JP3543496B2 - Odor detection device - Google Patents

Odor detection device Download PDF

Info

Publication number
JP3543496B2
JP3543496B2 JP17828796A JP17828796A JP3543496B2 JP 3543496 B2 JP3543496 B2 JP 3543496B2 JP 17828796 A JP17828796 A JP 17828796A JP 17828796 A JP17828796 A JP 17828796A JP 3543496 B2 JP3543496 B2 JP 3543496B2
Authority
JP
Japan
Prior art keywords
odor
adsorption
gas
flow path
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17828796A
Other languages
Japanese (ja)
Other versions
JPH1019862A (en
Inventor
純一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP17828796A priority Critical patent/JP3543496B2/en
Publication of JPH1019862A publication Critical patent/JPH1019862A/en
Application granted granted Critical
Publication of JP3543496B2 publication Critical patent/JP3543496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、食品の品質検査等に用いられ、大気中の匂い物質等を検知するための匂い検知装置に関する。
【0002】
【従来の技術】
近年、サンプルガス中の固有の物質に感応する導電性高分子膜を匂いセンサとして用いる研究が行われており、現在では、金属酸化物半導体若しくは導電性高分子の抵抗値変化を利用する匂いセンサや、水晶振動子上に脂質膜若しくは有機膜に感応物質を取り込んだ膜を付着した構成の匂いセンサ、さらに、SAWデバイス上に前記感応膜を付着した構成の匂いセンサ等を用いた匂い検知装置が実用化されている。
【0003】
そして、匂いの基となるサンプルガス中の物質成分をかかる匂い検知装置により検知することで、食品の品質管理を行う品質検査装置が広く開発されつつある。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した匂い検知装置はいずれも、人間や犬の鼻等の生物の臭覚に比べると感度が低くすぎるため、例えば、食品検査などに用いた場合には、品質管理上問題となる匂いを完全に検知しきれず、十分な品質管理をなしえないという問題があった。
【0005】
本発明は、上記課題を解決するために創案されたもので、食品検査などの品質管理にも十分耐えられる感度の高い匂い検知装置の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明にかかる匂い検知装置は、匂い物質に応じた固有の信号を出力する匂いセンサと、サンプルガスの吸脱着を行う吸脱着手段と、前記吸脱着手段で脱着されたガスを前記匂いセンサに導く流路手段と、を備えたことを特徴とする。
【0007】
前記匂いセンサは、PAT6(ポリアルキルチオヘン)、ポリピロール、PTMSiPA、CNPPV等の導電性高分子膜から成ることを特徴とする。
【0008】
前記吸脱着手段は、多孔質ポリマービース等の吸着剤と、前記吸着剤に無臭ガスを通過させる手段とからなり、前記吸着剤によりサンプルガス中の匂い物質を吸着し、前記サンプルガスとは別に無臭ガスを通過させることにより吸着した匂い物質を脱着することを特徴とする。
【0009】
なお、脱着に際しては、前記吸着剤を加熱する加熱手段を併用することが脱着効率を高める上で望ましい。
【0010】
本発明は、匂い物質に応じて固有の信号を出力する匂いセンサと、サンプルガスの吸脱着を行う吸脱着手段と、前記吸脱着手段で脱着されたガスを前記匂いセンサに導く流路手段と、所定時間サンプルガスを吸着した後、吸着したガスを脱着するよう前記吸脱着手段に指示を与える制御手段と、を備えた匂い検知装置としても構成できる。
【0011】
さらに、本発明は、前記制御手段を備え、或いは備えていない匂い検知装置において、サンプルガスを前記吸脱着手段に導く流路上或いは前記吸脱着手段で脱着されたガスを前記匂いセンサへ導く流路手段上に水分吸着手段を備えた匂い検知装置としても構成できる。
【0012】
前記水分吸着手段は、活性アルミナ、ゼオライト、シリカゲルにより構成されていることを特徴とする。
【0013】
【発明の実施の形態】
本発明の一実施例を図1〜図4に基づいて説明する。図1は、本発明の一実施例である匂い検知装置の外観図であり、吸入口10から吸入したサンプルガスをフィルタ5を介して本体に取り込み匂い検知を行った後、排出口12から排出するよう構成されており、本体内部の匂い除去部に空気を供給するための空気吸入口11が別に設けられている。
【0014】
図2は、本発明の一実施例である匂い検知装置の構成図であり、吸入口10から吸入されたサンプルガスは、フィルタ5で粉塵などが排除され、流路aを介して切換弁4bにより流路b,c,iのいずれかに供給される。
【0015】
流路iには、水分除去部6と吸脱着部1及びヒータ1aが配設されており、水分除去部6は、内部に活性アルミナ、ゼオライト、シリカゲル等の水分吸着物質を備えている。また、吸脱着部1は、内部に匂い物質を吸着する多孔質ポリマービースを有し、かかる多孔質ポリマービースは、例えば、商品名「テナックスGC」等の市販品を用いることができ、匂い物質の吸着性に優れていると共に、吸着ガスから匂いセンサ部2の出力に影響を与える水分を取り除く作用に優れているため、吸脱着部1に用いるのが望ましい。
【0016】
ヒータ1aは、吸脱着部1を加熱するようこれに近接配置され、コンピュータ9により加熱状態がを制御されることで、吸脱着部1に吸着されたガスを脱着効果を高めるのに用いられる。かかる吸着及び脱着動作により、サンプルガス中の匂い物質を濃縮した状態で匂いセンサ部2に供給することが可能となり、匂い物質の検知感度が飛躍的に向上する。
【0017】
流路cには、匂いセンサ部2が配設されており、匂いセンサ部2は、PAT6(ポリアルキルチオヘン)、ポリピロール、PTMSiPA、CNPPV等の単数若しくは複数の導電性高分子膜からなり、これらは、ガス中の匂い物質に応じた抵抗変化を示し、匂い物質に応じた検知信号の出力を可能とする。
【0018】
切換弁4a〜4dは、いずれもコンピュータ9によってその動作が制御されるよう構成されており、それらの切り換えパターンは図4に示される通りである。すなわち、切換弁4aは、(流路d−流路e)及び(流路d−流路b)の2パターンの切り換えを、切換弁4bは、(流路i−流路c)、(流路a−流路i、流路b−流路c)、及び(流路b−流路i,c)の3パターンの切り換えを、切換弁4cは、(流路e−流路i)及び(流路i−流路f)の2パターンの切り換えを、さらに、切換弁4dは、(流路g−流路h)及び(流路g,f−流路h)の2パターンの切り換えを行うようそれぞれ構成されている。
【0019】
流路dには、内部に活性炭を有する匂い除去部3が配設されており、空気吸入口11より外部空気を取り入れ無臭ガスとして匂いセンサ部2や吸脱着部1に送出する。
【0020】
流路gには、流速調節器8a、8bが、また、流路hには、ポンプ7がそれぞれ配設されている。ポンプ7は、吸入口10或いは空気吸入口11よりサンプルガスなどを内部に吸入する動力源となるもので、吸入されたガスは最終的に排出口12より外部へ放出される。
【0021】
コンピュータ9は、切換弁4a〜4dの切り換え制御、及びヒータ1aの加熱制御を行う制御手段としての機能と、匂いセンサ部2から出力される検知信号を解析して匂い物質を特定するデータ処理手段としての機能を備えている。
【0022】
次に、本発明の作用をコンピュータ9の動作を示す図3のフローチャート及び図4の切り換えモードを示す図に基づいて説明する。
【0023】
まず、コンピュータ9は、測定に先立ち、装置をアイドリングモードの状態とし(S1)、計測指令が入力されるのを待つ(S2)。なお、計測指令は、計測者により不図示のスイッチ等からコンピュータ9に与えられる指示である。
【0024】
ここで、アイドリングモードは、図4左上欄に示されるように切換弁4a〜4dが切り換えられると共に、ヒータ1aがoffの状態を示し、この状態では、図2において、匂い除去部3を通過した無臭の空気は、流路d,e,吸脱着部1,及び水分除去部6を介して匂いセンサ部2に供給され、流路g,hを介して排出口12から排出される。かかる場合、吸脱着部1、水分除去部6において水分が除かれた無臭の空気が供給されるので、匂いセンサ部2の出力はゼロとなる。
