JP3370265B2 - Hybrid vehicle - Google Patents
Hybrid vehicleInfo
- Publication number
- JP3370265B2 JP3370265B2 JP36891097A JP36891097A JP3370265B2 JP 3370265 B2 JP3370265 B2 JP 3370265B2 JP 36891097 A JP36891097 A JP 36891097A JP 36891097 A JP36891097 A JP 36891097A JP 3370265 B2 JP3370265 B2 JP 3370265B2
- Authority
- JP
- Japan
- Prior art keywords
- engine
- motor
- generator
- torque
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Arrangement Of Transmissions (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Transmission Device (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はハイブリッド車両に係
り、詳細には、駆動モータと内燃エンジンを駆動力とし
て走行するハイブリッド車両に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid vehicle, and more particularly to a hybrid vehicle that travels with a drive motor and an internal combustion engine as driving force.
【0002】[0002]
【従来の技術】燃料の供給が容易な従来のエンジンと、
クリーンな電気エネルギを使用するモータとを利用する
ハイブリッド車両が開発されている。このハイブリッド
車両には、エンジンの出力回転によって発電機を駆動
し、得られた電力を直流に変換してバッテリを充電し、
バッテリの電力を交流に変換してモータ駆動をするシリ
ーズ型のハイブリッド車両と、エンジンとモータをクラ
ッチを介して連結し、発進時にモータを駆動させ、途中
からクラッチを連結しエンジン走行し、急加速時にはモ
ータの出力を付加して走行するパラレル型のハイブリッ
ド車両、またはシリーズ型ハイブリッド車両とパラレル
型ハイブリッド車両を組み合わせたものなどが提案され
ている。このようなハイブリッド車両では、エンジンの
みを使用する一般車両と同様に、車両の一時停車時でも
エンジンをアイドリング状態で駆動している。このた
め、車両が運動していないにもかかわらず燃料を消費す
るため、燃費が悪化していた。また、エンジンのアイド
リング時は、アイドル音が騒音の一因になると共に、排
気ガスも排出していた。 そこで、一般車両においてエ
ンジンを走行に必要な時にだけ駆動し、それ以外では停
止させることで、エンジン駆動時間の短縮による排ガス
量を減少し燃費を向上させる、エンジン一時停止システ
ムが提案されており、このシステムをパラレル型のハイ
ブリッド車両に適用することも考えられる。このエンジ
ン一時停止システムでは、一時停車時等にエンジンの駆
動を停止し、アクセルが踏み込まれた場合に再びエンジ
ンを始動して発進させるようにしたものである。2. Description of the Related Art A conventional engine that can easily supply fuel,
Hybrid vehicles have been developed that utilize motors that use clean electrical energy. In this hybrid vehicle, a generator is driven by the output rotation of the engine, the obtained electric power is converted into direct current and the battery is charged,
A series-type hybrid vehicle that converts the electric power of the battery into alternating current to drive the motor, connects the engine and the motor via a clutch, drives the motor when starting, connects the clutch from the middle, runs the engine, and accelerates rapidly. At the same time, a parallel-type hybrid vehicle that travels with the output of a motor added, or a combination of a series-type hybrid vehicle and a parallel-type hybrid vehicle has been proposed. In such a hybrid vehicle, the engine is driven in an idling state even when the vehicle is temporarily stopped, as in a general vehicle that uses only the engine. Therefore, fuel consumption is deteriorated because the vehicle consumes fuel even when the vehicle is not moving. Further, when the engine was idling, the idle noise contributed to the noise and exhaust gas was also emitted. Therefore, in an ordinary vehicle, an engine temporary stop system has been proposed, which drives the engine only when it is necessary for traveling, and stops it at other times to reduce the amount of exhaust gas by shortening the engine drive time and improve fuel efficiency. It is also possible to apply this system to a parallel type hybrid vehicle. In this engine temporary stop system, driving of the engine is stopped when the vehicle is temporarily stopped, etc., and when the accelerator is depressed, the engine is restarted and started.
【0003】[0003]
【発明が解決しようとする課題】しかし、エンジン一時
停止システムでは、エンジンの停止と再駆動の際にクラ
ッチの接・断を繰り返す必要があるため、パラレル型ハ
イブリッド車両において、クラッチの接・断回数が多く
なり、クラッチの負担が大きくなっていた。また、エン
ジンの再始動はスタータを使用するため、スタータの使
用頻度が増え、耐久性を向上させる必要もある。さら
に、アクセルを踏んでからエンジンを再始動させるとき
のタイムラグ、および、出力軸にエンジン出力を伝達す
るときのトルク変動により、走行フィーリングが良くな
かった。再始動時のタイムラグを小さくするためにクラ
ッチを急係合すると、さらにクラッチの負担が大きくな
っていた。However, in the engine temporary stop system, it is necessary to repeatedly engage and disengage the clutch when stopping and restarting the engine. Therefore, in the parallel hybrid vehicle, the number of times the clutch is engaged and disengaged. And the burden on the clutch was increasing. Further, since the starter is used for restarting the engine, the frequency of use of the starter increases and it is necessary to improve durability. Further, the driving feeling was not good due to the time lag when the engine is restarted after stepping on the accelerator and the torque fluctuation when transmitting the engine output to the output shaft. If the clutch is suddenly engaged in order to reduce the time lag at restart, the load on the clutch is further increased.
【0004】[0004]
【目的】そこで本発明は、車両の発進を速やかに行うと
共に、エンジンの始動による走行フィーリングの悪化を
防止することが可能なハイブリッド車両を提供すること
を第1の目的とする。また本発明は、エンジン停止シス
テムを使用したハイブリッド車両であっても、スタータ
やクラッチを不要とすることが可能なハイブリッド車両
を提供することを第2の目的とする。[Purpose] Therefore, it is a first object of the present invention to provide a hybrid vehicle capable of promptly starting the vehicle and preventing deterioration of traveling feeling due to engine start. A second object of the present invention is to provide a hybrid vehicle that does not require a starter or a clutch even if the hybrid vehicle uses an engine stop system.
【0005】[0005]
【課題を解決するための手段】請求項1記載の発明で
は、エンジンと、電気モータと、発電機モータと、駆動
輪に連結される出力軸と、前記発電機モータと連結され
た第1の歯車要素、前記内燃エンジンと連結された第2
の歯車要素及び前記出力軸と連結された第3の歯車要素
からなる差動歯車装置と、前記発電機モータを回転数制
御して前記エンジンを始動させるエンジン始動手段と、
前記発電機モータの出力トルクを演算する発電機トルク
演算手段と、エンジン始動時、前記発電機トルク演算手
段によって演算されたトルクに応じて前記電気モータの
出力トルクを補正するモータトルク補正手段と、をハイ
ブリッド車両に具備させて前記第1及び第2の目的を達
成する。請求項2に記載した発明では、エンジンと、駆
動輪を駆動する駆動モータと、発電機モータと、駆動輪
に連結される出力軸と、前記発電機モータと連結された
第1の歯車要素、前記内燃エンジンと連結された第2の
歯車要素及び前記出力軸と連結された第3の歯車要素か
らなる差動歯車装置と、前記発電機モータを駆動して前
記エンジンを始動させるエンジン始動手段と、ハイブリ
ッド車両に具備させ、前記エンジン始動手段によりエン
ジンを始動するときのトルク変動を、前記駆動モータで
吸収する、ことにより前記第1及び第2の目的を達成す
る。 According to a first aspect of the present invention, there is provided an engine, an electric motor, a generator motor, an output shaft connected to driving wheels, and a first generator connected to the generator motor. Gear element, second connected to said internal combustion engine
Differential gear device comprising a gear element and a third gear element connected to the output shaft, and engine starting means for controlling the rotation speed of the generator motor to start the engine,
Generator torque calculating means for calculating the output torque of the generator motor, and motor torque correcting means for correcting the output torque of the electric motor according to the torque calculated by the generator torque calculating means at the time of engine start, High
It is provided in a brid vehicle to achieve the first and second objects. In the invention described in claim 2, the engine and the drive
Drive motor that drives the drive wheel, generator motor, drive wheel
Connected to the output shaft and the generator motor
A first gear element, a second gear element connected to the internal combustion engine
A gear element and a third gear element connected to the output shaft?
And a differential gear device consisting of
The engine starting means for starting the engine and the hybrid
It is equipped in the vehicle and is started by the engine starting means.
The torque fluctuation when starting the gin
By absorbing, thereby achieving the first and second objects
It
【0006】[0006]
【作用】請求項1記載のハイブリッド車両では、エンジ
ン始動時に、発電機モータを回転数制御してエンジンを
始動させ、発電機トルク演算手段によって演算された発
電機モータの出力トルクに応じて、モータトルク補正手
段が電気モータの出力トルクを補正する。請求項2記載
のハイブリッド車両では、エンジン始動時に、発電機モ
ータを回転数制御してエンジンを始動させ、エンジンを
始動するときのトルク変動を、前記駆動モータで吸収す
る。 In the hybrid vehicle according to the first aspect, when the engine is started, the engine speed is controlled by controlling the rotation speed of the generator motor.
The motor torque correction means corrects the output torque of the electric motor according to the output torque of the generator motor which is started and calculated by the generator torque calculation means. In the hybrid vehicle according to claim 2 , the generator mode is set when the engine is started.
Control the engine speed to start the engine and
The drive motor absorbs torque fluctuations when starting.
It
【0007】[0007]
【実施例】以下、本発明のハイブリッド車両における一
実施例を図1ないし図11を参照して詳細に説明する。
図1はハイブリッド車両の駆動装置の配列を示すスケル
トン図(骨図)である。図1に示すように、ハイブリッ
ド車両の駆動装置は、エンジン(EG)1、プラネタリ
ギヤ2、発電機モータ(ジェネレータG)3、駆動モー
タ(M)4、およびデファレンシャルギヤ5を備えてお
り、4軸構成になっている。第1軸としてのエンジン1
の出力軸7上には、プラネタリギヤ2および発電機モー
タ3が配置されている。プラネタリギヤ2は、キャリヤ
22がエンジン1の出力軸7と連結され、サンギヤ21
が発電機モータ3の入力軸7と連結され、リングギヤ2
3が第1カウンタドライブキア11に連結されている。
第2軸としての駆動モータ4の出力軸13には、第2カ
ウンタドライブギヤ15が連結されている。第3軸とし
てのカウンタシャフト31には、カウンタドリブンギヤ
33及びデフピニオンギヤ35が保持されており、カウ
ンタドリブンギヤ33には第1カウンタドライブギヤ1
1と第2カウンタドライブギヤ15が噛合されている。
デファレンシャルギヤ5は、第4軸を有するデフリング
ギヤ37を介して駆動され、このデフリングギヤ37と
デフピニオンギヤ35とが互いに噛合している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a hybrid vehicle of the present invention will be described in detail below with reference to FIGS.
FIG. 1 is a skeleton diagram (bone diagram) showing an arrangement of drive devices for a hybrid vehicle. As shown in FIG. 1, a drive device for a hybrid vehicle includes an engine (EG) 1, a planetary gear 2, a generator motor (generator G) 3, a drive motor (M) 4, and a differential gear 5, and a four-axis drive system. It is configured. Engine 1 as the first axis
A planetary gear 2 and a generator / motor 3 are arranged on the output shaft 7 of. In the planetary gear 2, the carrier 22 is connected to the output shaft 7 of the engine 1, and the sun gear 21
Is connected to the input shaft 7 of the generator motor 3, and the ring gear 2
3 is connected to the first counter drive gear 11.
A second counter drive gear 15 is connected to the output shaft 13 of the drive motor 4 as the second shaft. A counter driven gear 33 and a differential pinion gear 35 are held on the counter shaft 31 serving as the third shaft, and the counter driven gear 33 includes the first counter drive gear 1
The first and second counter drive gears 15 are meshed with each other.
The differential gear 5 is driven via a differential ring gear 37 having a fourth shaft, and the differential ring gear 37 and the differential pinion gear 35 mesh with each other.
【0008】プラネタリギヤ2は差動ギヤであり、キャ
リヤ22の入力回転数に対し、リングギヤ23の出力回
転数を決定するのは、サンギヤ21の回転数である。即
ち、発電機モータ3の負荷トルクを制御することによっ
て、サンギヤ21の回転数を制御することが可能であ
る。例えば、サンギヤ21を自由回転させた場合、キャ
リヤ22の回転はサンギヤ21により吸収され、リング
ギヤ23は停止して、出力回転は生じないようになって
いる。プラネタリギヤ2において、キャリヤ22の入力
トルクは、発電機モータ3の反力トルクと出力軸トルク
の合成トルクとなる。すなわち、エンジン1からの出力
はキャリヤ22に入力され、発電機モータ3はサンギヤ
21に入力される。エンジン1の出力トルクはリングギ
ヤ23から出力され、エンジン効率に基づいて設定され
たギヤ比でカウンターギヤを介して駆動輪に出力され
る。また駆動モータ4の出力はモータ効率のよいギヤ比
に基づいてカウンターギヤを介して駆動輪に出力され
る。The planetary gear 2 is a differential gear, and it is the rotational speed of the sun gear 21 that determines the output rotational speed of the ring gear 23 with respect to the input rotational speed of the carrier 22. That is, it is possible to control the rotation speed of the sun gear 21 by controlling the load torque of the generator motor 3. For example, when the sun gear 21 is freely rotated, the rotation of the carrier 22 is absorbed by the sun gear 21, the ring gear 23 stops, and output rotation does not occur. In the planetary gear 2, the input torque of the carrier 22 is a combined torque of the reaction torque of the generator motor 3 and the output shaft torque. That is, the output from the engine 1 is input to the carrier 22, and the generator motor 3 is input to the sun gear 21. The output torque of the engine 1 is output from the ring gear 23 and is output to the drive wheels via the counter gear at a gear ratio set based on the engine efficiency. The output of the drive motor 4 is output to the drive wheels via the counter gear based on the gear ratio with good motor efficiency.
【0009】図2は、このようなハイブリッド車両の制
御部の構成を表したものである。この図2に示すよう
に、ハイブリッド車両は、駆動系40と、駆動系40そ
の他各部の状態を検出するセンサ系41と、駆動系40
各部の制御を行う制御系42を備えている。駆動系40
は、エンジン1、発電機モータ3、駆動モータ4およ
び、バッテリ43を有している。バッテリ43は、駆動
モータ4に電力を供給すると共に、駆動モータ4からの
回生電力および発電機モータ3の電力で充電される。セ
ンサ系41は、アクセル開度を検出するアクセルセンサ
411、車速Vを検出する車速センサ412、発電機モ
ータ3の回転数を検出する発電機モータ回転数センサ4
13、エンジン1の回転数を検出するエンジン回転数セ
ンサ414、バッテリ43の充電残容量SOCを検出す
るバッテリセンサ415を備えている。FIG. 2 shows the structure of a control unit of such a hybrid vehicle. As shown in FIG. 2, the hybrid vehicle has a drive system 40, a sensor system 41 for detecting the states of the drive system 40 and other parts, and a drive system 40.
The control system 42 which controls each part is provided. Drive system 40
Has an engine 1, a generator motor 3, a drive motor 4, and a battery 43. The battery 43 supplies electric power to the drive motor 4 and is charged with the regenerative electric power from the drive motor 4 and the electric power of the generator motor 3. The sensor system 41 includes an accelerator sensor 411 for detecting an accelerator opening, a vehicle speed sensor 412 for detecting a vehicle speed V, and a generator / motor rotation speed sensor 4 for detecting the rotation speed of the generator / motor 3.
13, an engine rotation speed sensor 414 that detects the rotation speed of the engine 1, and a battery sensor 415 that detects the remaining charge SOC of the battery 43.
【0010】制御系42は、エンジン1を制御するエン
ジン制御装置421、発電機モータ3を制御する発電機
モータ制御装置422、駆動モータ4を制御する駆動モ
ータ制御装置423を備えている。また制御系42は、
エンジン制御装置421、発電機モータ制御装置42
2、駆動モータ制御装置423に対して制御指示や制御
値を供給することで車両全体を制御する車両制御装置4
24を備えている。車両制御装置424は、エンジン制
御装置421に対し、車両の走行、停止等の各種状態に
応じてエンジンのON/OFF信号を供給するようにな
っている。The control system 42 includes an engine controller 421 for controlling the engine 1, a generator / motor controller 422 for controlling the generator / motor 3, and a drive motor controller 423 for controlling the drive motor 4. Further, the control system 42 is
Engine control device 421, generator motor control device 42
2. The vehicle control device 4 that controls the entire vehicle by supplying control instructions and control values to the drive motor control device 423
24 are provided. The vehicle control device 424 supplies an engine ON / OFF signal to the engine control device 421 according to various states such as running and stopping of the vehicle.
【0011】また、発電機モータ制御装置422に対し
て、アクセルセンサ411からのアクセル開度αとバッ
テリセンサ415からの充電残容量SOCとに応じた発
電機モータ3の目標回転数NG*を供給する。さらに、
車両制御装置424は、駆動モータ制御装置423に対
して、アクセルセンサ411からのアクセル開度αと車
速センサ412からの車速Vとに応じたトルクTM*を
供給すると共に、発電機モータ制御装置422から供給
される発電機モータ回転数NGと発電機モータトルクT
Gとから補正トルクΔTMを算出して供給するようにな
っている。Further, a target rotation speed NG * of the generator / motor 3 is supplied to the generator / motor controller 422 according to the accelerator opening α from the accelerator sensor 411 and the remaining charge SOC from the battery sensor 415. To do. further,
The vehicle control device 424 supplies the drive motor control device 423 with the torque TM * according to the accelerator opening α from the accelerator sensor 411 and the vehicle speed V from the vehicle speed sensor 412, and also the generator motor control device 422. Generator motor speed NG and generator motor torque T supplied from
The correction torque ΔTM is calculated from G and is supplied.
【0012】そして、エンジン制御装置421は、車両
制御装置424から供給されるON信号と、エンジン回
転数センサ414から供給されるエンジン回転数NEに
応じて、スロットル開度θを制御することで、エンジン
1の出力を制御するようになっている。発電機モータ制
御装置422は、目標回転数NG*となるように、電流
(トルク)IGを制御する。駆動モータ制御装置423
は、車両制御装置424から供給されるトルクTM*と
補正トルクΔTMによって、駆動モータ4の電流(トル
ク)IMを制御するようになっている。The engine control unit 421 controls the throttle opening θ according to the ON signal supplied from the vehicle control unit 424 and the engine speed NE supplied from the engine speed sensor 414. The output of the engine 1 is controlled. The generator / motor control device 422 controls the current (torque) IG so that the target rotation speed NG * is achieved. Drive motor controller 423
Controls the current (torque) IM of the drive motor 4 by the torque TM * and the correction torque ΔTM supplied from the vehicle control device 424.
【0013】次に、このように構成された実施例によ
る、各制御部の動作について説明する。本実施例では、
まず車両走行の始動を駆動モータ4で行い、車速が所定
速度に到達した時点で発電機モータ3によりエンジン1
を始動し、この時のトルク変動を駆動モータ4で吸収す
るものである。図3は、エンジン始動制御の詳細につい
て表したものである。 まず車両制御装置424は、ア
クセルセンサ411からアクセル開度αを入力すると共
に、車速センサ412から現在の車速Vを入力する(ス
テップ11)。そして、車速Vがエンジン始動車速V*
に達したか否かを判断する(ステップ12)。車速Vが
エンジン始動車速V*以下である場合(ステップ2;
N)、車両制御装置424は、駆動モータ単独走行を行
うように制御する(ステップ13)。すなわち、車両制
御装置424は、エンジン制御装置421にOFF信号
を供給する。また、車両制御装置424は、図4に示す
駆動モータトルク−車速特性図から、入力したアクセル
開度αと車速Vに応じて駆動モータトルクTM*を算出
して駆動モータ制御装置423に供給する。駆動モータ
制御装置423では、駆動モータトルクTMが、TM=
TM*となるように、駆動モータ4の電流値IMを制御
する。Next, the operation of each control unit according to the embodiment configured as described above will be described. In this embodiment,
First, the vehicle is started by the drive motor 4, and when the vehicle speed reaches a predetermined speed, the generator motor 3 causes the engine 1 to move.
Is started, and the torque fluctuation at this time is absorbed by the drive motor 4. FIG. 3 shows details of the engine start control. First, the vehicle control device 424 inputs the accelerator opening α from the accelerator sensor 411 and the current vehicle speed V from the vehicle speed sensor 412 (step 11). The vehicle speed V is the engine starting vehicle speed V *
It is determined whether or not (step 12). When the vehicle speed V is less than or equal to the engine starting vehicle speed V * (step 2;
N), the vehicle control device 424 controls to drive the drive motor alone (step 13). That is, the vehicle control device 424 supplies an OFF signal to the engine control device 421. Further, the vehicle control device 424 calculates the drive motor torque TM * according to the input accelerator opening α and vehicle speed V from the drive motor torque-vehicle speed characteristic diagram shown in FIG. 4 and supplies it to the drive motor control device 423. . In the drive motor control device 423, the drive motor torque TM is TM =
The current value IM of the drive motor 4 is controlled so as to be TM *.
【0014】一方、駆動モータ単独走行により車速Vが
増加し、始動車速V*よりも大きくなった場合(ステッ
プ12;Y)、車両制御装置424はエンジン制御装置
421にON信号を供給する(ステップ14)。 次
に、車両制御装置424がバッテリセンサ415からバ
ッテリ43の充電残容量SOCを入力すると共に、発電
機モータ制御装置422が発電機モータ回転数NGを発
電機モータ回転数センサ413から入力する(ステップ
15)。そして、発電機モータ駆動トルク指令値IGを
演算する(ステップ16)。すなわち、車両制御装置4
24は、ステップ11で入力したアクセル開度αと、ス
テップ15で入力したバッテリ43の充電残容量SOC
とから、図5に示す特性図に従って、発電機モータ3の
目標回転数NG*を決定し、発電機モータ制御装置42
2に供給する。発電機モータ制御装置422では、供給
される目標回転数NG*と、ステップ15で入力した発
電機モータ3の回転数NGとの差によるフィードバック
制御により、目標回転数NG*となるための発電機モー
タ駆動トルク指令値(電流IG)を演算する。On the other hand, when the vehicle speed V increases due to the drive motor traveling alone and becomes higher than the starting vehicle speed V * (step 12; Y), the vehicle control device 424 supplies an ON signal to the engine control device 421 (step). 14). Next, the vehicle controller 424 inputs the remaining charge SOC of the battery 43 from the battery sensor 415, and the generator / motor controller 422 inputs the generator / motor speed NG from the generator / motor speed sensor 413 (step 15). Then, the generator motor drive torque command value IG is calculated (step 16). That is, the vehicle control device 4
24 is the accelerator opening α input in step 11 and the SOC of the battery 43 input in step 15
Therefore, the target rotation speed NG * of the generator / motor 3 is determined according to the characteristic diagram shown in FIG.
Supply to 2. The generator / motor control device 422 performs feedback control based on the difference between the target rotation speed NG * supplied and the rotation speed NG of the generator motor 3 input in step 15, so that the generator rotation speed NG * is set to the target rotation speed NG *. The motor drive torque command value (current IG) is calculated.
【0015】そして、発電機モータ3の駆動によるトル
ク変動を駆動モータ4の出力で吸収するための駆動モー
タトルク補正値ΔTMを演算する(ステップ17)。す
なわち、発電機モータ制御装置422は、発電機モータ
3が磁石を使用している場合、発電機モータ3のトルク
は、電流に比例するので、発電機モータ電流IGから発
電機モータトルクTGを算出する。また、発電機モータ
3が他励式である場合、図6に示すトルク−回転数特性
図から、励磁電流Ifに応じて演算する。そして、車両
制御装置424は、供給された発電機モータトルクTG
から次のようにして駆動モータトルク補正値ΔTMを演
算する。すなわち、発電機モータ3の発電機モータ角加
速度(回転変化率)αGが非常に小さいと考えられるの
で、発電機モータトルクTGとサンギヤトルクTSは等
しい(TG=TS)とみなすことができる。プラネタリ
ギヤ2におけるリングギヤ23の歯数がサンギヤ21の
2倍であるとすると、リングギヤトルクTRは発電機モ
ータトルクTGの2倍(TR=2・TG)となるので、
駆動モータ4部分でのサンギヤ21によるトルクΔTM
は、カウンタギヤ比をiとした場合、次の数式1で表さ
れる。なお、発電機モータ回転変化率αGを考慮する場
合、発電機モータイナーシャをInGとすると、数式1
におけるサンギヤトルクTSは、TS=TG+InG・
αGとなる。Then, the drive motor torque correction value ΔTM for absorbing the torque fluctuation due to the drive of the generator motor 3 by the output of the drive motor 4 is calculated (step 17). That is, the generator / motor control device 422 calculates the generator / motor torque TG from the generator / motor current IG because the torque of the generator / motor 3 is proportional to the current when the generator / motor 3 uses a magnet. To do. Further, when the generator motor 3 is of the separately excited type, it is calculated according to the exciting current If from the torque-rotation speed characteristic diagram shown in FIG. Then, the vehicle control device 424 determines that the supplied generator motor torque TG
From the above, the drive motor torque correction value ΔTM is calculated as follows. That is, since the generator-motor angular acceleration (rate of rotation change) αG of the generator-motor 3 is considered to be very small, it can be considered that the generator-motor torque TG and the sun gear torque TS are equal (TG = TS). If the number of teeth of the ring gear 23 in the planetary gear 2 is twice that of the sun gear 21, the ring gear torque TR is twice the generator motor torque TG (TR = 2 · TG).
Torque ΔTM by the sun gear 21 in the drive motor 4 part
Is expressed by the following formula 1 when the counter gear ratio is i. When considering the generator-motor rotation change rate αG and the generator-motor inertia is InG, Equation 1
The sun gear torque TS at is TS = TG + InG.
It becomes αG.
【0016】[0016]
【数1】ΔTM=2・i・TS[Equation 1] ΔTM = 2 · i · TS
【0017】車両制御装置424は、発電機モータ3の
駆動に伴うトルク変動を吸収するための駆動モータトル
ク補正値ΔTMを駆動モータ制御装置423に供給す
る。また、車両制御装置424は、トルク変動を考慮し
ない場合の駆動モータトルクTM*を、図4に従って車
速Vから求めて、駆動モータ制御装置423に供給す
る。The vehicle control device 424 supplies the drive motor torque correction value ΔTM for absorbing the torque fluctuation accompanying the driving of the generator motor 3 to the drive motor control device 423. Further, the vehicle control device 424 obtains the drive motor torque TM * in the case where the torque fluctuation is not taken into consideration from the vehicle speed V according to FIG. 4, and supplies it to the drive motor control device 423.
【0018】以上の演算の後、発電機モータ制御装置4
22は、ステップ16で演算した発電機モータ駆動トル
ク指令値IGを発電機モータ3に出力する。また、駆動
モータ制御装置423は、ステップ17で演算された駆
動モータトルクTM*と駆動モータトルク補正値ΔTM
とから、TM=TM*−ΔTMとなるトルク(電流I
M)を駆動モータ4に出力する(ステップ18)。これ
により、発電機モータ3の駆動でエンジン1を回転し、
そのときに発生するトルク変動が駆動モータ4で吸収さ
れる。After the above calculation, the generator / motor controller 4
22 outputs the generator motor drive torque command value IG calculated in step 16 to the generator motor 3. Further, the drive motor control device 423 controls the drive motor torque TM * calculated in step 17 and the drive motor torque correction value ΔTM.
Therefore, the torque (current I
M) is output to the drive motor 4 (step 18). As a result, the engine 1 is rotated by driving the generator motor 3,
The torque fluctuation that occurs at that time is absorbed by the drive motor 4.
【0019】次に、エンジン制御装置421は、エンジ
ン回転数センサ414からエンジン回転数NEを入力し
(ステップ19)、エンジンの着火が可能な回転数NE
*に到達しているか否か判断する(ステップ20)。到
達していなければ(ステップ20;N)、メインルーチ
ンにリターンし、エンジン回転数NEが上昇するまでま
つ。一方、エンジン回転数NEがNE*以上になった場
合(ステップ20;Y)、エンジン制御装置421は、
エンジンECUをONすることでエンジン1を着火する
(ステップ21)。以後エンジン1は始動し、燃費が最
良となるように予め決められた図7に示す関係に従っ
て、エンジン回転数NEに応じてスロットル開度θを制
御する。Next, the engine control device 421 inputs the engine speed NE from the engine speed sensor 414 (step 19), and the engine speed NE at which the engine can be ignited.
It is determined whether or not * has been reached (step 20). If it has not reached (step 20; N), it returns to the main routine and waits until the engine speed NE increases. On the other hand, when the engine speed NE becomes equal to or higher than NE * (step 20; Y), the engine control device 421 determines that
When the engine ECU is turned on, the engine 1 is ignited (step 21). After that, the engine 1 is started, and the throttle opening θ is controlled according to the engine speed NE in accordance with the relationship shown in FIG.
【0020】エンジン制御装置421は、車両制御装置
424に入力されたアクセル開度αを基に、図7に示す
エンジン回転数NEに対応してスロットル開度θを制御
することでエンジン出力を制御する。The engine control device 421 controls the engine output by controlling the throttle opening θ corresponding to the engine speed NE shown in FIG. 7 based on the accelerator opening α input to the vehicle control device 424. To do.
【0021】以上の各制御部の動作による各部の状態変
化について、図8のタイムチャートに従って説明する。
時刻t1において、アクセルが踏み込まれると車両は発
進を開始する。この時、図4に示すマップに基づいて、
アクセル開度αと車速V(発進時はゼロ)から、駆動モ
ータ4は駆動モータトルクTM=TM*で発進する(図
8において矢印Aで示す。以下同じ。)
発電機モータ3は、駆動モータ4が出力されているので
出力軸からプラネタリギヤ2のリングギヤ23を伝わっ
て回転(空転)する。このとき、出力軸に連結されてい
るリングギヤ23が正方向に回転され、エンジン1に連
結されているキャリヤ22が停止しているので、発電機
モータ3に接続されているサンギヤ21は負方向に回転
する。すなわち、発電機モータ回転数NGは負方向に次
第に増加する(矢印B)。The change in the state of each section due to the operation of each control section will be described with reference to the time chart of FIG.
At time t1, when the accelerator is depressed, the vehicle starts moving. At this time, based on the map shown in FIG.
The drive motor 4 starts with the drive motor torque TM = TM * from the accelerator opening α and the vehicle speed V (zero at the start) (shown by arrow A in FIG. 8. The same applies hereinafter.) The generator motor 3 is the drive motor. Since 4 is output, the ring gear 23 of the planetary gear 2 is transmitted from the output shaft to rotate (idle). At this time, since the ring gear 23 connected to the output shaft is rotated in the positive direction and the carrier 22 connected to the engine 1 is stopped, the sun gear 21 connected to the generator motor 3 is moved in the negative direction. Rotate. That is, the generator / motor speed NG gradually increases in the negative direction (arrow B).
【0022】駆動モータ4の出力トルクTMにより除々
に車速Vは増加し(矢印C)、時刻t2において、エン
ジン始動車速V*=10Km/hに到達すると、発電機
モータ3でエンジン1を駆動する。すなわち、負方向に
回転していた発電機モータ3を、エンジン1を回転する
ために正方向に回転させる(矢印D)。このとき、発電
機モータ3のトルクが出力軸に作用するので、プラネタ
リギヤ2のリングギヤ23、出力軸にかかるトルクΔT
Mを算出し、駆動モータ4でこのトルクを減算した値T
M=TM*−ΔTMを出力する(矢印E)。このときの
発電機モータ3の回転数の上昇(矢印D)は、キャリヤ
22に連結されているエンジン1にも影響するので予め
決められたマップに基づいて、エンジン効率がよくなる
ように上昇させる。なお、急上昇の時は不足する分を駆
動モータ4で補う。The vehicle speed V gradually increases due to the output torque TM of the drive motor 4 (arrow C), and when the engine starting vehicle speed V * = 10 Km / h is reached at time t2, the generator motor 3 drives the engine 1. . That is, the generator motor 3 that has been rotating in the negative direction is rotated in the positive direction to rotate the engine 1 (arrow D). At this time, since the torque of the generator motor 3 acts on the output shaft, the torque ΔT applied to the ring gear 23 of the planetary gear 2 and the output shaft.
A value T obtained by calculating M and subtracting this torque by the drive motor 4.
M = TM * -ΔTM is output (arrow E). The increase in the rotation speed of the generator / motor 3 (arrow D) at this time also affects the engine 1 connected to the carrier 22, so it is increased so that the engine efficiency is improved based on a predetermined map. In addition, in the case of a rapid rise, the drive motor 4 compensates for the shortage.
【0023】なお、図8に示したエンジントルクTEは
ゼロとなっているが、実際には発電機モータ3から受け
る反力トルクが存在する。この場合、エンジン1は負の
方向にトルクを受け、エンジンブレーキと同様に作用す
る。出力軸に連結されているリングギヤ23も減速する
のでこの分のトルクを駆動モータ4で補っている。Although the engine torque TE shown in FIG. 8 is zero, the reaction torque received from the generator motor 3 actually exists. In this case, the engine 1 receives the torque in the negative direction and acts like engine braking. Since the ring gear 23 connected to the output shaft also decelerates, the drive motor 4 compensates for this torque.
【0024】そして、時刻t3において、エンジン始動
可能回転数NE*が所定値、例えば600rpmを越え
ると(矢印F)、エンジン1を始動着火しても構わない
と判断しエンジンECUをオンにする(矢印G)。する
と、エンジントルクTEが上昇しようとする(矢印H)
ため、要求トルクに応じて駆動モータ4の出力を低下さ
せていく(矢印I)。このとき、発電機モータ3はエン
ジン1の反力要素となり、エンジントルクTEが上昇す
ると、さらに反力を小さくするためにプラネタリギヤ2
に対して負の方向にトルクを減少させていく(矢印
J)。エンジントルクTEは少し遅れて発生し(矢印
K)、エンジントルクTEが完全に伝達され、車速Vが
上昇するに従って(矢印L)発電機モータ3の回転をゼ
ロに近づけていく(矢印M)。このときのエンジン回転
数NEは、エンジン効率を考慮して一定とする(矢印
N)。 駆動モータ4のトルクTMを一定にして(矢印
O)、発電機モータ3の回転数をさげることで、出力軸
に連結されているリングギヤ23の回転が上昇しトルク
が増大されて車速Vが上昇する。At time t3, when the engine startable speed NE * exceeds a predetermined value, for example, 600 rpm (arrow F), it is determined that the engine 1 may be started and ignited, and the engine ECU is turned on ( Arrow G). Then, the engine torque TE tries to increase (arrow H).
Therefore, the output of the drive motor 4 is reduced according to the required torque (arrow I). At this time, the generator motor 3 becomes a reaction force element of the engine 1, and when the engine torque TE rises, the planetary gear 2 is used to further reduce the reaction force.
The torque is decreased in the negative direction (arrow J). The engine torque TE is generated with a slight delay (arrow K), the engine torque TE is completely transmitted, and as the vehicle speed V increases (arrow L), the rotation of the generator motor 3 approaches zero (arrow M). The engine speed NE at this time is constant in consideration of engine efficiency (arrow N). By keeping the torque TM of the drive motor 4 constant (arrow O) and reducing the rotation speed of the generator motor 3, the rotation of the ring gear 23 connected to the output shaft increases, the torque increases, and the vehicle speed V increases. To do.
【0025】次に第2の実施例について説明する。図9
は、第2の実施例におけるハイブリッド車両の駆動装置
の配列を示すスケルトン図である。なお、図1に示す第
1の実施例と同一の構成部分には同一の符号を付してそ
の説明を適宜省略することとする。 この図9に示すよ
うに、第2の実施例では、エンジン1bの出力軸7bが
発電機モータ3bのステータ51(ケースには保持され
ていない)に連結され、発電機モータ3bのロータ52
が出力軸53に連結されている。そして、駆動モータ4
bも出力軸53に連結されている。この出力軸53に
は、カウンタドライブギヤ54が連結され、このカウン
タドライブギヤ54には、カウンタシャフト31のカウ
ンタドリブンギヤ33が噛合されている。Next, a second embodiment will be described. Figure 9
FIG. 6 is a skeleton diagram showing an arrangement of drive devices for a hybrid vehicle in the second embodiment. The same components as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted as appropriate. As shown in FIG. 9, in the second embodiment, the output shaft 7b of the engine 1b is coupled to the stator 51 (not held in the case) of the generator motor 3b, and the rotor 52 of the generator motor 3b is connected.
Are connected to the output shaft 53. And the drive motor 4
b is also connected to the output shaft 53. A counter drive gear 54 is connected to the output shaft 53, and a counter driven gear 33 of the counter shaft 31 is meshed with the counter drive gear 54.
【0026】第1の実施例では、エンジン1と発電機モ
ータ3はプラネタリギヤ2を介して出力軸に連結される
ので、出力軸に連結したリングギヤ23のトルクTRは
発電機モータトルクTGの2倍となる。これに対して、
第2の実施例では、ギヤ比を考慮することなく発電機モ
ータ3bの出力軸トルクが発電機モータトルクTGと等
しくなるので、駆動モータ4に対する補正トルクΔTM
は、ΔTM=TG+InG・αGとなる。In the first embodiment, since the engine 1 and the generator / motor 3 are connected to the output shaft via the planetary gear 2, the torque TR of the ring gear 23 connected to the output shaft is twice the generator / motor torque TG. Becomes On the contrary,
In the second embodiment, the output shaft torque of the generator / motor 3b becomes equal to the generator / motor torque TG without considering the gear ratio, so the correction torque ΔTM for the drive motor 4 is set.
Is ΔTM = TG + InG · αG.
【0027】次に第3の実施例について説明する。この
実施例では、第1の実施例において一定値であったエン
ジン始動速度V*を、図10に示すように、バッテリ4
3の充電残容量SOCに応じて変化させるようにしたも
のである。すなわち、図10に示すように、充電残容量
SOCが小さいほどEG始動領域を大きくし、EG始動
車速(V*)とEG停止車速(V**)を共に下げるこ
とで発電量を増加してバッテリ43に充電する。また、
EG始動車速(V*)とEG停止車速(V**)に差を
設けることでハンチングを防止する。Next, a third embodiment will be described. In this embodiment, the engine starting speed V *, which was a constant value in the first embodiment, is changed to the battery 4 as shown in FIG.
The charge remaining capacity SOC of No. 3 is changed. That is, as shown in FIG. 10, the smaller the state of charge SOC is, the larger the EG start region is, and the EG start vehicle speed (V *) and the EG stop vehicle speed (V **) are both reduced to increase the power generation amount. The battery 43 is charged. Also,
Hunting is prevented by providing a difference between the EG start vehicle speed (V *) and the EG stop vehicle speed (V **).
【0028】次に、第4の実施例について説明する。こ
の実施例では、第3の実施例に加えて、さらにセンサ系
41に図示しない温度センサを配置し、排ガスを低減す
るための触媒が充分加熱された後にエンジン1を始動す
るようにしたものである。図11は、第4の実施例にお
ける処理動作について表したものである。なお、図11
では、図3で説明した実施例の動作と同様に動作するス
テップには同一のステップ番号を付してその説明を適宜
省略することとする。車両制御装置424は、図示しな
い温度センサにより触媒の温度を検出し、触媒が加熱状
態か否かを判断し(ステップ111)、未加熱状態であ
れば(N)、駆動モータ単独走行を係属する。Next, a fourth embodiment will be described. In this embodiment, in addition to the third embodiment, a temperature sensor (not shown) is further arranged in the sensor system 41 so that the engine 1 is started after the catalyst for reducing exhaust gas is sufficiently heated. is there. FIG. 11 shows the processing operation in the fourth embodiment. Note that FIG.
Then, the steps that operate in the same way as the operation of the embodiment described in FIG. 3 are given the same step numbers, and the description thereof will be appropriately omitted. The vehicle control device 424 detects the temperature of the catalyst by a temperature sensor (not shown) and determines whether the catalyst is in the heated state (step 111). If the catalyst is not in the heated state (N), the drive motor alone travels. .
【0029】一方、触媒が充分に加熱されている場合
(ステップ111;Y)、車両センサ424は、車速
V、充電残容量SOC、およびアクセル開度αを、各セ
ンサから入力する(ステップ112)。そして入力した
充電残容量SOCにおけるエンジン始動車速V*を図1
0に従って算出し(ステップ113)、車速Vと算出し
たエンジン始動車速V*とを比較する(ステップ11
4)。そして、車速Vがエンジン始動車速V*よりも小
さい場合には(ステップ114;N)ステップ13に移
行し、V*以上である場合には(Y)ステップ14に移
行する。以後の動作については、図3に示した実施例と
同様に動作する。なお、ステップ15において、図3で
は、充電残容量SOCを入力したが、図11では、ステ
ップ113で入力した値を使用する。On the other hand, when the catalyst is sufficiently heated (step 111; Y), the vehicle sensor 424 inputs the vehicle speed V, the state of charge SOC, and the accelerator opening α from each sensor (step 112). . The engine starting vehicle speed V * at the input SOC of the remaining charge is shown in FIG.
0 (step 113) and compares the vehicle speed V with the calculated engine start vehicle speed V * (step 11).
4). When the vehicle speed V is lower than the engine starting vehicle speed V * (step 114; N), the process proceeds to step 13, and when it is equal to or higher than V *, the process proceeds to step (Y) 14. The subsequent operation is similar to that of the embodiment shown in FIG. Note that, in step 15, the state of charge SOC is input in FIG. 3, but the value input in step 113 is used in FIG. 11.
【0030】次に、第5の実施例について説明する。こ
の実施例では、第1の実施例において、車両制御装置4
24は、エンジン制御装置421に対して、エンジン一
時停止システムに従った制御を行うようにしたものであ
る。すなわち、車両制御装置424は、エンジン一時停
止システムとして、アクセルセンサ411、車速センサ
412、ブレーキペダルの踏み込みを検出するブレーキ
センサ(図示せず)、またはギヤシフトの位置を検出す
るギヤシフトセンサ(図示せず)の少なくとも1つのセ
ンサを具備する。そして、車両制御装置424は、セン
サ出力信号にもとづいてエンジン1の駆動が不要である
と判断した場合には、エンジン制御装置421にOFF
信号を供給することで、アイドリング状態ではなくエン
ジン1を停止させる。Next, a fifth embodiment will be described. In this embodiment, in the first embodiment, the vehicle control device 4
Reference numeral 24 denotes a control unit that controls the engine control device 421 according to the engine temporary stop system. That is, the vehicle control device 424 is an engine temporary stop system, and includes an accelerator sensor 411, a vehicle speed sensor 412, a brake sensor (not shown) that detects a depression of a brake pedal, or a gear shift sensor (not shown) that detects a gear shift position. ) At least one sensor. Then, when the vehicle control device 424 determines that it is not necessary to drive the engine 1 based on the sensor output signal, the vehicle control device 424 turns off the engine control device 421.
By supplying the signal, the engine 1 is stopped instead of the idling state.
【0031】次に、アクセルセンサ411と車速センサ
412によるエンジン一時停止処理について説明する。
車両制御装置424は、アクセルセンサ411と車速セ
ンサ412のセンサ出力信号を入力し、アクセル開度α
からアクセルが2秒間継続してオフであるか、または車
速Vがゼロである場合を検出する。このような場合、車
両制御装置424は、信号待ち状態や下り坂等を走行中
等でアクセルが踏み込まれていない場合であるか、また
は渋滞や信号待ち等によって車両の走行が一時停止して
いる場合であり、このような場合にはエンジン1を駆動
する必要がないので、エンジン制御装置421に対して
OFF信号を供給する。これによりエンジン制御装置4
21は、燃料系や点火系を制御してエンジン1を一時停
止させる。Next, the engine temporary stop processing by the accelerator sensor 411 and the vehicle speed sensor 412 will be described.
The vehicle control device 424 inputs the sensor output signals of the accelerator sensor 411 and the vehicle speed sensor 412, and outputs the accelerator opening α
Therefore, it is detected that the accelerator is continuously off for 2 seconds or the vehicle speed V is zero. In such a case, the vehicle control device 424 determines whether the accelerator is not depressed while waiting for a signal, traveling downhill, or the like, or when the vehicle is temporarily stopped due to traffic congestion, signal waiting, or the like. In such a case, it is not necessary to drive the engine 1, so the OFF signal is supplied to the engine control device 421. As a result, the engine control device 4
Reference numeral 21 controls the fuel system and the ignition system to temporarily stop the engine 1.
【0032】エンジン1を一時停止させた後にアクセル
が踏み込まれると、車両制御装置424は、第1の実施
例で説明したように、発電機モータ3によりエンジンを
再始動させ、駆動モータトルクでトルクを補正する。な
お、信号待ち等により車両が停止してる状態であれば、
車両の発進を駆動モータ4で行った後に、車速V*でエ
ンジンを再始動する。When the accelerator pedal is depressed after the engine 1 is temporarily stopped, the vehicle control device 424 restarts the engine with the generator motor 3 as described in the first embodiment, and the torque of the drive motor torque is applied. To correct. If the vehicle is stopped due to waiting for a signal,
After starting the vehicle with the drive motor 4, the engine is restarted at the vehicle speed V *.
【0033】以上、第1から第5の実施例を例に本発明
の説明を行ったが、本発明はこれら各実施例に限定され
るものではなく、種々の変形が可能である。例えば、第
1の実施例では、予め設定した車速V*でエンジンを始
動する構成としたが、車両の発進を検出したら直ちに
(V*=0)、エンジンを始動するようにしてもよい。
また第1の実施例において、車両制御装置424におい
て補正トルクΔTMを算出する構成としたが、他に、発
電機モータ制御装置422から発電機モータトルクTG
と回転数NGを受け取って駆動モータ制御装置423に
おいて補正トルクΔTMを計算するようにしてもよい。Although the present invention has been described with reference to the first to fifth embodiments as examples, the present invention is not limited to these embodiments and various modifications can be made. For example, in the first embodiment, the engine is started at the preset vehicle speed V *, but the engine may be started immediately after the start of the vehicle is detected (V * = 0).
In addition, in the first embodiment, the vehicle control device 424 is configured to calculate the correction torque ΔTM. However, in addition to this, the generator motor control device 422 to the generator motor torque TG.
The correction torque ΔTM may be calculated in the drive motor control device 423 by receiving the rotation speed NG.
【0034】また、第1の実施例における発電機モータ
回転数NGについて、発電機モータ回転数センサ413
で検出したが、エンジン回転数センサ414からエンジ
ン回転数NEを入力して次のように算出してもよい。す
なわち、発電機モータ回転数(サンギヤ)をNG、エン
ジン回転数(キャリヤ)をNE、出力軸回転数(リング
ギヤ)をNRとし、リングギヤ23の歯数をサンギヤ2
1の歯数の2倍にした場合、NG=3・NE−2・NR
となり、エンジン回転数NEと発電機モータ回転数NG
は互いに算出することができる。従って、発電機モータ
回転数センサ413で発電機モータ回転数NGを検出す
る代わりに、エンジン回転数センサ414で検出したエ
ンジン回転数NEを使用して発電機モータ回転数NGを
算出すると共に、この発電機モータ回転数NGから発電
機モータトルクTGを算出する。このようにすること
で、発電機モータ回転数センサ413が不要になる。ま
た、第1の実施例では、エンジンと発電機モータがプラ
ネタリギヤを介して出力軸に接続されている構成につい
て説明したが、本発明では、ベベルギヤ等の他の作動ギ
ヤを介して出力軸に接続されるようにしてもよい。Regarding the generator / motor speed NG in the first embodiment, the generator / motor speed sensor 413 is used.
However, the engine speed NE may be input from the engine speed sensor 414 and calculated as follows. That is, the generator / motor speed (sun gear) is NG, the engine speed (carrier) is NE, the output shaft speed (ring gear) is NR, and the number of teeth of the ring gear 23 is the sun gear 2.
When the number of teeth of 1 is doubled, NG = 3 ・ NE-2 ・ NR
And engine speed NE and generator motor speed NG
Can be calculated from each other. Therefore, instead of detecting the generator / motor speed NG by the generator / motor speed sensor 413, the engine / motor speed NE detected by the engine speed sensor 414 is used to calculate the generator / motor speed NG. The generator / motor torque TG is calculated from the generator / motor speed NG. By doing so, the generator / motor rotation speed sensor 413 becomes unnecessary. Further, in the first embodiment, the configuration in which the engine and the generator motor are connected to the output shaft via the planetary gear has been described, but in the present invention, the engine and the generator motor are connected to the output shaft via another operating gear such as a bevel gear. It may be done.
【0035】また第4の実施例では、触媒の温度を検出
する場合について説明したが、触媒温度に代えて、エン
ジン1の温度を検出し、エンジン温が所定以上になった
場合にエンジン1を始動するようにしてもよい。 ま
た、触媒温度とエンジン温度が共に所定温度になった場
合にエンジン1を始動するようにしてもよい。In the fourth embodiment, the case where the temperature of the catalyst is detected has been described. However, instead of the catalyst temperature, the temperature of the engine 1 is detected, and when the engine temperature exceeds a predetermined value, the engine 1 is detected. You may make it start. Further, the engine 1 may be started when both the catalyst temperature and the engine temperature reach a predetermined temperature.
【0036】また、第5の実施例で説明したエンジン一
時停止システムでは、エンジンの駆動が不要な状態とし
て、2秒以上のアクセルオフの状態と車速0の状態を例
に説明したが、本発明はこれに限定されるものではな
い。例えば、両者の条件が満たされた場合にのみエンジ
ンを一時停止するようにしてもよい。また、ギヤシフト
位置がニュートラルに移動された場合にエンジンを一時
停止するようにしてもよい。更に、第5の実施例では、
2秒以上のアクセルオフ状態でエンジン1を一時停止さ
せたが、1秒以上のアクセルオフ状態で一時停止させて
もよい。また、アクセルオフの時間とは関係なく、アク
セルオフとブレーキオンの両条件が満たされた場合にエ
ンジンを一時停止するようにしてもよい。このように、
ブレーキオンでエンジンを停止すると、駆動モータはエ
ンジンからのエネルギを発電する必要がなくなるので、
バッテリの許容値最大限まで減速エネルギを回生できる
利点がある。さらに、エンジン一時停止システムの適用
を、減速時や一時車両停止時等に限らず、例えば、ハイ
ブリッド車両において、エンジン単独走行やハイブリッ
ド走行から駆動モータ単独走行に移行した場合にも、エ
ンジンを一時停止させるようにしてもよい。Further, in the engine temporary stop system described in the fifth embodiment, the state in which the engine is not required to drive is not limited to the accelerator off state for 2 seconds or more and the vehicle speed is 0. Is not limited to this. For example, the engine may be temporarily stopped only when both conditions are satisfied. Further, the engine may be temporarily stopped when the gear shift position is moved to neutral. Furthermore, in the fifth embodiment,
Although the engine 1 is temporarily stopped in the accelerator-off state for 2 seconds or more, it may be temporarily stopped in the accelerator-off state for 1 second or more. Further, regardless of the accelerator-off time, the engine may be temporarily stopped when both the accelerator-off and brake-on conditions are satisfied. in this way,
When the engine is stopped with the brake on, the drive motor does not need to generate energy from the engine, so
There is an advantage that the deceleration energy can be regenerated to the maximum allowable value of the battery. Furthermore, the application of the engine suspension system is not limited to deceleration, temporary vehicle stoppage, etc., and for example, in a hybrid vehicle, the engine is temporarily stopped even when the engine alone travels or when the hybrid motor travels to the drive motor alone travel. You may allow it.
【0037】以上説明したように、第1から第5の実施
例によれば、車両の発進を駆動モータ4で行うので、発
進のもたつきがなく、スムーズに発進することができ
る。また、エンジン1の始動時におけるトルク変動を駆
動モータ4の出力で吸収するので、エンジン始動に伴う
ショックが軽減される。さらに各実施例によれば、走行
中のエンジン効率が向上し、燃費を向上させることがで
きる。すなわち、停車時や低速時は必要エネルギーが小
さいので、その間の発電は必要量より大きく、バッテリ
43に蓄えられる。そのため走行中の必要エネルギーが
低下するため、エンジン1は低負荷で運転される。しか
し一般的にエンジン1は高負荷で運転されるほど効率が
向上するので、必要エネルギーが低い停車時や低速時
は、エンジン1を停止した方が走行中のエンジン効率は
高くなる。特に第5の実施例では、エンジン1の駆動が
必要ないと判断された場合には、アイドリング状態とせ
ずに、エンジンを一時停止するため燃料消費がないぶん
全体としての燃費が向上する。As described above, according to the first to fifth embodiments, the vehicle is started by the drive motor 4, so that the vehicle can be started smoothly without any start-up delay. Further, since the torque fluctuation at the time of starting the engine 1 is absorbed by the output of the drive motor 4, the shock accompanying the engine starting is reduced. Further, according to each of the embodiments, the engine efficiency during traveling can be improved and the fuel consumption can be improved. That is, since the required energy is small when the vehicle is stopped or at a low speed, the power generation during that time is larger than the required amount and is stored in the battery 43. Therefore, the required energy during traveling is reduced, so that the engine 1 is operated with a low load. However, since the efficiency of the engine 1 generally improves as the load of the engine 1 increases, the engine efficiency during running is higher when the engine 1 is stopped when the vehicle is stopped or at a low speed where the required energy is low. In particular, in the fifth embodiment, when it is determined that the engine 1 does not need to be driven, the engine is temporarily stopped without making the engine idle, so that fuel consumption is improved as a whole because there is no fuel consumption.
【0038】また、各実施例によれば、発電機モータ3
でエンジン1を始動するので、非常時等以外はスタータ
を使用する必要がなく、スタータの負担を小さくことが
できる。特に、エンジン一時停止システムを採用した第
5の実施例ではエンジン1の停止、再始動が頻繁に行わ
れるが、発電機モータ3でエンジンを再始動すること
で、スタータやクラッチが不要となる。なお、エンジン
1を始動するための負荷は発電機モータ駆動モータの容
量に比べて小さいので、発電機モータ駆動モータの負担
は軽微である。またハイブリッド車両では十分な容量の
バッテリを搭載しているので、エンジン1の始動による
バッテリの負担も少ない。さらに、第5の実施例によれ
ば、車両の一時停車時にエンジン1を停止するので、騒
音が無い。Further, according to each embodiment, the generator motor 3
Since the engine 1 is started by the above, it is not necessary to use the starter except in an emergency, and the burden on the starter can be reduced. In particular, in the fifth embodiment employing the engine temporary stop system, the engine 1 is frequently stopped and restarted, but by restarting the engine with the generator motor 3, the starter and the clutch are unnecessary. Since the load for starting the engine 1 is smaller than the capacity of the generator / motor drive motor, the load on the generator / motor drive motor is light. Further, since the hybrid vehicle is equipped with a battery having a sufficient capacity, the burden on the battery due to the start of the engine 1 is small. Further, according to the fifth embodiment, since the engine 1 is stopped when the vehicle is temporarily stopped, there is no noise.
【0039】[0039]
【発明の効果】本発明によれば、車両の発進を速やかに
行うと共に、エンジンの始動による走行フィーリングの
悪化を防止することができる。また、エンジン停止シス
テムを使用したハイブリッド車両であっても、スタータ
やクラッチが不要となる。According to the present invention, it is possible to quickly start the vehicle and prevent the driving feeling from being deteriorated due to the start of the engine. Further, even in a hybrid vehicle using an engine stop system, a starter and a clutch are unnecessary.
【図1】本発明の一実施例におけるハイブリッド車両の
駆動装置配列を示すスケルトン図である。FIG. 1 is a skeleton diagram showing a drive device array of a hybrid vehicle according to an embodiment of the present invention.
【図2】同上、ハイブリッド車両の制御部の構成図であ
る。FIG. 2 is a configuration diagram of a control unit of the hybrid vehicle.
【図3】同上、ハイブリッド車両の第1の実施例におけ
る制御動作を示すフローチャートである。FIG. 3 is a flowchart showing a control operation in the first embodiment of the hybrid vehicle.
【図4】同上、ハイブリッド車両おける駆動モータトル
ク−車速特性図である。FIG. 4 is a drive motor torque-vehicle speed characteristic diagram in the above hybrid vehicle.
【図5】同上、ハイブリッド車両の目標回転数NG*と
アクセル開度αと充電残容量SOCとの関係を示す特性
図である。FIG. 5 is a characteristic diagram showing a relationship between a target speed NG * of the hybrid vehicle, an accelerator opening α, and a remaining charge SOC of the hybrid vehicle.
【図6】同上、ハイブリッド車両における発電機モータ
が他励式である場合のトルク−回転数特性図である。FIG. 6 is a torque-rotational speed characteristic diagram when the generator motor of the hybrid vehicle is a separately excited type in the above.
【図7】同上、ハイブリッド車両のエンジン回転数NE
とスロットル開度αとの関係を示す特性図である。FIG. 7: Same as above, engine speed NE of hybrid vehicle
FIG. 6 is a characteristic diagram showing a relationship between the throttle opening α and the throttle opening α.
【図8】同上、ハイブリッド車両における各部のタイム
チャートである。FIG. 8 is a time chart of each part of the hybrid vehicle.
【図9】本発明の第2の実施例におけるハイブリッド車
両の駆動装置の配列を示すスケルトン図である。FIG. 9 is a skeleton diagram showing an arrangement of drive devices for a hybrid vehicle according to a second embodiment of the present invention.
【図10】本発明の第3の実施例におけるハイブリッド
車両のエンジン始動速度V*と充電残容量SOCとの関
係を示す特性図である。FIG. 10 is a characteristic diagram showing a relationship between an engine starting speed V * and a state of charge SOC of a hybrid vehicle according to a third embodiment of the present invention.
【図11】本発明の第4の実施例における、処理動作を
示すフローチャートである。FIG. 11 is a flowchart showing a processing operation according to the fourth embodiment of the present invention.
1 エンジン 2 プラネタリギヤ 21 サンギヤ 22 キャリヤ 23 リングギヤ 3 発電機モータ 4 駆動モータ 5 デファレンシャルギヤ 11 第1カウンタドライブギヤ 15 第2カウンタドライブギヤ 31 カウンタシャフト 33 カウンタドリブンギヤ 35 デフピニオンギヤ 40 駆動系 41 センサ系 411 アクセルセンサ 412 車速センサ 413 発電機モータ回転数センサ 414 エンジン回転数センサ 415 バッテリセンサ 42 制御系 421 エンジン制御装置 422 発電機モータ制御装置 423 駆動モータ制御装置 424 車両制御装置 43 バッテリ 1 engine 2 planetary gears 21 Sun Gear 22 carriers 23 ring gear 3 generator motor 4 drive motor 5 differential gear 11 1st counter drive gear 15 Second counter drive gear 31 counter shaft 33 counter driven gear 35 differential pinion gear 40 drive system 41 sensor system 411 Accelerator sensor 412 vehicle speed sensor 413 Generator motor rotation speed sensor 414 Engine speed sensor 415 Battery sensor 42 Control system 421 Engine control device 422 Generator motor controller 423 Drive motor controller 424 Vehicle control device 43 battery
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B60K 6/04 553 B60K 6/04 553 17/04 17/04 G B60L 11/14 B60L 11/14 F02N 11/04 F02N 11/04 D (72)発明者 中島 秀樹 愛知県安城市藤井町高根10番地 アイシ ン・エィ・ダブリュ株式会社内 (56)参考文献 特開 平8−207601(JP,A) 特開 平3−273993(JP,A) 特開 平6−217411(JP,A) 特開 平6−261419(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 29/02 F02D 29/02 321 F02D 29/06 B60L 11/14 F02N 11/04 B60K 17/04 B60K 6/02 - 6/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI B60K 6/04 553 B60K 6/04 553 17/04 17/04 G B60L 11/14 B60L 11/14 F02N 11/04 F02N 11 / 04 D (72) Inventor Hideki Nakajima 10 Takane, Fujii-cho, Anjo City, Aichi Prefecture Aisin AW Co., Ltd. (56) Reference JP-A-8-207601 (JP, A) JP-A-3-273993 ( JP, A) JP-A-6-217411 (JP, A) JP-A-6-261419 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F02D 29/02 F02D 29/02 321 F02D 29/06 B60L 11/14 F02N 11/04 B60K 17/04 B60K 6/02-6/04
Claims (2)
燃エンジンと連結された第2の歯車要素及び前記出力軸
と連結された第3の歯車要素からなる差動歯車装置と、 前記発電機モータを回転数制御して前記エンジンを始動
させるエンジン始動手段と、 前記発電機モータの出力トルクを演算する発電機トルク
演算手段と、 エンジン始動時、前記発電機トルク演算手段によって演
算されたトルクに応じて前記駆動モータの出力トルクを
補正するモータトルク補正手段と、 を備えたことを特徴とするハイブリッド車両。1. An engine, a drive motor, a generator motor, an output shaft connected to drive wheels, a first gear element connected to the generator motor, and a second gear element connected to the internal combustion engine. Differential gear device comprising a gear element of No. 3 and a third gear element connected to the output shaft, engine starting means for controlling the rotation speed of the generator motor to start the engine, and output of the generator motor. Generator torque calculating means for calculating torque, and motor torque correcting means for correcting the output torque of the drive motor in accordance with the torque calculated by the generator torque calculating means at engine startup. Hybrid vehicle.
燃エンジンと連結された第2の歯車要素及び前記出力軸
と連結された第3の歯車要素からなる差動歯車装置と、 前記発電機モータを駆動して前記エンジンを始動させる
エンジン始動手段と、を備え、 前記エンジン始動手段によりエンジンを始動するときの
トルク変動を、前記駆動モータで吸収することを特徴と
するハイブリッド車両。 2. An engine, a drive motor for driving the drive wheels, a generator motor, an output shaft connected to the drive wheels, a first gear element connected to the generator motor, and
Second gear element connected to a combustion engine and said output shaft
A differential gear device comprising a third gear element connected to the engine, and driving the generator motor to start the engine.
An engine starting means, for starting the engine by the engine starting means.
The torque fluctuation is absorbed by the drive motor.
Hybrid vehicle that does.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36891097A JP3370265B2 (en) | 1997-12-25 | 1997-12-25 | Hybrid vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36891097A JP3370265B2 (en) | 1997-12-25 | 1997-12-25 | Hybrid vehicle |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6353895A Division JP2794272B2 (en) | 1995-02-28 | 1995-02-28 | Hybrid vehicle and hybrid vehicle control method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000320788A Division JP3350520B2 (en) | 2000-10-20 | 2000-10-20 | Hybrid vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10325345A JPH10325345A (en) | 1998-12-08 |
JP3370265B2 true JP3370265B2 (en) | 2003-01-27 |
Family
ID=18493069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36891097A Expired - Lifetime JP3370265B2 (en) | 1997-12-25 | 1997-12-25 | Hybrid vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3370265B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3721818B2 (en) * | 1998-12-21 | 2005-11-30 | 三菱自動車工業株式会社 | Control device for hybrid vehicle |
JP3562432B2 (en) | 2000-04-12 | 2004-09-08 | 日産自動車株式会社 | Automatic restart / restart system for vehicle engines |
JP3454245B2 (en) * | 2000-10-26 | 2003-10-06 | トヨタ自動車株式会社 | Vehicle start control device |
JP4258492B2 (en) | 2005-06-01 | 2009-04-30 | トヨタ自動車株式会社 | Hybrid vehicle and control method thereof |
WO2012114509A1 (en) | 2011-02-25 | 2012-08-30 | スズキ株式会社 | Engine start control device for hybrid vehicle |
JP2014237365A (en) * | 2013-06-07 | 2014-12-18 | トヨタ自動車株式会社 | Engine control unit of hybrid vehicle |
WO2017006440A1 (en) * | 2015-07-07 | 2017-01-12 | 日産自動車株式会社 | Device for controlling driving force of hybrid vehicle |
JP2017034785A (en) * | 2015-07-30 | 2017-02-09 | Ntn株式会社 | Motor drive unit |
-
1997
- 1997-12-25 JP JP36891097A patent/JP3370265B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10325345A (en) | 1998-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08232817A (en) | Hybrid vehicle | |
US10850600B2 (en) | Drive force control system for hybrid vehicles | |
JP2005020820A (en) | Hybrid car and control method thereof | |
JP2001152901A (en) | Engine starting control device for vehicle | |
JP2006242095A (en) | Hybrid vehicle and its control method | |
JP2005344605A (en) | Power output device, hybrid vehicle equipped with the device, and method for controlling these | |
WO2012117517A1 (en) | Hybrid vehicle engine start control device | |
JP5008353B2 (en) | Control device for hybrid vehicle | |
JP5288984B2 (en) | Hybrid vehicle | |
JP4297108B2 (en) | Vehicle and control method thereof | |
JP4085996B2 (en) | Power output apparatus, automobile equipped with the same, and control method of power output apparatus | |
JP2011097666A (en) | Vehicle and control method therefor | |
JP3370265B2 (en) | Hybrid vehicle | |
JP3968894B2 (en) | Hybrid vehicle and control method thereof | |
JP3350520B2 (en) | Hybrid vehicle | |
JP2003065106A (en) | Power output device and electric vehicle | |
JP5074932B2 (en) | VEHICLE, DRIVE DEVICE, AND CONTROL METHOD THEREOF | |
JP3721830B2 (en) | Control device for hybrid vehicle | |
JP4345765B2 (en) | Vehicle and control method thereof | |
JP2004278317A (en) | Vehicular speed reduction control device | |
JP2006044536A (en) | Hybrid vehicle and control method thereof | |
JP2004034844A (en) | Device and method for controlling torque for vehicle | |
JP3894159B2 (en) | POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND AUTOMOBILE | |
JP2003235107A (en) | Control device for vehicle | |
JP2001152900A (en) | Engine start deciding device and engine start control device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071115 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131115 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |