion engine 11 can be stopped by turning off an ignition switch (not shown) or setting the throttle opening to zero.
[0027]
Reference numeral 51 denotes a CPU that controls the entire hybrid vehicle. The CPU 51 receives an accelerator opening α and a vehicle speed V detected by a vehicle speed sensor 53 as vehicle speed detecting means, and receives the engine control device 46, The generator motor control device 47 and the motor control device 49 are controlled.
The load detecting means outputs an accelerator signal, the vehicle speed sensor 53 outputs a vehicle speed signal, and the battery remaining amount detecting device 44 outputs a battery remaining amount signal to the CPU 51.
[0028]
Further, failure detection means (not shown) of the motor control device 49 detects a failure when the electric motor drive system such as the electric motor 25 and the motor control device 49 fails, generates a failure detection signal, and Output to
By the way, when the electric motor drive system such as the electric motor 25 and the motor control device 49 breaks down and only the internal combustion engine 11 is driven to start the hybrid vehicle, as shown in FIG. There is a risk of running short.
[0029]
Therefore, the selective driving means (not shown) of the CPU 51, upon receiving the failure detection signal from the failure detecting means, determines that a failure has occurred, and when the vehicle speed V is 30 [km / h] or more, only the internal combustion engine 11 To drive the hybrid vehicle.
When the vehicle speed V is less than 30 [km / h], the selection driving means refers to a driving means selection map as shown in FIG. Alternatively, the generator motor 16 is selected, and the selected driving means is driven to drive the hybrid vehicle.
[0030]
In this case, as shown in FIG. 6, the driving force QE of the internal combustion engine 11 is small, and the driving force QE cannot be increased even if the accelerator pedal 52 is rapidly depressed. Also, if the engine speed is rapidly changed, the amount of exhaust gas will increase.
Therefore, in the driving means selection map, the region in which the generator motor 16 is driven is increased as the accelerator opening α is increased. In addition, the higher the vehicle speed V, the wider the area in which the internal combustion engine 11 is driven.
[0031]
Then, the accelerator opening α and the remaining battery charge β are set as driving conditions, and a driving unit is selected based on the driving conditions. That is, when the remaining battery charge β is 80% or more, only the generator motor 16 is driven, and when the remaining battery charge β is less than 30%, only the internal combustion engine 11 is driven to generate power. The machine motor 16 is used as a generator. When the remaining battery charge β is 30% or more and less than 80%, the internal combustion engine 11 or the generator motor 16 is driven based on the accelerator opening α, the remaining battery charge β, and the vehicle speed V.
[0032]
For example, when the accelerator opening α is 70% and the battery remaining amount β is 50%, when the vehicle speed V is less than 20 km / h, the generator motor 16 is driven to drive the hybrid type. When the vehicle is running and the vehicle speed V is 20 km / h or more, the internal combustion engine 11 is driven to run the hybrid vehicle.
Next, a flowchart of the main routine of FIG. 8 will be described.
Step S1 It is determined whether or not the electric motor drive system has failed. If a failure has occurred, the process proceeds to step S2, and if not, the process proceeds to step S3.
Step S2: Perform failure processing.
Step S3 The normal processing is performed, and the hybrid vehicle is driven normally.
[0033]
Next, a flowchart of a subroutine of the failure processing in FIG. 9 will be described.
Step S2-1 The accelerator opening α, the remaining battery charge β and the vehicle speed V are read.
Step S2-2: It is determined whether the vehicle speed V is less than 30 [km / h]. When the vehicle speed V is less than 30 [km / h], the process proceeds to step S2-6, and when the vehicle speed V is 30 [km / h] or more, the process proceeds to step S2-3.
Step S2-3: It is determined whether or not the internal combustion engine 11 is driven. When the internal combustion engine 11 is driven, the process proceeds to step S2-5, and when not driven, the process proceeds to step S2-4.
Step S2-4: The internal combustion engine 11 is started.
Step S2-5: An engine drive process is performed to drive the internal combustion engine 11.
Step S2-6 Drive conditions are determined with reference to the drive means selection map. If the remaining battery charge β is 80% or more, the process proceeds to step S2-7. If the remaining battery charge β is less than 30%, the process proceeds to step S2-3. If it is less than 80%, the process proceeds to step S2-7 or step S2-3 based on the accelerator opening α, the remaining battery charge β, and the vehicle speed V.
Step S2-7: It is determined whether or not the internal combustion engine 11 is driven. If the internal combustion engine 11 is being driven, the process proceeds to step S2-8; if not, the process proceeds to step S2-9.
Step S2-8: The internal combustion engine 11 is stopped.
Step S2-9 The generator motor drive processing is performed, and the generator motor 16 is driven.
[0034]
Next, a second embodiment of the present invention will be described.
FIG. 10 is a conceptual diagram of a drive device for a hybrid vehicle according to a second embodiment of the present invention. In addition, about what has the same structure as 1st Embodiment, the description is abbreviate | omitted by attaching the same code | symbol.
In the present embodiment, a wet friction engagement element as a rotation stopping means, that is, a brake B is provided between the output shaft 12 and the casing 19, and a brake control (not shown) for disengaging the brake B is provided. The device is connected to the CPU 51 (FIG. 1). When the accelerator opening α is 80% or more and the vehicle speed V is less than 30 km / h, the CPU 51 stops the internal combustion engine 11 and engages the brake B, The current IM is supplied to the generator motor 16.
[0035]
Next, a third embodiment of the present invention will be described.
FIG. 11 is a conceptual diagram of a drive device for a hybrid vehicle according to the third embodiment of the present invention. In addition, about what has the same structure as 1st Embodiment, the description is abbreviate | omitted by attaching the same code | symbol.
In the present embodiment, a clutch C is provided between the internal combustion engine 11 and the output shaft 12, and a one-way clutch F is provided between the output shaft 12 and the casing 19 as rotation stopping means. Further, a clutch control device (not shown) is connected to the CPU 51 (FIG. 1) to disengage the clutch C. When the accelerator opening α is 80% or more and the vehicle speed V is less than 30 km / h, the CPU 51 releases the clutch C and supplies the generator motor 16 with the current IM. Supply.
[0036]
In this case, the hybrid vehicle is caused to travel by the driving force QG of the generator motor 16, but the clutch C is released during this time, so that it is not necessary to stop the internal combustion engine 11.
Next, a fourth embodiment of the present invention will be described.
FIG. 12 is a conceptual diagram of a drive device for a hybrid vehicle according to a fourth embodiment of the present invention.
[0037]
In the figure, 11 is an internal combustion engine (E / G), 12 is an output shaft, and a generator motor (G) 66 is connected to the output shaft 12. A one-way clutch F is provided between the output shaft 12 and the casing 19 as a rotation stopping means.
The generator motor 66 includes a rotor 71 rotatably disposed, a stator 72 rotatably disposed around the rotor 71, and a coil 73 wound around the stator 72. The generator motor 66 receives the rotation transmitted through the output shaft 12, that is, receives a part of the output of the internal combustion engine 11 to generate electric power. The coil 73 is connected to a battery (not shown), and supplies current to the battery to charge the battery.
[0038]
25 is an electric motor (M), 14 is an output shaft from which the rotation of the electric motor 25 is output, and 75 is a counter drive gear fixed to the output shaft 14. The electric motor 25 includes a rotor 37 fixed to the output shaft 14 and rotatably disposed, a stator 38 disposed around the rotor 37, and a coil 39 wound around the stator 38. .
[0039]
The electric motor 25 generates torque by a current supplied to the coil 39. To this end, the coil 39 is connected to a battery, and a current is supplied from the battery. When the hybrid vehicle decelerates, the electric motor 25 receives rotation from the driving wheels 41 (FIG. 1) to generate a regenerative current, and supplies the regenerative current to the battery to charge it.
[0040]
A counter shaft 31 is provided to rotate the driving wheels 41 in the same direction as the rotation of the internal combustion engine 11, and a counter driven gear 32 is fixed to the counter shaft 31. A differential pinion gear 33 having a smaller number of teeth than the counter driven gear 32 is fixed to the counter shaft 31.
A differential ring gear 35 is provided, and the differential ring gear 35 and the differential pinion gear 33 are meshed. Further, a differential device 36 is fixed to the differential ring gear 35, and the rotation transmitted to the differential ring gear 35 is distributed by the differential device 36 and transmitted to the drive wheels 41.
[0041]
The one-way clutch F becomes free when the internal combustion engine 11 is rotating in the forward direction, and is locked when the output shaft 12 tries to rotate the internal combustion engine 11 in the reverse direction.
In this case, the internal combustion engine 11 is stopped, and the hybrid vehicle can be driven by the driving force QG of the generator motor 66.
[0042]
【The invention's effect】
As described in detail above, according to the present invention, in the hybrid vehicle, the internal combustion engine, the generator motor, the output shaft connected to the drive wheels, and the internal combustion engine, the generator motor and the output shaft An output distribution device connected to each of the internal combustion engines and distributing the output of the internal combustion engine to a generator motor and an output shaft; an electric motor coupled to the output shaft; a power storage unit; A rotation stop means provided to stop the rotation transmitted, a failure detection means for detecting a failure in the electric motor drive system, a load detection means for detecting a required load for traveling, and a detection of a remaining power amount of the power storage means And a vehicle speed detecting means for detecting a vehicle speed. When a failure of the electric motor drive system is detected, an engine based on the running required load, the remaining power and the vehicle speed are detected. And a selection drive means for selectively driving the generator motor.
[0043]
In this case, the output from the internal combustion engine is distributed by a power distribution device, a part of the output is transmitted to the generator motor, and the rest is transmitted to the output shaft.
When the internal combustion engine is stopped and the generator motor is driven, the rotation stopping means prevents the internal combustion engine from rotating in the reverse direction.
Then, when the failure detecting means detects a failure in the electric motor drive system, the selective driving means selectively drives the internal combustion engine and the generator motor based on the required running load, the remaining power and the vehicle speed.
[0044]
Therefore, when the electric motor drive system fails, the internal combustion engine and the generator motor are selected and driven, so that there is no danger of insufficient driving force.
Further, for example, even when the vehicle starts running repeatedly on a congested road, the generator motor can be driven, so that the remaining power of the power storage means can be prevented from becoming excessively large. Will not be damaged.
[Brief description of the drawings]
FIG. 1 is a control circuit block diagram of a hybrid vehicle according to a first embodiment of the present invention.
FIG. 2 is a conceptual diagram of a drive device of the hybrid vehicle according to the first embodiment of the present invention.
FIG. 3 is a conceptual diagram of a planetary gear unit according to the first embodiment of the present invention.
FIG. 4 is a torque diagram during normal running according to the first embodiment of the present invention.
FIG. 5 is a speed diagram at the time of low-speed running in the first embodiment of the present invention.
FIG. 6 is a diagram illustrating a relationship between a vehicle speed and a driving force according to the first embodiment of the present invention.
FIG. 7 is a diagram showing a driving means selection map according to the first embodiment of the present invention.
FIG. 8 is a flowchart of a main routine showing an operation of the hybrid vehicle according to the first embodiment of the present invention.
FIG. 9 is a flowchart of a subroutine of a failure process according to the first embodiment of the present invention.
FIG. 10 is a conceptual diagram of a drive device for a hybrid vehicle according to a second embodiment of the present invention.
FIG. 11 is a conceptual diagram of a drive device for a hybrid vehicle according to a third embodiment of the present invention.
FIG. 12 is a conceptual diagram of a drive device for a hybrid vehicle according to a fourth embodiment of the present invention.
[Explanation of symbols]
11 Internal combustion engine
12 Output shaft
13 Planetary gear unit
16,66 Generator motor
25 Electric motor
43 Battery
44 Battery level detector
49 Motor control device
51 CPU
53 Vehicle speed sensor
α Accelerator opening
β Battery level
B brake
C clutch
F One-way clutch
V vehicle speed

Claims (5)

内燃エンジンと、発電機モータと、駆動輪と連結される出力軸と、前記内燃エンジン、発電機モータ及び出力軸のそれぞれと連結され、前記内燃エンジンの出力を発電機モータ及び出力軸に配分する出力配分装置と、出力軸に連結された電気モータと、蓄電手段と、前記内燃エンジンと出力配分装置との間に配設され、伝達される回転を停止させる回転停止手段と、電気モータ駆動系の故障を検出する故障検出手段と、走行必要負荷を検出する負荷検出手段と、前記蓄電手段の蓄電残量を検出する蓄電残量検出手段と、車速を検出する車速検出手段と、電気モータ駆動系の故障が検出されたときに、前記走行必要負荷、蓄電残量及び車速に基づいて、内燃エンジン及び発電機モータを選択的に駆動する選択駆動手段とを有することを特徴とするハイブリッド型車両。An output shaft connected to the internal combustion engine, the generator motor, and the driving wheels; and an output shaft connected to each of the internal combustion engine, the generator motor, and the output shaft, and distributing an output of the internal combustion engine to the generator motor and the output shaft. A power distribution device, an electric motor coupled to an output shaft, a power storage device, a rotation stop device disposed between the internal combustion engine and the power distribution device to stop transmitted rotation, and an electric motor drive system. Failure detecting means for detecting a failure of the vehicle, load detecting means for detecting a required load for traveling, remaining power detecting means for detecting the remaining power of the power storing means, vehicle speed detecting means for detecting the vehicle speed, and electric motor drive And selecting drive means for selectively driving the internal combustion engine and the generator motor based on the required running load, the remaining charge, and the vehicle speed when a system failure is detected. Hybrid vehicle. 前記選択駆動手段は、車速が設定値以上である場合は内燃エンジンを駆動し、車速が設定値未満である場合は、走行必要負荷、蓄電残量及び車速に基づいて内燃エンジン及び発電機モータの一方を駆動する請求項1に記載のハイブリッド型車両。The selection drive unit drives the internal combustion engine when the vehicle speed is equal to or higher than a set value, and when the vehicle speed is lower than the set value, determines whether the internal combustion engine and the generator motor should be driven based on the required running load, the remaining charge, and the vehicle speed. The hybrid vehicle according to claim 1, wherein one of the vehicles is driven. 前記回転停止手段はワンウェイクラッチである請求項1又は2に記載のハイブリッド型車両。The hybrid vehicle according to claim 1, wherein the rotation stopping unit is a one-way clutch. 前記内燃エンジンと回転停止手段との間にクラッチが配設される請求項3に記載のハイブリッド型車両。The hybrid vehicle according to claim 3, wherein a clutch is provided between the internal combustion engine and the rotation stopping means. 前記回転停止手段はブレーキである請求項1又は2に記載のハイブリッド型車両。The hybrid vehicle according to claim 1, wherein the rotation stopping unit is a brake.
JP21141196A 1996-08-09 1996-08-09 Hybrid vehicle Expired - Lifetime JP3543505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21141196A JP3543505B2 (en) 1996-08-09 1996-08-09 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21141196A JP3543505B2 (en) 1996-08-09 1996-08-09 Hybrid vehicle

Publications (2)

Publication Number Publication Date
JPH1054262A JPH1054262A (en) 1998-02-24
JP3543505B2 true JP3543505B2 (en) 2004-07-14

Family

ID=16605519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21141196A Expired - Lifetime JP3543505B2 (en) 1996-08-09 1996-08-09 Hybrid vehicle

Country Status (1)

Country Link
JP (1) JP3543505B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3333814B2 (en) * 1996-12-24 2002-10-15 トヨタ自動車株式会社 Hybrid vehicle control device
JP3951562B2 (en) * 2000-06-28 2007-08-01 アイシン・エィ・ダブリュ株式会社 Hybrid type vehicle
KR100820419B1 (en) 2006-08-08 2008-04-10 현대자동차주식회사 Device and method for operating emergency mode of hard type hybrid vehicle
JP5678550B2 (en) * 2010-09-29 2015-03-04 アイシン精機株式会社 Multi-rotor motor
KR101251255B1 (en) 2010-12-03 2013-04-10 기아자동차주식회사 Method for protecting high voltage battery in hybrid electric vehicle
WO2014130717A1 (en) * 2013-02-22 2014-08-28 Ellis Frampton Failsafe devices, including transportation vehicles
JP6318909B2 (en) * 2014-06-25 2018-05-09 三菱自動車工業株式会社 Control device for hybrid vehicle
JP2016043701A (en) * 2014-08-19 2016-04-04 トヨタ自動車株式会社 Hybrid electric vehicle control unit
JP7110916B2 (en) * 2018-10-31 2022-08-02 トヨタ自動車株式会社 hybrid car
CN113002519B (en) * 2019-12-20 2022-07-22 长城汽车股份有限公司 Hybrid vehicle fault processing method and device, electronic equipment and vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857535B2 (en) * 1992-05-19 1999-02-17 株式会社エクォス・リサーチ Hybrid vehicle
JP3175423B2 (en) * 1993-08-27 2001-06-11 株式会社エクォス・リサーチ Drive mechanism in hybrid vehicle
JP3291916B2 (en) * 1994-06-06 2002-06-17 株式会社エクォス・リサーチ Hybrid vehicle
JP3000943B2 (en) * 1996-07-02 2000-01-17 トヨタ自動車株式会社 Power output device and control method thereof

Also Published As

Publication number Publication date
JPH1054262A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
JP3173319B2 (en) Hybrid vehicle
US6722456B2 (en) Hybrid vehicle
JP3947082B2 (en) Control method of hybrid electric vehicle to obtain maximum fully open acceleration performance
US6991054B2 (en) Hybrid-vehicle drive system with torque increasing device and driving method thereof
JP2794272B2 (en) Hybrid vehicle and hybrid vehicle control method
US6500089B2 (en) Method and arrangement in a hybrid vehicle for maximizing efficiency by operating the engine at sub-optimum conditions
EP1136298A2 (en) Hybrid vehicle transmission control apparatus
JPH09158961A (en) Control device of driving gear for vehicle
JP4147687B2 (en) Hybrid vehicle and control method thereof
CN105452037A (en) Control apparatus and control method for hybrid vehicle
JP3543505B2 (en) Hybrid vehicle
JP3612873B2 (en) Hybrid type vehicle
JPH0924752A (en) Control device of driving device for vehicle
JP3799646B2 (en) Hybrid vehicle
JP3956489B2 (en) Hybrid type vehicle
JP2001206084A (en) Hybrid automobile
JPH0538956A (en) Hybrid vehicle
JP3289720B2 (en) Hybrid vehicle
JP3370265B2 (en) Hybrid vehicle
JP4345765B2 (en) Vehicle and control method thereof
JP4062812B2 (en) Hybrid type vehicle
JP2000125413A (en) Hybrid vehicle and control method thereof
JP3350520B2 (en) Hybrid vehicle
JP3132372B2 (en) Hybrid vehicle and hybrid vehicle control method
JP2002345105A (en) Electric vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term