【0025】
次に、コンピュータ9は、計測指令を検知すると、サンプリングガスを吸入するサンプリングモードの状態とする(S2)。
【0026】
ここで、サンプリングモードは、図4左下欄に示されるように切換弁4a〜4dが切り換えられると共に、ヒータ1aがoffの状態を示し、匂い除去部3を通過した無臭の空気は、流路d,b,cを介して匂いセンサ部2に供給されると共に、吸入口10より吸引されたサンプリングガスは、フィルタ5で粉塵などが排除された後、流路a,iを介して水分除去部6で水分が除去され、さらに、吸脱着部1で匂い物質が吸着された後、流路f,hを介して、排出口12より排出される。
【0027】
そして、コンピュータ9は、吸脱着部1にガスが十分吸着されるのを待って(S4)、測定モード1の状態とする(S5)。なお、サンプルガス中の匂い物質が吸脱着部1に十分吸着されるのに要する時間は、既知濃度の標準ガスを逐一吸着時間を変更して吸着させ、それぞれ脱着したガスの濃度を測定しその濃度が飽和するときの吸着時間を測定することで求められる。
【0028】
ここで、測定モード1は、図4右上欄に示されるように切換弁4a〜4dが切り換えられる(上述したアイドリングモードと同じ)と共に、ヒータ1aがonの状態を示している。この状態では、匂い除去部3を通過した無臭の空気が、流路d,e,吸脱着部1,水分除去部6を介して匂いセンサ部2に供給され、流路g,hを介して排出口12から排出される。このとき、吸脱着部1に吸着された匂い物質は、無臭空気の通過により脱着して、匂いセンサ部2に供給されるため、匂いセンサ部2は、吸着されたガスに含まれる匂い物質に応じた検知信号を出力する。なお、ヒータ1aの加熱作用により吸着されたガスの吸脱着部1からの脱着が促進される。
【0029】
かかる場合、吸脱着部1から脱着されたガスには、サンプリングモードで吸入したサンプリングガス中の匂い物質が濃縮された状態で包含されているので、匂いセンサ部2は、サンプリングガス中の匂い物質を非常に高い濃度で検知することが可能となり、結果的に検知感度が向上する。
【0030】
次に、コンピュータ9は、匂いセンサ部2からの検知信号を入力し、所定のデータ処理を施すことで、匂い分析を行い、サンプリングガスに含まれる匂い物質を特定する(S6)。なお、匂い物質の特定は、種々の標準ガスに基づきそれぞれ固有の匂いセンサ部2からの信号を予め記憶しておき、実際の測定に際して得られた検知信号と記憶されている信号とを比較することでなされる。これらの演算は、複数センサからの出力が非線形である場合の多変数解析手法の一手法であるいわゆるニューラルネットワークを用いればよい。
【0031】
匂い分析が終了すると、次に、コンピュータ9は、匂いセンサ部2に吸着した匂い物質が脱着する時間または速度を測定するための測定モード2の状態とする(S7)。
ここで、測定モード2は、図4右下欄に示されるように切換弁4a〜4dが切り換えられると共にヒータ1aがoffの状態を示し、この状態では、匂い除去部3を通過した無臭の空気は、流路d,b,c,を介して匂いセンサ部2に供給されると共に、流路d,b,iを介して吸脱着部1に供給される。
【0032】
測定モード2の状態で、コンピュータ9は、匂いセンサ部2の検知出力がゼロになるのを待ち、ゼロになった時点を匂い物質が匂いセンサ部2から完全に脱着したものと判断して、再びアイドリングモードに移行する(S8)。
【0033】
なお、上述した測定モード2では、匂い除去部3を通過した無臭の空気が吸脱着部1を通過するので、吸脱着部1内の吸着剤のリフレッシュも兼ねることができる。
【0034】
そして、上述したS1〜S8の動作を繰り返すことにより、サンプリングガス中の連続した匂い検知が可能となる。
【0035】
【発明の効果】
本発明によれば、サンプリングガスの匂い物質を一定時間吸着させ、脱着したガス中の匂い物質の測定を行うよう構成したため、感度の高い匂い検知が可能となり、食品検査などに用いた場合、食品の制度の高い品質管理などが可能となる。
【図面の簡単な説明】
【図1】本発明にかかる匂い検知装置の外観図である。
【図2】本発明にかかる匂い検知装置の内部構造図である。
【図3】本発明の動作を示すフローチャートである。
【図4】各モードにおける切換弁及びヒータの設定状態を示す図である。
【符号の説明】
1 吸着部
2 匂いセンサ部
3 匂い除去部
4a〜4d 切換弁
5 フィルタ
6 水分除去部
7 ポンプ
8a,8b
9 コンピュータ
a〜i 流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an odor detection device that is used for quality inspection of food and the like and detects an odor substance and the like in the atmosphere.
[0002]
[Prior art]
In recent years, research has been conducted using a conductive polymer film that is sensitive to a specific substance in a sample gas as an odor sensor.Currently, an odor sensor that uses a change in the resistance value of a metal oxide semiconductor or a conductive polymer is used. Odor sensor having a structure in which a lipid film or an organic film containing a sensitive substance is attached to a quartz oscillator, and an odor sensor having a structure in which the sensitive film is attached to a SAW device. Has been put to practical use.
[0003]
Then, a quality inspection device for controlling the quality of food by detecting a substance component in a sample gas serving as a base of the odor by the odor detection device is being widely developed.
[0004]
[Problems to be solved by the invention]
However, since the above-mentioned odor detection devices are all too low in sensitivity compared to the odor of living things such as human and dog nose, for example, when used for food inspection, etc. There was a problem that it could not be completely detected and that sufficient quality control could not be achieved.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a highly sensitive odor detection device that can withstand quality control such as food inspection.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an odor detection device according to the present invention includes an odor sensor that outputs a unique signal corresponding to an odor substance, adsorption / desorption means for adsorbing / desorbing a sample gas, and desorption by the adsorption / desorption means. Flow path means for guiding the extracted gas to the odor sensor.
[0007]
The odor sensor is characterized by comprising a conductive polymer film such as PAT6 (polyalkylthiophene), polypyrrole, PTMSiPA, CNPPV or the like.
[0008]
The adsorbing and desorbing means comprises an adsorbent such as a porous polymer bead, and a means for allowing an odorless gas to pass through the adsorbent.The adsorbent adsorbs an odorous substance in the sample gas, separately from the sample gas. It is characterized in that adsorbed odor substances are desorbed by passing odorless gas.
[0009]
At the time of desorption, it is preferable to use a heating means for heating the adsorbent in order to increase the desorption efficiency.
[0010]
The present invention provides an odor sensor that outputs a unique signal according to an odor substance, adsorption / desorption means for adsorbing / desorbing a sample gas, and a flow path means for guiding the gas desorbed by the adsorption / desorption means to the odor sensor. And a control means for giving an instruction to the adsorption / desorption means so as to desorb the adsorbed gas after adsorbing the sample gas for a predetermined time.
[0011]
Further, the present invention relates to an odor detection device provided with or without the control means, on a flow path for guiding a sample gas to the adsorption / desorption means or a flow path for guiding the gas desorbed by the adsorption / desorption means to the odor sensor. It can also be configured as an odor detection device provided with a moisture adsorption means on the means.
[0012]
The moisture adsorbing means is made of activated alumina, zeolite, and silica gel.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an external view of an odor detection device according to an embodiment of the present invention. Sample gas sucked from an inlet 10 is taken into a main body through a filter 5 to detect odor, and then discharged from an outlet 12. The air suction port 11 for supplying air to the odor removing section inside the main body is separately provided.
[0014]
FIG. 2 is a configuration diagram of an odor detection device according to one embodiment of the present invention. In a sample gas sucked from an inlet 10, dust and the like are removed by a filter 5, and a switching valve 4 b is switched through a flow path a. Is supplied to any of the channels b, c, and i.
[0015]
The flow path i is provided with a water removing section 6, an adsorbing / desorbing section 1 and a heater 1a. The water removing section 6 has a water absorbing substance such as activated alumina, zeolite, silica gel or the like inside. In addition, the adsorption / desorption section 1 has a porous polymer bead for adsorbing an odorant inside. For example, a commercially available porous polymer bead such as “Tenax GC” can be used. It is preferably used for the adsorption / desorption section 1 because of its excellent adsorbing property and the excellent effect of removing moisture affecting the output of the odor sensor section 2 from the adsorbed gas.
[0016]
The heater 1a is disposed close to the adsorbing / desorbing unit 1 so as to heat the adsorbing / desorbing unit 1, and the heating state is controlled by the computer 9, so that the gas adsorbed on the adsorbing / desorbing unit 1 is used to enhance the desorption effect. Through such adsorption and desorption operations, the odor substance in the sample gas can be supplied to the odor sensor section 2 in a concentrated state, and the detection sensitivity of the odor substance is dramatically improved.
[0017]
An odor sensor section 2 is provided in the channel c. The odor sensor section 2 is formed of one or more conductive polymer films such as PAT6 (polyalkylthiophene), polypyrrole, PTMSiPA, and CNPPV. Indicates a resistance change according to the odor substance in the gas, and enables output of a detection signal according to the odor substance.
[0018]
The operation of each of the switching valves 4a to 4d is controlled by the computer 9, and their switching patterns are as shown in FIG. That is, the switching valve 4a switches between two patterns of (flow path d-flow path e) and (flow path d-flow path b), and the switching valve 4b switches (flow path i-flow path c) and (flow The switching valve 4c switches between three patterns of the flow path a-flow path i, the flow path b-flow path c), and the flow path b-flow path i, c. The switching valve 4d switches between two patterns (flow path i-flow path h) and (flow path g-f flow path h). Each is configured to do so.
[0019]
An odor removing unit 3 having activated carbon therein is disposed in the flow path d. The odor removing unit 3 takes in external air from an air intake port 11 and sends it to the odor sensor unit 2 and the adsorption / desorption unit 1 as an odorless gas.
[0020]
Flow velocity controllers 8a and 8b are disposed in the flow path g, and a pump 7 is disposed in the flow path h. The pump 7 serves as a power source for sucking sample gas or the like into the inside from the suction port 10 or the air suction port 11, and the sucked gas is finally discharged to the outside from the discharge port 12.
[0021]
The computer 9 functions as a control unit for performing switching control of the switching valves 4a to 4d and heating control of the heater 1a, and a data processing unit for analyzing a detection signal output from the odor sensor unit 2 and specifying an odor substance. As a function.
[0022]
Next, the operation of the present invention will be described with reference to the flowchart of FIG. 3 showing the operation of the computer 9 and the diagram showing the switching mode of FIG.
[0023]
First, prior to the measurement, the computer 9 sets the apparatus in an idling mode (S1) and waits for a measurement command to be input (S2). The measurement command is an instruction given to the computer 9 by a measurer from a switch (not shown) or the like.
[0024]
Here, in the idling mode, as shown in the upper left column of FIG. 4, the switching valves 4a to 4d are switched, and the heater 1a is in an off state. In this state, the heater 1a has passed the odor removing unit 3 in FIG. The odorless air is supplied to the odor sensor unit 2 through the channels d and e, the adsorption / desorption unit 1 and the water removing unit 6, and is discharged from the outlet 12 through the channels g and h. In such a case, the odorless air from which moisture is removed in the adsorption / desorption section 1 and the moisture removal section 6 is supplied, so that the output of the odor sensor section 2 becomes zero.
[0025]
Next, when the computer 9 detects the measurement command, the computer 9 sets the state of the sampling mode for sucking the sampling gas (S2).
[0026]
Here, in the sampling mode, as shown in the lower left column of FIG. 4, the switching valves 4a to 4d are switched, and the heater 1a is in the off state, and the odorless air that has passed through the odor removing unit 3 flows through the flow path d. , B, and c, the sampling gas sucked in from the suction port 10 while the dust or the like is removed by the filter 5 is then removed by the water removing section through the flow paths a and i. After the water is removed at 6 and the odorant is further adsorbed at the adsorption / desorption section 1, it is discharged from the discharge port 12 through the flow paths f and h.
[0027]
Then, the computer 9 waits until the gas is sufficiently adsorbed on the adsorption / desorption section 1 (S4), and sets the state of the measurement mode 1 (S5). The time required for the odor substance in the sample gas to be sufficiently adsorbed to the adsorption / desorption section 1 is determined by adsorbing a standard gas of a known concentration by changing the adsorption time one by one, and measuring the concentration of the desorbed gas. It is determined by measuring the adsorption time when the concentration is saturated.
[0028]
Here, the measurement mode 1 shows a state where the switching valves 4a to 4d are switched as shown in the upper right column of FIG. 4 (the same as in the idling mode described above) and the heater 1a is turned on. In this state, the odorless air that has passed through the odor removing section 3 is supplied to the odor sensor section 2 through the flow paths d and e, the adsorption / desorption section 1 and the moisture removing section 6, and is supplied through the flow paths g and h. It is discharged from the discharge port 12. At this time, the odor substance adsorbed by the adsorption / desorption section 1 is desorbed by the passage of odorless air and is supplied to the odor sensor section 2, so that the odor sensor section 2 removes the odor substance contained in the adsorbed gas. The corresponding detection signal is output. The desorption of the adsorbed gas from the adsorption / desorption section 1 is promoted by the heating action of the heater 1a.
[0029]
In such a case, since the gas desorbed from the adsorption / desorption section 1 contains the odor substance in the sampling gas sucked in the sampling mode in a concentrated state, the odor sensor section 2 detects the odor substance in the sampling gas. Can be detected at a very high concentration, and as a result, the detection sensitivity is improved.
[0030]
Next, the computer 9 inputs a detection signal from the odor sensor unit 2 and performs odor analysis by performing predetermined data processing to specify odor substances contained in the sampling gas (S6). The identification of the odor substance is performed by previously storing signals from the respective odor sensor units 2 based on various standard gases, and comparing a detection signal obtained in actual measurement with the stored signal. It is done by things. These calculations may use a so-called neural network, which is one of the multivariable analysis methods when outputs from a plurality of sensors are nonlinear.
[0031]
When the odor analysis is completed, the computer 9 sets the state of the measurement mode 2 for measuring the time or speed at which the odor substance adsorbed on the odor sensor section 2 is desorbed (S7).
Here, in the measurement mode 2, the switching valves 4a to 4d are switched as shown in the lower right column of FIG. 4 and the heater 1a is turned off. In this state, the odorless air passing through the odor removing unit 3 is displayed. Is supplied to the odor sensor section 2 through the flow paths d, b, and c, and is supplied to the adsorption / desorption section 1 through the flow paths d, b, and i.
[0032]
In the measurement mode 2, the computer 9 waits for the detection output of the odor sensor unit 2 to become zero, and judges that the odor material has completely desorbed from the odor sensor unit 2 when the detection output becomes zero. The mode shifts again to the idling mode (S8).
[0033]
In the measurement mode 2 described above, since the odorless air that has passed through the odor removing unit 3 passes through the adsorbing / desorbing unit 1, the adsorbent in the adsorbing / desorbing unit 1 can also be refreshed.
[0034]
Then, by repeating the above-described operations of S1 to S8, continuous odor detection in the sampling gas can be performed.
[0035]
【The invention's effect】
According to the present invention, the odor substance in the sampling gas is adsorbed for a certain period of time, and the odor substance in the desorbed gas is configured to be measured, so that highly sensitive odor detection is possible. High quality control of the system is possible.
[Brief description of the drawings]
FIG. 1 is an external view of an odor detection device according to the present invention.
FIG. 2 is an internal structure diagram of the odor detection device according to the present invention.
FIG. 3 is a flowchart showing the operation of the present invention.
FIG. 4 is a diagram showing setting states of a switching valve and a heater in each mode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Suction part 2 Odor sensor part 3 Odor removal part 4a-4d Switching valve 5 Filter 6 Water removal part 7 Pump 8a, 8b
9 Computer a-i channel

Claims (1)

匂い物質に応じて固有の信号を出力する匂いセンサと、サンプルガスの吸脱着を行う吸脱着手段と、前記吸脱着手段で脱着されたガスを前記匂いセンサに導く流路手段と、を備えたことを特徴とする匂い検知装置。An odor sensor that outputs a unique signal according to an odor substance, adsorption / desorption means for adsorbing / desorbing a sample gas, and a flow path means for guiding the gas desorbed by the adsorption / desorption means to the odor sensor, An odor detection device, characterized in that:
JP17828796A 1996-07-08 1996-07-08 Odor detection device Expired - Fee Related JP3543496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17828796A JP3543496B2 (en) 1996-07-08 1996-07-08 Odor detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17828796A JP3543496B2 (en) 1996-07-08 1996-07-08 Odor detection device

Publications (2)

Publication Number Publication Date
JPH1019862A JPH1019862A (en) 1998-01-23
JP3543496B2 true JP3543496B2 (en) 2004-07-14

Family

ID=16045837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17828796A Expired - Fee Related JP3543496B2 (en) 1996-07-08 1996-07-08 Odor detection device

Country Status (1)

Country Link
JP (1) JP3543496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371393B1 (en) 2012-12-11 2014-03-10 한국기초과학지원연구원 Volatile component concentrator-transfer equipment with definite volume transfer valve

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2325137C (en) * 1998-03-20 2008-11-18 Cyrano Sciences, Inc. Handheld sensing apparatus
DE60336249D1 (en) * 2003-12-29 2011-04-14 Airbus Operations Gmbh Olfactory method for determining the quantitative and qualitative odor properties in an air stream
JP5139186B2 (en) * 2008-07-18 2013-02-06 シャープ株式会社 Breath measurement device
JP5533378B2 (en) * 2010-07-13 2014-06-25 セイコーエプソン株式会社 Frequency measuring device, odor sensor and electronic device equipped with the same
JP5751954B2 (en) * 2011-06-30 2015-07-22 京セラクリスタルデバイス株式会社 Sensor element for measuring minute mass
CN112543866A (en) * 2018-08-08 2021-03-23 松下电器产业株式会社 Detection method, control system, detection system, and program for detection device
JP7060217B2 (en) * 2018-09-07 2022-04-26 フィガロ技研株式会社 Gas detector
WO2022091391A1 (en) * 2020-10-30 2022-05-05 太陽誘電株式会社 Odor measurement device, control device, and odor identification method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2588168B2 (en) * 1986-02-12 1997-03-05 株式会社島津製作所 Environmental water analyzer
JPH075409Y2 (en) * 1987-09-22 1995-02-08 株式会社島津製作所 Sample contraction introduction device
JP2669848B2 (en) * 1988-03-25 1997-10-29 豊栄 森泉 Chemical sensor for odor detection
JP2955347B2 (en) * 1990-11-21 1999-10-04 サントリー株式会社 Odor identification device
JPH0740024B2 (en) * 1991-04-17 1995-05-01 日本分析工業株式会社 Analysis method of gas phase components by gas chromatography
JPH05187986A (en) * 1992-01-09 1993-07-27 Nippon Telegr & Teleph Corp <Ntt> Odor sensing system
JPH05340908A (en) * 1992-03-12 1993-12-24 Mitsubishi Electric Corp Discriminating apparatus of odor
JPH0682431A (en) * 1992-09-03 1994-03-22 Sanyo Electric Co Ltd Odor detection device
JPH06180306A (en) * 1992-12-14 1994-06-28 Nippon Bunseki Kogyo Kk Method and apparatus for vaporizing analyzation of sample by gas chromatograph
JPH0894510A (en) * 1994-09-27 1996-04-12 Oki Electric Ind Co Ltd Odor detecting method, odor sensor and its manufacture
JPH1010101A (en) * 1996-03-25 1998-01-16 Electron Sensor Technol Lp Pre-concentrator collector for detecting minute amount of gaseous chemical substance
JP3539080B2 (en) * 1996-06-20 2004-06-14 株式会社島津製作所 Water quality analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371393B1 (en) 2012-12-11 2014-03-10 한국기초과학지원연구원 Volatile component concentrator-transfer equipment with definite volume transfer valve

Also Published As

Publication number Publication date
JPH1019862A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
US6494077B2 (en) Odor identifying apparatus
US6374662B1 (en) Devices and methods for measuring odor
JP5882350B2 (en) Device for detecting fungal contamination
RU2668326C1 (en) Sensor system and oxygen separator comprising sensor system
JP3543496B2 (en) Odor detection device
US20100256514A1 (en) Analyzer for Nitric Oxide in Exhaled Breath with Multiple-Use Sensor
JP4164951B2 (en) Odor measuring device
JP4472893B2 (en) Odor measurement method
JPH02115757A (en) Measuring instrument for odorous gas
JP4032573B2 (en) Gas measuring device
JP3367398B2 (en) Odor measurement device
EP1099949B1 (en) Device for measuring gases with odors
JP3584863B2 (en) Continuous gas analyzer
JP5082419B2 (en) Odor identification device
JP3988675B2 (en) Odor measuring device
KR100655786B1 (en) Preconcentrator equipped with removing ability of water vapor
CN112345657B (en) Array sensing gas chromatograph and method for detecting multiple VOCs gases
JP2001013047A (en) Odor measuring apparatus
JP6396731B2 (en) Volatile component generator and volatile component evaluation method
JP2019211344A (en) Separation method by gas chromatography, gas chromatography device, gas analyzer, concentration tube, concentrator, concentration tube manufacturing method, and gas detector
EP0425119A1 (en) Determining concentration of pollutant gas in atmosphere
JP4100607B2 (en) Gas analyzer and gas analysis method
JPH10339725A (en) Measuring device for atmospheric contamination harmful substance
JPH10153562A (en) Odor detecting apparatus
JP3941653B2 (en) Odor measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees