JP3988675B2 - Odor measuring device - Google Patents

Odor measuring device Download PDF

Info

Publication number
JP3988675B2
JP3988675B2 JP2003124857A JP2003124857A JP3988675B2 JP 3988675 B2 JP3988675 B2 JP 3988675B2 JP 2003124857 A JP2003124857 A JP 2003124857A JP 2003124857 A JP2003124857 A JP 2003124857A JP 3988675 B2 JP3988675 B2 JP 3988675B2
Authority
JP
Japan
Prior art keywords
component
sample
odor
temperature
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003124857A
Other languages
Japanese (ja)
Other versions
JP2004333134A (en
Inventor
純一 喜多
博和 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003124857A priority Critical patent/JP3988675B2/en
Publication of JP2004333134A publication Critical patent/JP2004333134A/en
Application granted granted Critical
Publication of JP3988675B2 publication Critical patent/JP3988675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガスセンサの一種であるにおいセンサを使用して試料ガスに含まれるにおい成分を測定するにおい測定装置に関し、特に、飲食品などの本来の目的とするにおい以外の異臭成分の混在があるような場合に、それらを区別して評価したいときに好適なにおい測定装置に関する。
【0002】
【従来の技術】
従来、においに関する各種指標値の測定は、ガスクロマトグラフ質量分析計(GCMS)などを用いた成分分析が主流である。しかしながら、こうした成分分析では、測定時間が掛かる、測定に熟練を要する、試料に対して得られる信号の種類が非常に多くその解析や解釈が困難である、更には、人間の嗅覚による官能値との相関がない、などの様々な問題がある。
【0003】
これに対し、近年、におい物質に対して応答するにおいセンサを利用したにおい測定装置が開発されている(例えば、特許文献1、特許文献2、及び非特許文献1など参照)。このようなにおい測定装置では、複数のにおいセンサにより取得された検出信号を基に、クラスター分析、主成分分析等の各種多変量解析処理、或いはニューラルネットワークを用いた非線形解析処理などを行って、複数の試料のにおいの離間距離(近い範疇のにおいであるかどうか)を求めることができる。
【0004】
【特許文献1】
特開平11−352088号公報
【特許文献2】
特開2002−22692号公報
【非特許文献1】
“食品・飲料・化学品・環境などのにおい検査を機器化 におい識別装置 FF-1”、[online]、株式会社島津製作所、[平成15年4月23日検索]、インターネット、〈URL : http://www.an.shimadzu.co.jp/products/food/ff1.htm〉
【0005】
【発明が解決しようとする課題】
しかしながら、現状のにおい測定装置に利用されているにおいセンサの選択性は未だ必ずしも充分に高くないため、或る1つのにおいセンサは1種類のにおいのみならず複数種のにおいに対して応答する。そのため、例えばオレンジジュース中に混入している異臭を測定したいような場合に、異臭成分の量がごく僅かであると、主成分であるオレンジジュースの強いにおいにマスキングされてしまって異臭成分を検知することは非常に困難である。
【0006】
一般に、微量であるにおい成分を検出したい場合、試料ガスを濃縮することにより被測定成分の濃度を高める前処理が有用である。例えば加熱脱着法(サーマルデソープション)では、被測定成分を吸着する吸着剤を装填した捕集管に試料ガスを流通させて、該試料ガスに含まれる被測定成分を吸着剤に吸着させる。そして、充分に被測定成分が吸着された後に、捕集管にキャリアガスを流しつつ吸着剤の温度を急速に上昇させる。これにより、吸着されていた被測定成分が短時間の間に吸着剤から離脱し、キャリアガスに乗ってにおいセンサに運ばれる。吸着剤の昇温度合やキャリアガスの流量などを適宜に設定することによって、元の試料ガスよりも被測定成分濃度をかなり高めた状態でにおいセンサに供給することができる。
【0007】
しかしながら、上述したように多量のオレンジジュースにごく微量の異臭成分が混入している場合には、濃縮処理を行ってもオレンジジュースの主成分も同時に濃縮されてしまい、そのまま測定を行うとその主成分に対するにおいセンサの応答が大きくなり過ぎてセンサ出力が飽和してしまう。すなわち、主成分がバックグラウンド成分となって異臭成分の検出を妨害する。
【0008】
また、捕集管に充填する吸着剤の種類を選ぶことによって主成分を捕集せずに異臭成分のみを濃縮する、という方法も考えられるが、測定対象の種類毎に捕集管を交換しなければならないという手間が掛かる上に、異臭成分の種類によっては主成分と共に吸着剤に捕集されずに通過してしまって適切に測定できないというおそれもある。
【0009】
本発明はこのような点に鑑みて成されたものであり、その主たる目的とするところは、その含有量に拘わらずバックグラウンド成分である主成分と異臭成分とを分離し、例えば主成分に対する異臭成分の含有比率などの評価を正確に行うことができるにおい測定装置を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために成された本発明は、試料ガスに含まれる試料成分を吸着するとともに加熱により該試料成分を離脱する吸着剤を内装した捕集管と、試料成分を検出する複数のにおいセンサを有するにおい検出手段と、前記吸着剤に試料成分を吸着させるべく前記捕集管に試料ガスを流した後に、該吸着剤から離脱する試料成分を前記におい検出手段に導入するべく前記捕集管にキャリアガスを流す流路切替手段と、を具備するにおい測定装置において、
a)前記吸着剤に捕集した試料成分を離脱させる際に、前記捕集管の温度を段階的に上昇させながら、試料中の主成分と異臭成分とに対する相異なる成分離脱温度を見つけるための予備測定を行い、該成分離脱温度を記憶しておく予備測定実行制御手段と、
b)前記吸着剤に捕集した試料成分を離脱させる際に、前記捕集管の温度を前記予備測定において記憶された成分離脱温度に順次設定しながら前記におい検出手段による前記主成分と異臭成分とのそれぞれの検出信号を取得する本測定実行制御手段と、
c) 前記本測定において取得された検出信号に基づいて前記試料中における主成分と異臭成分との含有量の比率を算出する演算処理手段と、
を備えることを特徴としている。
【0011】
【発明の実施の形態、及び効果】
本発明に係るにおい測定装置では、予備測定と本測定の2段階に分けて測定対象である試料の測定が実行される。すなわち、まず予備測定実行制御手段は、試料ガスを捕集管に流した後、捕集管を加熱して捕集されている成分を離脱させる際に、加熱温度を急激に高温まで上昇させるのではなく、例えば所定の下限温度から所定温度ステップずつ段階的に上昇させる。そして、その昇温過程の各温度においてにおい検出手段による検出信号が得られるか否かを確認し、検出信号が得られたときの温度を成分離脱温度として記憶してゆく。一般に、捕集管の吸着剤に吸着されている各種の成分は、その成分毎に決まった温度において吸着剤から離脱する。したがって、異なる成分は異なる温度において吸着剤から離脱する可能性が高く、昇温時の温度ステップを狭くするほど異なる成分の分離性が高くなる。
【0012】
こうしたことから、所定の上限温度まで達した時点で記憶されている1つ以上の成分離脱温度は、試料中の各種成分に対応したものとなり、それ以外の各温度においては吸着剤から離脱する成分は存在しないものと判断することができる。続いて本測定実行制御手段は、測定対象の試料ガスを捕集管に流して試料成分を捕集した後、捕集管を加熱して捕集されている成分を離脱させる際に、加熱温度を上記1つ以上の成分離脱温度に順次設定して測定を行う。例えば成分離脱温度がTa、Tb(Ta<Tb)の2つであるとすると、常温からまずTaまで急激に昇温を行い、その温度を維持してにおいの検出を行った後にTaからTbまで急激に昇温を行う。そして、その温度を維持して、再度においの検出を行う。これによって、各温度Ta、Tbにおいて捕集管から離脱する異なる成分を、それぞれ濃縮した状態でにおい検出手段へと導入することができる。
【0013】
なお、吸着剤からの成分追い出し時に捕集管に流すキャリアガスの流量によって成分濃縮の程度を変えることが可能であるから、例えばもともと含有量が多く濃縮の必要がない又は濃縮の程度を小さくしたいような成分に対しては、その成分離脱時のキャリアガスの流量を増加させるような制御を行えばよい。
【0014】
本発明に係るにおい測定装置によれば、混在している複数の成分を分離し、その含有量が微量であってそのままでは検出が難しいような成分に対しては充分に濃縮を行った上で、においの検出を行うことができる。したがって、例えば多量の主成分と微量な異臭成分とが混在しているような場合でも、主成分の影響を受けることなく異臭成分を確実に検出することができ、異臭成分の量や質などの評価を高い精度で行うことができる。
【0015】
また本発明に係るにおい測定装置では、予備測定を行う必要はあるものの、本測定時にはその試料に含まれる成分のみに対する温度設定を行えばよい。したがって、複数の試料において含有成分の種類が同一である場合には、予備測定は1回だけ行えばよいので、本測定に要する測定時間を短縮することで全体の測定の効率を向上させることができる。
【0017】
また本発明に係るにおい測定装置によれば、異臭成分検出にとってはバックグラウンド成分である多量の主成分と微量の異臭成分とが混合している場合でも、異臭成分を主成分と分離して高い精度で検出することができるので、試料中における主成分と異臭成分との含有量の比率を正確に求めることができる。
【0018】
【実施例】
以下、本発明の一実施例であるにおい測定装置を、図1〜図5を参照して説明する。図1は本実施例のにおい測定装置のガス流路を中心とする概略構成図、図2は本装置における測定動作の手順を示すフローチャート、図3はその測定動作の際のガスの流れを説明する図、図4は本装置の予備測定時の昇温プロファイル及びそれに対するにおい検出出力の一例を示す図、図5は本装置の本測定時の昇温プロファイル及びそれに対するにおい検出出力の一例を示す図である。
【0019】
本におい測定装置は、大別して、試料ガスに含まれる水分の除去と試料成分の濃縮を行うための前処理部と、試料成分を検出するためのにおい検出部とから成る。前処理部は、加熱用のヒータ17が付設された捕集管16と、捕集管16の一端部に接続された第1ガス流路14を試料ガス導入口10又はセンサセル21に択一的に接続するための第1バルブ12と、捕集管16の他端部に接続された第2ガス流路15を窒素ガス供給口11又はポンプ18を介して排気口19に択一的に接続するための第2バルブ13とを含む。捕集管16には、測定対象の試料成分に応じて、例えばカーボン系吸着剤やその他の適宜の吸着剤16aが充填される。
【0020】
におい検出部は、複数のにおいセンサ21aを内部に備えたセンサセル21を含む。ここで、においセンサ21aは、種々のにおい成分に対してそれぞれ検出感度の相違する特性を有する金属酸化物半導体を感応膜に利用したにおいセンサとするが、においセンサはこれに限るものではなく従来知られている各種センサを利用することができる。
【0021】
複数のにおいセンサ21aの電極間の抵抗変化に基づく検出信号は、A/D変換器22でデジタル化された後にデータ処理部23及び制御部24に送られる。データ処理部23はそれら検出信号に基づいて、においの質や強さの識別を行う機能を有する。制御部24は、所定の制御プログラムに従って、前述した第1、第2バルブ12、13、ポンプ18、データ処理部23等の各部の動作を制御するとともに、その動作の中で温度データメモリ25と協働してヒータ17による加熱動作を制御する。なお、データ処理部23や制御部24の実体はパーソナルコンピュータであって、このコンピュータ上で所定の制御・処理プログラムを動作させることによりそれぞれの機能が達成される。
【0022】
次に、このにおい測定装置における典型的な測定動作の一例を説明する。測定対象の試料が与えられたとき、制御部24は、本測定に先立って予備測定を実行するべく以下のように各部を制御する(ステップS1)。なお、ここでは試料として、或る主成分(例えばオレンジジュース)に少量又は微量の異臭成分が混入しているものを想定する。
【0023】
制御部24は、試料成分の捕集を行うべく、第1ガス流路14が試料ガス導入口10に接続されるように第1バルブ12を切り替えるとともに、第2ガス流路15が排気口19に接続されるように第2バルブ13を切り替え、ポンプ18を作動させる(ステップS2)。すると、図3(A)に示すように、試料ガス導入口10に装着された図示しない試料バックから試料ガスが吸引され、試料ガスは第1バルブ12を介して捕集管16を通り、さらに第2バルブ13を通って排気口19から排出される。このときヒータ17には通電を行わず(厳密には、捕集管16を例えば40℃の一定温度に維持するようにヒータ17を制御する)、試料ガスが捕集管16を通過する際に試料ガスに含まれる各種の試料成分は吸着剤16aに吸着される。
【0024】
通常、捕集管16内の吸着剤16aには試料ガスに含まれる水分も吸着されてしまい、この水分が後の測定時に悪影響を及ぼすことがあり得る。そこで、所定時間、捕集管16に試料ガスを流通させた後、制御部24は、試料ガス導入口10を開放するとともに、第2バルブ13を切り替えて第2ガス流路15を窒素ガス供給口11に接続する。窒素ガス供給口11には、キャリアガスとして乾燥窒素ガスが高いガス圧で供給される。このときの入口ガス圧は試料ガス導入口10のガス圧よりも高いため、図3(B)に示すように、キャリアガスは第2バルブ13を介して捕集管16を下から上に通過し、第1バルブ12を通って試料ガス導入口10から外部へと流出する。その際に、捕集管16内の吸着剤16aに吸着されている水は乾燥窒素ガス中に揮散し、外部へと運び去られるため、吸着剤16aには試料成分は残ったまま水分が除去される(ステップS3)。
【0025】
その後、制御部24は、第1バルブ12を切り替えて第1ガス流路14をセンサセル21に接続する。窒素ガス供給口11には、乾燥窒素ガスに空気(又は酸素)を僅かに混入させたキャリアガスが高いガス圧で供給される。図3(C)に示すように、このキャリアガスは第2バルブ13を介して捕集管16を通過し、第1バルブ12を通ってセンサセル21へと流れる。なお、純粋な窒素ガスでなく空気(又は酸素)を僅かに混入させるのは、金属酸化物半導体を用いたにおいセンサでは検出メカニズムに酸素が必要なためであって、導電性高分子膜など他のにおいセンサを利用する場合には、空気や酸素を必要としない。
【0026】
また制御部24はヒータ17に通電を開始し、例えば図4(C)に示すような昇温プロファイルで以て捕集管16の温度が段階的に上昇するようにヒータ17を制御する。図4(C)の昇温プロファイルは、40℃の温度から約30秒毎に20℃ずつ温度を上昇させてゆき、160℃に達した後には最高温度の220℃まで昇温を行うものである。捕集管16の吸着剤16aに吸着した各種の試料成分は、一般に吸着剤16aが高温になると離脱して揮散するが、その吸着性(吸着力)は成分の種類にかなり依存している。そのため、吸着剤16aからの離脱が生じるときの温度はその成分の種類に依存しており、或る種のものは比較的低温で離脱し、他の種のものは高温でないと離脱しない。こうしたことから、上述のように段階的に捕集管16を昇温してゆくと、吸着剤16aに吸着されている各種成分はそれぞれの離脱温度に達した段階で急速に吸着剤16aから離脱し、キャリアガス流に乗ってセンサセル21へと導入される。
【0027】
こうした試料成分を含むキャリアガスがセンサセル21を通ると、においセンサ21aの感応膜に該試料成分が吸着され、においセンサ21aの電極間の電気抵抗が変化し、この変化が検出信号として取り出される。したがって、上記のような段階的な昇温の温度ステップを適宜に小さく設定しておけば、吸着剤16aから離脱する温度の相違によって各試料成分を分離し、においセンサ21aではその試料成分毎の検出信号を得ることができる(ステップS4)。分離性を良好にするには温度ステップを小さくすればよいが、そうすると予備測定に要する時間が長くなるため、両者の兼ね合いで適宜に定めることが好ましい。
【0028】
或る1個のにおいセンサ21aについて、試料が異臭成分を含有せず主成分のみから成る場合には、検出出力は例えば図4(A)に示すようになる。すなわち、この例では、主成分に対応する検出出力は温度が140℃である期間中にのみ得られる。一方、試料が異臭成分を含有する場合には、検出出力は例えば図4(B)に示すようになる。この場合、温度が140℃であるときに現れる主成分に対応する検出出力のほかに、温度が100℃であるときに異臭成分に対応する検出出力が現れている。検出出力が現れない他の温度に関しては、その温度において吸着剤16aから離脱する成分がその試料中には存在しないものと判断することができる。
【0029】
そこで、制御部24は昇温の過程で検出信号を判定し、何らかの成分が検出されたものと判断できる程度の変化がある場合には、そのときの温度データTn(n=1,2,…)を取得して温度データメモリ25に記憶させる(ステップS5)。したがって、例えば図4(A)のような変化が生じた場合には温度T1=100[℃]のみを温度データメモリ25に記憶し、図4(B)のような変化が生じた場合にはT1=100[℃]及びT2=140[℃]の2つの温度データをメモリ25に記憶させる。但し、これは1個のにおいセンサ21aの検出信号であるから、実際には、複数のにおいセンサ21aのいずれかで検出出力があると判断できるような温度データを、全てメモリ25に記憶するものとする。
【0030】
その後、クリーニング処理を行うべく、制御部24はヒータ17への通電電流をさらに増加させて捕集管16内の吸着剤16aを高温にし、吸着剤16aに付着している汚れ成分などを完全に追い出す(ステップS6)。
【0031】
以上で予備測定は終了し、捕集管16の温度が充分に下がった後に本測定を実行する(ステップS7)。本測定では、上記ステップS2、S3と同様のステップS8、S9の処理により、測定対象の試料に含まれる各種成分を捕集管16内の吸着剤16aに捕集し、その後に不所望の水分のみを除去する。
【0032】
続いて制御部24は、上記ステップS4の処理と同様に流路を設定し、ヒータ17への通電を開始する。但し、このときには、温度データメモリ25から先の予備測定の際に記憶しておいた温度データTnを読み出し、その温度データTnに従って順次、つまりT1→T2→…と段階的に昇温を行う(ステップS10)。
【0033】
例えば、図4(B)で説明したような検出出力に対応してT1=100[℃]及びT2=140[℃]の2つの温度データが温度データメモリ25に記憶されている場合には、図5(C)に示すような昇温プロファイルを設定する。すなわち、定常的な温度である40℃から100℃(T1)まで急激に捕集管16の温度を上昇させ、その温度を所定時間(この例では略1分)だけ維持し、その後、100℃から更に140℃(T2)まで急激に捕集管16の温度を上昇させ、その温度を所定時間維持する。
【0034】
捕集管16の温度を100℃に維持している期間には、吸着剤16aに吸着されている異臭成分が離脱してセンサセル21へと導入される。このときには主成分は未だ吸着剤16aから離脱しないので、においセンサ21aでは異臭成分のみに対する検出信号が得られる(図5(A)参照)。また、このときに吸着剤16aに吸着されていた異臭成分は短時間でキャリアガス中に揮散するので、初めの試料ガスに含まれていたときの含有量が微量であった場合でもキャリアガス中での含有量はこれと比べて各段に高くなり、においセンサ21aにより検出され易くなる。なお、このときの異臭成分(主成分でも同様)の濃縮率は、単位時間当たりに流すガス流量とガスを流す時間とにより制御することができる。
【0035】
次いで、捕集管16の温度を140℃に維持している期間には、吸着剤16aに吸着されている主成分が離脱してセンサセル21へと導入される。このとき、異臭成分は既に吸着剤16aからほぼ完全に追い出されてしまっているため、においセンサ21aでは主成分のみに対する検出信号が得られる。このようにして、測定対象の試料に含まれる各種成分を分離して、各成分を適宜充分に濃縮して検出することができる。また、成分分離に必要な温度のみ(図5の例では100℃及び140℃)を設定して段階的に昇温を行っているため、本測定では効率よく測定を行うことができる。
【0036】
こうして異臭成分と主成分の検出信号をそれぞれ取得した後、データ処理部23では例えば次のような処理を行う。すなわち、においセンサ21aが酸化物半導体である場合、ベース抵抗値をR0、信号のピークのときの抵抗値をRsとしたとき、異臭成分と主成分とのそれぞれについて、-log(Rs/R0)を計算し、その比率(異臭成分量/主成分量)を求める。そして、この値を規格化することで、サンプリング毎の試料量の変動などをキャンセルする。これによって主成分に対する異臭成分量を正確に求めることができる。こうして本測定を行った後にはステップS6と同様のクリーニング処理を行い(ステップS11)、吸着剤16aをきれいにした状態で全測定を終了する。
【0037】
上記実施例では、或る試料を測定する際にまず予備測定を行い、引き続いて本測定を行うという手順で一連の測定を行っていたが、異臭成分の種類等が特定されていてその異臭成分のにおい強度などを多数の試料に対して測定したい場合には、まず或る1種類の試料を予備測定することで異臭成分を含む全成分の追い出し温度Tnを見い出し、その温度データを利用して全ての試料の本測定を実行することができる。このように、必ずしも本測定毎に予備測定が必要になるわけではなく、その本測定に利用できる温度データが既に温度データメモリ25に保存されていれば予備測定は省略できる。
【0038】
また、上記実施例は本発明の一例であって、本発明の趣旨の範囲で適宜変形、修正、又は追加を行えることは明らかである。
【図面の簡単な説明】
【図1】 本発明の一実施例であるにおい測定装置のガス流路を中心とする概略構成図。
【図2】 本実施例のにおい測定装置における測定動作の手順を示すフローチャート。
【図3】 本実施例のにおい測定装置における測定動作の際のガスの流れの説明図。
【図4】 本実施例のにおい測定装置の予備測定時の昇温プロファイル及びそれに対するにおい検出出力の一例を示す図。
【図5】 本実施例のにおい測定装置の本測定時の昇温プロファイル及びそれに対するにおい検出出力の一例を示す図。
【符号の説明】
10…試料ガス導入口
11…窒素ガス供給口
12、13…バルブ
14、15…ガス流路
16…捕集管
16a…吸着剤
17…ヒータ
18…ポンプ
19…排気口
21…センサセル
21a…においセンサ
22…A/D変換器
23…データ処理部
24…制御部
25…温度データメモリ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an odor measuring apparatus that measures an odor component contained in a sample gas by using an odor sensor that is a kind of gas sensor, and in particular, there is a mixture of odorous components other than the original odor of the original purpose such as food and drink. In such a case, the present invention relates to an odor measuring apparatus suitable for distinguishing and evaluating them.
[0002]
[Prior art]
Conventionally, component analysis using a gas chromatograph mass spectrometer (GCMS) or the like has been the mainstream for measuring various index values relating to odor. However, in such component analysis, measurement takes time, skill is required for measurement, the types of signals obtained for samples are very many, and their analysis and interpretation are difficult, and sensory values based on human olfaction There are various problems such as no correlation.
[0003]
On the other hand, in recent years, an odor measurement apparatus using an odor sensor that responds to an odor substance has been developed (see, for example, Patent Document 1, Patent Document 2, and Non-Patent Document 1). In such an odor measurement apparatus, based on detection signals acquired by a plurality of odor sensors, various multivariate analysis processes such as cluster analysis and principal component analysis, or nonlinear analysis process using a neural network are performed, The separation distance of odors of a plurality of samples (whether or not they are in a close category) can be obtained.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-352088 [Patent Document 2]
JP 2002-22692 A [Non-Patent Document 1]
“Effect identification device FF-1”, [online], Shimadzu Corporation, [Search April 23, 2003], Internet, <URL: http : //www.an.shimadzu.co.jp/products/food/ff1.htm>
[0005]
[Problems to be solved by the invention]
However, since the selectivity of the odor sensor used in the current odor measuring device is not yet sufficiently high, a certain odor sensor responds not only to one type of odor but also to a plurality of types of odors. Therefore, for example, when you want to measure off-flavor mixed in orange juice, if the amount of off-flavor component is very small, it is masked by the strong smell of orange juice, which is the main component, and the off-flavor component is detected. It is very difficult to do.
[0006]
Generally, when it is desired to detect a small amount of an odorous component, a pretreatment for increasing the concentration of a component to be measured by concentrating a sample gas is useful. For example, in the heat desorption method (thermal desorption), a sample gas is circulated through a collection tube loaded with an adsorbent that adsorbs a component to be measured, and the component to be measured contained in the sample gas is adsorbed to the adsorbent. Then, after the component to be measured is sufficiently adsorbed, the temperature of the adsorbent is rapidly increased while flowing the carrier gas through the collection tube. As a result, the component to be measured that has been adsorbed is detached from the adsorbent in a short time, and is carried on the carrier gas to the odor sensor. By appropriately setting the temperature rise of the adsorbent, the flow rate of the carrier gas, etc., it is possible to supply the odor sensor with the measured component concentration considerably higher than the original sample gas.
[0007]
However, as described above, when a very small amount of off-flavor components are mixed in a large amount of orange juice, the main component of orange juice is also concentrated at the same time even if concentration processing is performed. The response of the odor sensor to the component becomes too large and the sensor output is saturated. That is, the main component becomes a background component, which prevents detection of off-flavor components.
[0008]
In addition, a method of concentrating only the off-flavor components without collecting the main component by selecting the type of adsorbent to be filled in the collection tube is conceivable, but the collection tube is replaced for each type of measurement target. In addition, it takes time and labor, and depending on the type of off-flavor component, it may pass through the main component without being collected by the adsorbent, and may not be measured properly.
[0009]
The present invention has been made in view of the above points, and the main purpose thereof is to separate the main component and off-flavor components, which are background components, regardless of the content thereof, for example, against the main components. An object of the present invention is to provide an odor measuring apparatus capable of accurately evaluating the content ratio of off-flavor components.
[0010]
[Means for Solving the Problems]
The present invention, which has been made to solve the above problems, includes a collection tube having an adsorbent that adsorbs a sample component contained in a sample gas and releases the sample component by heating, and a plurality of sample components for detecting the sample component. An odor detecting means having an odor sensor; and a sample gas that flows through the collection tube to adsorb the sample component to the adsorbent and then the sample component that is released from the adsorbent is introduced to the odor detecting means. In the odor measuring device comprising a flow path switching means for flowing a carrier gas to the collecting tube,
a) When the sample components collected in the adsorbent are separated, the temperature of the collection tube is raised stepwise to find different component separation temperatures for the main component and the off-flavor component in the sample . Preliminary measurement execution control means for performing preliminary measurement and storing the component desorption temperature;
b) When the sample components collected in the adsorbent are separated, the temperature of the collection tube is sequentially set to the component removal temperature stored in the preliminary measurement, while the odor detection means and the main component are different from odor. Main measurement execution control means for acquiring respective detection signals of the components ,
c) arithmetic processing means for calculating the ratio of the content of the main component and the off-flavor component in the sample based on the detection signal acquired in the main measurement;
It is characterized by having.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the odor measuring apparatus according to the present invention, measurement of a sample that is a measurement target is executed in two stages of preliminary measurement and main measurement. That is, the preliminary measurement execution control unit first causes the sample gas to flow into the collection tube, and then when the collection tube is heated to release the collected component, the heating temperature is rapidly increased to a high temperature. Instead, for example, the temperature is increased step by step from a predetermined lower limit temperature by a predetermined temperature step. Then, it is confirmed whether or not a detection signal by the odor detecting means can be obtained at each temperature in the temperature raising process, and the temperature at which the detection signal is obtained is stored as a component separation temperature. Generally, various components adsorbed on the adsorbent of the collection tube are detached from the adsorbent at a temperature determined for each component. Accordingly, different components are more likely to be detached from the adsorbent at different temperatures, and the separation of different components becomes higher as the temperature step during temperature rise is narrowed.
[0012]
For this reason, one or more component desorption temperatures stored when the predetermined upper limit temperature is reached correspond to various components in the sample, and components that desorb from the adsorbent at other temperatures. Can be determined to not exist. Subsequently, this measurement execution control means flows the sample gas to be measured through the collection tube, collects the sample components, and then heats the collection tube to release the collected components. Are sequentially set to the one or more component desorption temperatures. For example, if there are two component desorption temperatures, Ta and Tb (Ta <Tb), the temperature is rapidly increased from normal temperature to Ta first, and the temperature is maintained and the odor is detected and then Ta to Tb. Raise temperature rapidly. Then, the odor is detected again while maintaining the temperature. As a result, different components that depart from the collecting tube at each temperature Ta and Tb can be introduced into the odor detecting means in a concentrated state.
[0013]
In addition, since it is possible to change the degree of concentration of the component depending on the flow rate of the carrier gas that flows to the collection tube when the component is removed from the adsorbent, for example, the content is originally high and there is no need for concentration, or the concentration level is desired to be reduced Such a component may be controlled so as to increase the flow rate of the carrier gas when the component is released.
[0014]
The odor measuring apparatus according to the present invention separates a plurality of mixed components, and after sufficiently concentrating components whose contents are very small and difficult to detect as they are. , Smell detection can be performed. Therefore, for example, even when a large amount of main components and a minute amount of off-flavor components are mixed, the off-flavor components can be reliably detected without being affected by the main components. Evaluation can be performed with high accuracy.
[0015]
Further, in the odor measuring apparatus according to the present invention, although it is necessary to perform a preliminary measurement, it is only necessary to set the temperature for only the component contained in the sample during the main measurement. Therefore, when the types of components contained in a plurality of samples are the same, the preliminary measurement needs to be performed only once, so that the overall measurement efficiency can be improved by reducing the measurement time required for the main measurement. it can.
[0017]
Moreover , according to the odor measuring apparatus according to the present invention, even when a large amount of the main component, which is a background component, and a very small amount of the off-flavor component are mixed, it is high by separating the off-flavor component from the main component. Since it can detect with accuracy, the ratio of the content of the main component and the off-flavor component in the sample can be accurately determined.
[0018]
【Example】
Hereinafter, an odor measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram centering on the gas flow path of the odor measuring apparatus of the present embodiment, FIG. 2 is a flowchart showing the procedure of the measuring operation in this apparatus, and FIG. FIG. 4 is a diagram showing an example of the temperature rise profile during the preliminary measurement of the apparatus and an example of the odor detection output corresponding thereto, and FIG. 5 is an example of the temperature rise profile during the main measurement of the apparatus and the odor detection output corresponding thereto. FIG.
[0019]
The odor measuring apparatus is roughly divided into a pretreatment unit for removing moisture contained in the sample gas and concentrating the sample component, and an odor detecting unit for detecting the sample component. The pre-processing unit alternatively uses a collection pipe 16 provided with a heater 17 for heating and a first gas flow path 14 connected to one end of the collection pipe 16 as a sample gas introduction port 10 or a sensor cell 21. The first valve 12 for connection to the exhaust gas and the second gas flow path 15 connected to the other end of the collection pipe 16 are selectively connected to the exhaust port 19 via the nitrogen gas supply port 11 or the pump 18. And a second valve 13 for performing the operation. The collection tube 16 is filled with, for example, a carbon-based adsorbent or other appropriate adsorbent 16a according to the sample component to be measured.
[0020]
The odor detector includes a sensor cell 21 having a plurality of odor sensors 21a therein. Here, the odor sensor 21a is an odor sensor that uses, as a sensitive film, a metal oxide semiconductor having different detection sensitivities for various odor components. However, the odor sensor is not limited to this and is a conventional odor sensor. Various known sensors can be used.
[0021]
Detection signals based on resistance changes between the electrodes of the plurality of odor sensors 21 a are digitized by the A / D converter 22 and then sent to the data processing unit 23 and the control unit 24. The data processing unit 23 has a function of identifying the quality and intensity of the odor based on these detection signals. The control unit 24 controls the operations of the first and second valves 12 and 13, the pump 18, the data processing unit 23, and the like according to a predetermined control program. The heating operation by the heater 17 is controlled in cooperation. The substance of the data processing unit 23 and the control unit 24 is a personal computer, and each function is achieved by operating a predetermined control / processing program on the computer.
[0022]
Next, an example of a typical measurement operation in this odor measuring apparatus will be described. When a sample to be measured is given, the control unit 24 controls each unit as follows to perform a preliminary measurement prior to the main measurement (step S1). Here, a sample in which a small amount or a trace amount of off-flavor components are mixed in a certain main component (for example, orange juice) is assumed.
[0023]
The controller 24 switches the first valve 12 so that the first gas flow path 14 is connected to the sample gas inlet 10 and collects the sample component, and the second gas flow path 15 is connected to the exhaust port 19. The second valve 13 is switched so as to be connected to the pump 18 and the pump 18 is operated (step S2). Then, as shown in FIG. 3 (A), the sample gas is sucked from a sample bag (not shown) attached to the sample gas inlet 10, and the sample gas passes through the collection tube 16 via the first valve 12, and further The gas is discharged from the exhaust port 19 through the second valve 13. At this time, the heater 17 is not energized (strictly speaking, the heater 17 is controlled so as to maintain the collection tube 16 at a constant temperature of 40 ° C., for example), and when the sample gas passes through the collection tube 16. Various sample components contained in the sample gas are adsorbed by the adsorbent 16a.
[0024]
Usually, the moisture contained in the sample gas is also adsorbed to the adsorbent 16a in the collection tube 16, and this moisture may adversely affect the subsequent measurement. Therefore, after allowing the sample gas to flow through the collection tube 16 for a predetermined time, the control unit 24 opens the sample gas inlet 10 and switches the second valve 13 to supply the second gas passage 15 with nitrogen gas. Connect to mouth 11. Dry nitrogen gas as a carrier gas is supplied to the nitrogen gas supply port 11 at a high gas pressure. Since the inlet gas pressure at this time is higher than the gas pressure of the sample gas inlet 10, the carrier gas passes through the collection tube 16 from the bottom to the top through the second valve 13 as shown in FIG. Then, it flows out from the sample gas inlet 10 through the first valve 12 to the outside. At that time, the water adsorbed on the adsorbent 16a in the collection tube 16 is volatilized in the dry nitrogen gas and carried to the outside, so that the moisture is removed while the sample components remain in the adsorbent 16a. (Step S3).
[0025]
Thereafter, the control unit 24 switches the first valve 12 to connect the first gas flow path 14 to the sensor cell 21. A carrier gas in which air (or oxygen) is slightly mixed with dry nitrogen gas is supplied to the nitrogen gas supply port 11 at a high gas pressure. As shown in FIG. 3C, the carrier gas passes through the collection tube 16 through the second valve 13 and flows to the sensor cell 21 through the first valve 12. The reason why air (or oxygen) is mixed slightly rather than pure nitrogen gas is because the odor sensor using a metal oxide semiconductor requires oxygen for the detection mechanism. When using a odor sensor, air and oxygen are not required.
[0026]
The control unit 24 starts energization of the heater 17 and controls the heater 17 so that the temperature of the collection tube 16 increases stepwise with a temperature rising profile as shown in FIG. 4C, for example. The temperature rise profile in Fig. 4 (C) increases the temperature by 20 ° C every 30 seconds from the temperature of 40 ° C. After reaching 160 ° C, the temperature rises to the maximum temperature of 220 ° C. is there. Various sample components adsorbed on the adsorbent 16a of the collecting tube 16 are generally separated and volatilized when the adsorbent 16a becomes high temperature, but the adsorptivity (adsorption power) is considerably dependent on the type of the component. For this reason, the temperature at which separation from the adsorbent 16a occurs depends on the type of the component, and some types are released at a relatively low temperature, and other types are released only at a high temperature. For this reason, when the temperature of the collection tube 16 is increased stepwise as described above, the various components adsorbed on the adsorbent 16a rapidly desorb from the adsorbent 16a when reaching the respective desorption temperatures. Then, the air is introduced into the sensor cell 21 along the carrier gas flow.
[0027]
When such a carrier gas containing a sample component passes through the sensor cell 21, the sample component is adsorbed to the sensitive film of the odor sensor 21a, and the electric resistance between the electrodes of the odor sensor 21a changes, and this change is taken out as a detection signal. Accordingly, if the temperature step of the stepwise temperature rise as described above is set to be appropriately small, each sample component is separated by the difference in temperature desorbed from the adsorbent 16a, and the odor sensor 21a has each sample component. A detection signal can be obtained (step S4). In order to improve the separability, the temperature step may be reduced. However, since the time required for the preliminary measurement becomes longer, it is preferable to appropriately determine the balance between the two.
[0028]
For a certain odor sensor 21a, when the sample does not contain an off-flavor component and consists only of the main component, the detection output is as shown in FIG. 4A, for example. That is, in this example, the detection output corresponding to the main component is obtained only during the period in which the temperature is 140 ° C. On the other hand, when the sample contains an off-flavor component, the detection output is as shown in FIG. In this case, in addition to the detection output corresponding to the main component that appears when the temperature is 140 ° C., the detection output corresponding to the off-flavor component appears when the temperature is 100 ° C. With respect to other temperatures at which no detection output appears, it can be determined that there is no component in the sample that desorbs from the adsorbent 16a at that temperature.
[0029]
Therefore, the control unit 24 determines the detection signal in the process of increasing the temperature, and if there is a change enough to determine that some component has been detected, the temperature data Tn (n = 1, 2,. ) And stored in the temperature data memory 25 (step S5). Therefore, for example, when the change as shown in FIG. 4A occurs, only the temperature T1 = 100 [° C.] is stored in the temperature data memory 25, and when the change as shown in FIG. 4B occurs. Two temperature data of T1 = 100 [° C.] and T2 = 140 [° C.] are stored in the memory 25. However, since this is a detection signal of one odor sensor 21a, in fact, all the temperature data that can be determined that any of the plurality of odor sensors 21a has a detection output is stored in the memory 25. And
[0030]
Thereafter, in order to perform the cleaning process, the control unit 24 further increases the energization current to the heater 17 to raise the adsorbent 16a in the collection pipe 16 to a high temperature, and completely removes dirt components and the like adhering to the adsorbent 16a. Eject (step S6).
[0031]
Thus, the preliminary measurement is completed, and the main measurement is performed after the temperature of the collection tube 16 is sufficiently lowered (step S7). In this measurement, various components contained in the sample to be measured are collected in the adsorbent 16a in the collection tube 16 by the processing in steps S8 and S9 similar to steps S2 and S3, and then undesired moisture is collected. Only remove.
[0032]
Subsequently, the control unit 24 sets a flow path in the same manner as the process of step S4 and starts energizing the heater 17. However, at this time, the temperature data Tn stored in the previous preliminary measurement is read from the temperature data memory 25, and the temperature is increased stepwise in accordance with the temperature data Tn, that is, T1 → T2 →. Step S10).
[0033]
For example, when two temperature data of T1 = 100 [° C.] and T2 = 140 [° C.] are stored in the temperature data memory 25 corresponding to the detection output described with reference to FIG. A temperature rising profile as shown in FIG. 5C is set. That is, the temperature of the collection tube 16 is rapidly increased from 40 ° C., which is a steady temperature, to 100 ° C. (T1), and the temperature is maintained for a predetermined time (approximately 1 minute in this example). To 140 ° C. (T2), the temperature of the collection tube 16 is rapidly increased, and the temperature is maintained for a predetermined time.
[0034]
During the period in which the temperature of the collection tube 16 is maintained at 100 ° C., the off-flavor component adsorbed by the adsorbent 16 a is released and introduced into the sensor cell 21. At this time, since the main component has not yet detached from the adsorbent 16a, the odor sensor 21a can obtain a detection signal for only the off-flavor component (see FIG. 5A). Moreover, since the off-flavor component adsorbed by the adsorbent 16a at this time is volatilized in the carrier gas in a short time, even if the content when contained in the first sample gas is very small, The content in is higher in each stage than this, and is easily detected by the odor sensor 21a. Note that the concentration rate of the off-flavor component (same as the main component) at this time can be controlled by the gas flow rate per unit time and the gas flow time.
[0035]
Next, during the period in which the temperature of the collection tube 16 is maintained at 140 ° C., the main component adsorbed by the adsorbent 16 a is detached and introduced into the sensor cell 21. At this time, since the off-flavor component has already been almost completely removed from the adsorbent 16a, the odor sensor 21a can obtain a detection signal for only the main component. In this way, various components contained in the sample to be measured can be separated, and each component can be adequately concentrated and detected. Moreover, since only the temperature necessary for component separation (100 ° C. and 140 ° C. in the example of FIG. 5) is set and the temperature is raised stepwise, the measurement can be performed efficiently.
[0036]
After acquiring the off-flavor component and main component detection signals in this way, the data processing unit 23 performs the following processing, for example. That is, when the odor sensor 21a is an oxide semiconductor, when the base resistance value is R0 and the resistance value at the peak of the signal is Rs, -log (Rs / R0) And the ratio (amount of off-flavor component / principal component) is calculated. Then, by normalizing this value, the variation in the sample amount for each sampling is canceled. Thereby, the amount of off-flavor components with respect to the main component can be accurately obtained. After performing the main measurement in this way, the same cleaning process as in step S6 is performed (step S11), and all the measurements are completed with the adsorbent 16a being cleaned.
[0037]
In the above embodiment, when measuring a certain sample, a preliminary measurement was performed first, and then a series of measurements were performed in the procedure of performing the main measurement. When it is desired to measure the odor intensity of a large number of samples, a preliminary measurement is first performed on one kind of sample to find the expulsion temperature Tn of all components including off-flavor components, and the temperature data is used. This measurement can be performed on all samples. Thus, the preliminary measurement is not necessarily required for each main measurement, and the preliminary measurement can be omitted if the temperature data usable for the main measurement is already stored in the temperature data memory 25.
[0038]
Moreover, the said Example is an example of this invention, Comprising: It is clear that a deformation | transformation, correction, or addition can be performed suitably in the range of the meaning of this invention.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram centering on a gas flow path of an odor measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a procedure of a measurement operation in the odor measuring apparatus according to the present embodiment.
FIG. 3 is an explanatory diagram of a gas flow during a measurement operation in the odor measuring apparatus according to the present embodiment.
FIG. 4 is a diagram illustrating an example of a temperature rise profile during preliminary measurement of the odor measuring apparatus according to the present embodiment and an odor detection output corresponding thereto.
FIG. 5 is a diagram showing an example of a temperature rise profile during the actual measurement of the odor measuring apparatus according to the present embodiment and an odor detection output corresponding thereto.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Sample gas introduction port 11 ... Nitrogen gas supply port 12, 13 ... Valve 14, 15 ... Gas flow path 16 ... Collection pipe 16a ... Adsorbent 17 ... Heater 18 ... Pump 19 ... Exhaust port 21 ... Sensor cell 21a ... Odor sensor 22 ... A / D converter 23 ... data processing unit 24 ... control unit 25 ... temperature data memory

Claims (1)

試料ガスに含まれる試料成分を吸着するとともに加熱により該試料成分を離脱する吸着剤を内装した捕集管と、試料成分を検出する複数のにおいセンサを有するにおい検出手段と、前記吸着剤に試料成分を吸着させるべく前記捕集管に試料ガスを流した後に、該吸着剤から離脱する試料成分を前記におい検出手段に導入するべく前記捕集管にキャリアガスを流す流路切替手段と、を具備するにおい測定装置において、
a)前記吸着剤に捕集した試料成分を離脱させる際に、前記捕集管の温度を段階的に上昇させながら、試料中の主成分と異臭成分とに対する相異なる成分離脱温度を見つけるための予備測定を行い、該成分離脱温度を記憶しておく予備測定実行制御手段と、
b)前記吸着剤に捕集した試料成分を離脱させる際に、前記捕集管の温度を前記予備測定において記憶された成分離脱温度に順次設定しながら前記におい検出手段による前記主成分と異臭成分とのそれぞれの検出信号を取得する本測定実行制御手段と、
c) 前記本測定において取得された検出信号に基づいて前記試料中における主成分と異臭成分との含有量の比率を算出する演算処理手段と、
を備えることを特徴とするにおい測定装置。
A collection tube containing an adsorbent that adsorbs a sample component contained in the sample gas and releases the sample component by heating, an odor detection means having a plurality of odor sensors for detecting the sample component, and a sample in the adsorbent A flow path switching means for flowing a carrier gas through the collection tube to introduce the sample component released from the adsorbent into the odor detection means after flowing the sample gas through the collection tube to adsorb components. In the odor measuring device provided,
a) When the sample components collected in the adsorbent are separated, the temperature of the collection tube is raised stepwise to find different component separation temperatures for the main component and the off-flavor component in the sample . Preliminary measurement execution control means for performing preliminary measurement and storing the component desorption temperature;
b) When the sample components collected in the adsorbent are separated, the temperature of the collection tube is sequentially set to the component removal temperature stored in the preliminary measurement, while the odor detection means and the main component are different from odor. Main measurement execution control means for acquiring respective detection signals of the components ,
c) arithmetic processing means for calculating the ratio of the content of the main component and the off-flavor component in the sample based on the detection signal acquired in the main measurement;
An odor measuring apparatus comprising:
JP2003124857A 2003-04-30 2003-04-30 Odor measuring device Expired - Fee Related JP3988675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124857A JP3988675B2 (en) 2003-04-30 2003-04-30 Odor measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124857A JP3988675B2 (en) 2003-04-30 2003-04-30 Odor measuring device

Publications (2)

Publication Number Publication Date
JP2004333134A JP2004333134A (en) 2004-11-25
JP3988675B2 true JP3988675B2 (en) 2007-10-10

Family

ID=33502283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124857A Expired - Fee Related JP3988675B2 (en) 2003-04-30 2003-04-30 Odor measuring device

Country Status (1)

Country Link
JP (1) JP3988675B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040725A (en) * 2005-08-01 2007-02-15 Shimadzu Corp Gas chromatograph
JP4870603B2 (en) * 2007-03-28 2012-02-08 株式会社日立ハイテクノロジーズ Water removal confirmation method for solid phase extraction column, water removal confirmation device for solid phase extraction column, and solid phase extraction column
JP4849010B2 (en) * 2007-05-31 2011-12-28 株式会社三菱化学アナリテック Method of burning sample for analysis
KR101755538B1 (en) * 2016-01-12 2017-07-20 (주) 에이스엔 Ambient air monitoring system and method using sensor and gas chromatography

Also Published As

Publication number Publication date
JP2004333134A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US6494077B2 (en) Odor identifying apparatus
JP2019514021A (en) Multiple capillary column preconcentration system for increasing the sensitivity of gas chromatography (GC) and gas chromatography mass spectrometry (GCMS)
JP6807587B2 (en) Smell evaluation method and odor evaluation device
JP3282586B2 (en) Odor measurement device
JP3832073B2 (en) Gas measuring device
JP3809734B2 (en) Gas measuring device
JP2008008788A (en) Smell discrimination system
JP3988675B2 (en) Odor measuring device
JP4472893B2 (en) Odor measurement method
JP2009236539A (en) Device and method for concentrating and detecting selectively composite gaseous chemical substance
JP2009180618A (en) Pretreatment apparatus and liquid chromatograph device
JP4527110B2 (en) Analyzer having variable volume type ballast chamber and analysis method
JP2001033362A (en) Foul odor-measuring device
CN110470798B (en) Temperature compensation method for portable electronic nose enrichment device
JP2003302316A (en) Oil analyzing-method and oil analyzer
JP3543496B2 (en) Odor detection device
EP1099949B1 (en) Device for measuring gases with odors
JP3941653B2 (en) Odor measuring device
JP4465482B2 (en) Odor measuring device
JP3367398B2 (en) Odor measurement device
JP4253971B2 (en) Odor identification device
JP4042232B2 (en) Gas measuring device
EP0425119A1 (en) Determining concentration of pollutant gas in atmosphere
JP2005265666A (en) Analyzing apparatus and analyzing method of gas in oil
WO2024090156A1 (en) Smell identification method and smell identification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3988675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees