JP3543400B2 - Method for producing organosilanols - Google Patents

Method for producing organosilanols Download PDF

Info

Publication number
JP3543400B2
JP3543400B2 JP31114394A JP31114394A JP3543400B2 JP 3543400 B2 JP3543400 B2 JP 3543400B2 JP 31114394 A JP31114394 A JP 31114394A JP 31114394 A JP31114394 A JP 31114394A JP 3543400 B2 JP3543400 B2 JP 3543400B2
Authority
JP
Japan
Prior art keywords
och
group
atom
carbon atoms
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31114394A
Other languages
Japanese (ja)
Other versions
JPH08143581A (en
Inventor
浩一 樋口
和之 松村
紀夫 篠原
省二 一戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP31114394A priority Critical patent/JP3543400B2/en
Publication of JPH08143581A publication Critical patent/JPH08143581A/en
Application granted granted Critical
Publication of JP3543400B2 publication Critical patent/JP3543400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、Si−H結合を有する有機ケイ素化合物を加水分解することにより、オルガノシラノール類を製造する方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
シリコーンゴム用可塑剤や種々のシリコーン化合物合成の中間体などとして有用であるオルガノシラノール類は、Si−H結合を有する有機ケイ素化合物の加水分解反応により得られることは周知であり、オルガノシラノール類の製造に従来より広く利用されている。この加水分解反応を促進するような触媒はいくつか知られているが、パラジウム、ロジウム、及び白金のような遷移金属が担持されたカーボンあるいはアルミナが一般的に用いられている。たとえば、トリエチルシラン(Et3 SiH)をルテニウム−カーボン存在下、加水分解し、トリエチルシラノール(Et3 SiOH)を収率87%で得る反応がJournal
of Organic Chemistry,31,855(1966)に記載されている。
【0003】
同様な方法により、Si−H結合を複数有する有機ケイ素化合物を加水分解すると、相当するポリシラノールが得られるが、収率は低下する。これは、遷移金属成分がカーボンに物理的に吸着しているため、いくらかの遷移金属成分が反応系中に脱落し、これがモノシラノールに比べて高い反応性を有するポリシラノール間の縮合を促進させるためである。この場合、反応系をpH緩衝溶液にてpH調整していても、ポリシラノール間の縮合は生じる。また、反応混合物中から生成ポリシラノールを蒸留精製する場合、触媒から脱落した遷移金属成分と加熱との相乗作用によりポリシラノール間の縮合が生起し、単離収率の大幅な低下がみられる。
【0004】
本発明は、上記従来の問題点を解決し、Si−H結合を有する有機ケイ素化合物からポリシラノールの場合であっても高収率で目的とするオルガノシラノールを製造することができる方法を提供することを目的とする。
【0005】
【課題を解決するための手段及び作用】
本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、下記一般式(1)で示されるSi−H結合を有する有機ケイ素化合物を加水分解する場合、固体支持体に化学的に結合した特定のパラジウム化合物もしくはその錯化合物からなる触媒、即ち、下記一般式(2)
b c Si(OR3 d (OH)e (4-b-c-d-e)/2 (2)
(式中、Yは11個までの炭素原子を有し、かつ少なくとも1個の硫黄原子を含み、ケイ素原子に対してケイ素−炭素結合を介して結合する硫黄原子含有一価有機官能基を表し、Zは、11個までの炭素原子を有し、かつ少なくとも1個の窒素原子を含み、ケイ素原子に対してケイ素−炭素結合を介して結合する窒素原子含有一価有機官能基を表し、R3 は炭素数1〜4の一価炭化水素基を表し、b,c,d,eは、0<b<1,0<c<0.5,c<b,0<b+c<1,0≦d<0.1,0<e<1,0<b+c+d+e<2を満足する正数である。)
で示される硫黄原子及び窒素原子含有ケイ素樹脂と下記一般式(3)
PdLf (3)
(式中、Lはアミノ基又はメルカプト基により置換可能である配位子を表し、fはPdの遊離価を満足するような数である。)
で示されるパラジウム化合物又はその錯化合物との反応による得られる触媒を使用することにより、反応系を該触媒成分で汚染することなしに、相当するオルガノシラノールを選択的に得ることを見出した。さらに複数のSi−H結合を有する有機ケイ素化合物を加水分解し、その反応混合物中から生成した高い反応性を有するポリシラノールを蒸留精製する場合も、触媒からのパラジウム成分の脱落がないため、従来法よりも高い単離収率でポリシラノールを得ることができることを知見し、本発明をなすに至った。
【0006】
従って、本発明は、下記一般式(1)で示されるSi−H結合を有する有機ケイ素化合物を上記触媒の存在下で加水分解させることを特徴とするオルガノシラノール類の製造方法を提供する。
【0007】
【化2】

Figure 0003543400
【0008】
(式中、R1 はそれぞれ炭素数1〜10の一価炭化水素基又は炭素数1〜6の一価炭化水素基を有するトリオルガノシリルオキシ基を表し、R2 はそれぞれ水素原子、炭素数1〜10の一価炭化水素基又は炭素数1〜6の一価炭化水素基を有するトリオルガノシリルオキシ基を表し、Xは酸素原子又は炭素数1〜6の二価炭化水素基を表し、aは0〜6の整数である。)
以下、本発明につき更に詳しく説明すると、本発明のオルガノシラノール類の製造方法において、その出発原料として使用するSi−H結合含有有機ケイ素化合物は、下記一般式(1)で示されるものである。
【0009】
【化3】
Figure 0003543400
【0010】
上式中、R1 はそれぞれ炭素原子数1から10までの一価炭化水素基、または炭素原子数1から6までの一価炭化水素基を有するトリオルガノシリルオキシ基であり、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;ビニル基、アリル基、ブテニル基、ヘキセニル基、イソプロペニル基等のアルケニル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロエチル基、3,3,3−トリフルオロプロピル基等のハロゲン原子置換アルキル基;トリメチルシリルオキシ基、トリエチルシリルオキシ基、t−ブチルジメチルシリルオキシ基、トリフェニルシリルオキシ基等が例示される。R2 はそれぞれ水素原子、炭素原子数1から10までの一価炭化水素基、または炭素原子数1から6までの一価炭化水素基を有するトリオルガノシリルオキシ基であり、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;ビニル基、アリル基、ブテニル基、ヘキセニル基、イソプロペニル基等のアルケニル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロエチル基、3,3,3−トリフルオロプロピル基等のハロゲン原子置換アルキル基;トリメチルシリルオキシ基、トリエチルシリルオキシ基、t−ブチルジメチルシリルオキシ基、トリフェニルシリルオキシ基等が例示される。Xは酸素原子、またはメチレン、フェニレン等の炭素原子数1から6までの二価炭化水素基である。aは0または1から6の整数である。
【0011】
本発明は、上記Si−H結合含有有機ケイ素化合物を触媒の存在下に加水分解させるもので、これによりこの有機ケイ素化合物のSi−H基がSi−OH基に加水分解されたオルガノシラノールが得られるものである。
【0012】
ここで、本発明においては、触媒として下記一般式(2)
b c Si(OR3 d (OH)e (4-b-c-d-e)/2 (2)
で示される硫黄原子及び窒素原子含有ケイ素樹脂とパラジウム化合物又はその錯化合物との反応により得られる触媒を使用する。なお、このケイ素樹脂としては、シリカとポリシルセスキオキサンがある。
【0013】
この場合、式(2)のケイ素樹脂は、(i)硫黄原子含有オルガノトリアルコキシシランと、(ii)窒素原子含有オルガノトリアルコキシシランと、および(iii)テトラアルコキシシランとを、Si−F結合を有するフッ素含有ケイ素化合物もしくはフッ素塩化合物の存在下、水あるいは含水有機溶剤中で反応させて得ることができ、この硫黄原子および窒素原子含有ケイ素樹脂と、(iv)パラジウム化合物またはその錯化合物との反応により本発明の触媒を調製することができる。
【0014】
ここで使用される硫黄原子含有オルガノトリアルコキシシラン(i)は、一般式(4)
YSi(OR3 3 (4)
で示される。上式中、Yは11個までの炭素原子を有し、かつ炭素、水素および適宜酸素よりなり、ケイ素−炭素結合を介してケイ素へ結合する一価の基であって、Y中には少なくとも1個の硫黄原子を含む有機官能基があり、R3 は炭素原子数1から4までの一価炭化水素基である。ここで、Yとしては、R11−Sx−R12−で表されるチオール又はチオエーテル官能基であることが好ましい。但し、R11は水素原子、炭素数1〜4のアルキル基、炭素数2〜5のアルケニル基、炭素数6〜10のアリール基又は−R13−Si(OR143基であり、R13は炭素数1〜10の直鎖状又は分枝状のアルキレン基、R14は炭素数1〜4の一価炭化水素基である。また、xは1〜4の整数を示す。具体的は、以下の化合物が例示されるが、これらに限定されるものではない。
【0015】
HS(CH2 3 Si(OCH3 3
HS(CH2 3 Si(OCH2 CH3 3
HS(CH2 6 Si(OCH3 3
HS(CH2 6 Si(OCH2 CH3 3
HS(CH2 8 Si(OCH3 3
HS(CH2 8 Si(OCH2 CH3 3
HS(CH2 10Si(OCH3 3
HS(CH2 10Si(OCH2 CH3 3
HSCH2 6 4 (CH2 2 Si(OCH3 3
HSCH2 6 4 (CH2 2 Si(OCH2 CH3 3
CH3 S(CH2 3 Si(OCH3 3
CH3 S(CH2 3 Si(OCH2 CH3 3
CH3 CH2 S(CH2 3 Si(OCH3 3
CH3 CH2 S(CH2 3 Si(OCH2 CH3 3
CH3 CH2 CH2 S(CH2 3 Si(OCH3 3
CH3 CH2 CH2 S(CH2 3 Si(OCH2 CH3 3
CH2 =CHCH2 S(CH2 3 Si(OCH3 3
CH2 =CHCH2 S(CH2 3 Si(OCH2 CH3 3
6 5 CH2 S(CH2 3 Si(OCH3 3
6 5 CH2 S(CH2 3 Si(OCH2 CH3 3
S((CH2 3 Si(OCH3 3 2
S((CH2 3 Si(OCH2 CH3 3 2
4 ((CH2 3 Si(OCH3 3 2
4 ((CH2 3 Si(OCH2 CH3 3 2
4 ((CH2 6 4 CH2 CH2 )Si(OCH3 3 2
4 ((CH2 6 4 CH2 CH2 )Si(OCH2 CH3 3 2
また、ここで使用される窒素原子含有オルガノトリアルコキシシラン(ii)は一般式(5)
ZSi(OR3 3 (5)
で示される。上式中、Zは11個までの炭素原子を有し、かつ炭素、水素および適宜酸素よりなり、ケイ素−炭素結合を介してケイ素へ結合する一価の基であって、Z中に少なくとも1個の窒素原子を含む有機官能基があり、R3 は前記と同じである。ここで、Zとしては、R1516N−R13−で表されるアミノ官能性基又はNC−R13−で表されるシアノ官能性基であることが好ましい。但し、R15及びR16はそれぞれ水素原子、炭素数1〜4のアルキル基、炭素数2〜5のアルケニル基、炭素数6〜10のアリール基、R1516N−R17−基又は−R13−Si(OR143基である。なお、R13及びR14は上記と同様の意味を示す。具体的には、以下の化合物が例示されるが、これらに限定されるものではない。
【0016】
2 N(CH2 3 Si(OCH3 3
2 N(CH2 3 Si(OCH2 CH3 3
2 N(CH2 6 Si(OCH3 3
2 N(CH2 6 Si(OCH2 CH3 3
2 N(CH2 8 Si(OCH3 3
2 N(CH2 8 Si(OCH2 CH3 3
2 N(CH2 10Si(OCH3 3
2 N(CH2 10Si(OCH2 CH3 3
(CH3 )HN(CH2 3 Si(OCH3 3
(CH3 )HN(CH2 3 Si(OCH2 CH3 3
(CH3 )HN(CH2 6 Si(OCH3 3
(CH3 )HN(CH2 6 Si(OCH2 CH3 3
(CH3 )HN(CH2 8 Si(OCH3 3
(CH3 )HN(CH2 8 Si(OCH2 CH3 3
(CH3 )HN(CH2 10Si(OCH3 3
(CH3 )HN(CH2 10Si(OCH2 CH3 3
(CH3 CH2 )HN(CH2 3 Si(OCH3 3
(CH3 CH2 )HN(CH2 3 Si(OCH2 CH3 3
(CH3 CH2 )HN(CH2 6 Si(OCH3 3
(CH3 CH2 )HN(CH2 6 Si(OCH2 CH3 3
(CH3 CH2 )HN(CH2 8 Si(OCH3 3
(CH3 CH2 )HN(CH2 8 Si(OCH2 CH3 3
(CH3 CH2 )HN(CH2 10Si(OCH3 3
(CH3 CH2 )HN(CH2 10Si(OCH2 CH3 3
(CH3 CH2 CH2 )HN(CH2 3 Si(OCH3 3
(CH3 CH2 CH2 )HN(CH2 3 Si(OCH2 CH3 3
(CH3 CH2 CH2 )HN(CH2 6 Si(OCH3 3
(CH3 CH2 CH2 )HN(CH2 6 Si(OCH2 CH3 3
(CH3 CH2 CH2 )HN(CH2 8 Si(OCH3 3
(CH3 CH2 CH2 )HN(CH2 8 Si(OCH2 CH3 3
(CH3 CH2 CH2 )HN(CH2 10Si(OCH3 3
(CH3 CH2 CH2 )HN(CH2 10Si(OCH2 CH3 3
(CH3 CH2 CH2 CH2 )HN(CH2 3 Si(OCH3 3
(CH3 CH2 CH2 CH2 )HN(CH2 3 Si(OCH2 CH3 3
(CH3 CH2 CH2 CH2 )HN(CH2 6 Si(OCH3 3
(CH3 CH2 CH2 CH2 )HN(CH2 6 Si(OCH2 CH3 3
(CH3 CH2 CH2 CH2 )HN(CH2 8 Si(OCH3 3
(CH3 CH2 CH2 CH2 )HN(CH2 8 Si(OCH2 CH3 3
(CH3 CH2 CH2 CH2 )HN(CH2 10Si(OCH3 3
(CH3 CH2 CH2 CH2 )HN(CH2 10Si(OCH2 CH3 3
(C6 5 )HN(CH2 3 Si(OCH3 3
(C6 5 )HN(CH2 3 Si(OCH2 CH3 3
(C6 5 )HN(CH2 6 Si(OCH3 3
(C6 5 )HN(CH2 6 Si(OCH2 CH3 3
(C6 5 )HN(CH2 8 Si(OCH3 3
(C6 5 )HN(CH2 8 Si(OCH2 CH3 3
(C6 5 )HN(CH2 10Si(OCH3 3
(C6 5 )HN(CH2 10Si(OCH2 CH3 3
(C6 5 CH2 )HN(CH2 3 Si(OCH3 3
(C6 5 CH2 )HN(CH2 3 Si(OCH2 CH3 3
(C6 5 CH2 )HN(CH2 6 Si(OCH3 3
(C6 5 CH2 )HN(CH2 6 Si(OCH2 CH3 3
(C6 5 CH2 )HN(CH2 8 Si(OCH3 3
(C6 5 CH2 )HN(CH2 8 Si(OCH2 CH3 3
(C6 5 CH2 )HN(CH2 10Si(OCH3 3
(C6 5 CH2 )HN(CH2 10Si(OCH2 CH3 3
(CH3 2 N(CH2 3 Si(OCH3 3
(CH3 2 N(CH2 3 Si(OCH2 CH3 3
(CH3 2 N(CH2 6 Si(OCH3 3
(CH3 2 N(CH2 6 Si(OCH2 CH3 3
(CH3 2 N(CH2 8 Si(OCH3 3
(CH3 2 N(CH2 8 Si(OCH2 CH3 3
(CH3 2 N(CH2 10Si(OCH3 3
(CH3 2 N(CH2 10Si(OCH2 CH3 3
(CH3 CH2 2 N(CH2 3 Si(OCH3 3
(CH3 CH2 2 N(CH2 3 Si(OCH2 CH3 3
(CH3 CH2 2 N(CH2 6 Si(OCH3 3
(CH3 CH2 2 N(CH2 6 Si(OCH2 CH3 3
(CH3 CH2 2 N(CH2 8 Si(OCH3 3
(CH3 CH2 2 N(CH2 8 Si(OCH2 CH3 3
(CH3 CH2 2 N(CH2 10Si(OCH3 3
(CH3 CH2 2 N(CH2 10Si(OCH2 CH3 3
(CH3 CH2 CH2 2 N(CH2 3 Si(OCH3 3
(CH3 CH2 CH2 2 N(CH2 3 Si(OCH2 CH3 3
(CH3 CH2 CH2 2 N(CH2 6 Si(OCH3 3
(CH3 CH2 CH2 2 N(CH2 6 Si(OCH2 CH3 3
(CH3 CH2 CH2 2 N(CH2 8 Si(OCH3 3
(CH3 CH2 CH2 2 N(CH2 8 Si(OCH2 CH3 3
(CH3 CH2 CH2 2 N(CH2 10Si(OCH3 3
(CH3 CH2 CH2 2 N(CH2 10Si(OCH2 CH3 3
(CH3 CH2 CH2 CH2 2 N(CH2 3 Si(OCH3 3
(CH3 CH2 CH2 CH2 2 N(CH2 3 Si(OCH2 CH3 3
(CH3 CH2 CH2 CH2 2 N(CH2 6 Si(OCH3 3
(CH3 CH2 CH2 CH2 2 N(CH2 6 Si(OCH2 CH3 3
(CH3 CH2 CH2 CH2 2 N(CH2 8 Si(OCH3 3
(CH3 CH2 CH2 CH2 2 N(CH2 8 Si(OCH2 CH3 3
(CH3 CH2 CH2 CH2 2 N(CH2 10Si(OCH3 3
(CH3 CH2 CH2 CH2 2 N(CH2 10Si(OCH2 CH3 3
(C6 5 2 N(CH2 3 Si(OCH3 3
(C6 5 2 N(CH2 3 Si(OCH2 CH3 3
(C6 5 2 N(CH2 6 Si(OCH3 3
(C6 5 2 N(CH2 6 Si(OCH2 CH3 3
(C6 5 2 N(CH2 8 Si(OCH3 3
(C6 5 2 N(CH2 8 Si(OCH2 CH3 3
(C6 5 2 N(CH2 10Si(OCH3 3
(C6 5 2 N(CH2 10Si(OCH2 CH3 3
2 N(CH2 2 NH(CH2 3 Si(OCH3 3
2 N(CH2 2 NH(CH2 3 Si(OCH2 CH3 3
2 N(CH2 6 NH(CH2 3 Si(OCH3 3
2 N(CH2 6 NH(CH2 3 Si(OCH2 CH3 3
2 N(CH2 2 NHCH2 6 4 (CH2 2 Si(OCH3 3
2 N(CH2 2 NHCH2 6 4 (CH22 Si(OCH2CH3 3
2 N(CH2 2 NH(CH2 2 NH(CH2 3 Si(OCH3 3
2 N(CH22 NH(CH22 NH(CH2 3 Si(OCH2CH33
(CH3 O)3 Si(CH2 3 NH(CH2 3 Si(OCH3 3
(CH3 CH2 O)3 Si(CH2 3 NH(CH2 3 Si(OCH2 CH3 3
(CH3 O)3 Si(CH2 3 NH(CH2 2 NH(CH2 3 Si(OCH3 3
(CH3 CH2 O)3 Si(CH2 3 NH(CH2 2 NH(CH2 3 Si(OCH2 CH3 3
NC(CH2 2 Si(OCH3 3
NC(CH2 2 Si(OCH2 CH3 3
NC(CH2 5 Si(OCH3 3
NC(CH2 5 Si(OCH2 CH3 3
NC(CH2 7 Si(OCH3 3
NC(CH2 7 Si(OCH2 CH3 3
NC(CH2 9 Si(OCH3 3
NC(CH2 9 Si(OCH2 CH3 3
また、ここで使用されるテトラアルコキシシラン(iii )は一般式(6)
Si(OR3 4 (6)
で示される。上式中、R3 は前記と同じである。具体的には、以下の化合物が例示されるが、これらに限定されるものではない。
【0017】
Si(OCH3 4 ,Si(OC2 5 4 ,Si(OC3 7 4
Si(OC4 9 4 ,Si〔OC(=CH2 )CH3 4
上記硫黄原子含有オルガノトリアルコキシシランおよび窒素原子含有オルガノトリアルコキシシランとテトラアルコキシシランとの混合比は、目的生成物が固体となるように設定する。具体的には、硫黄原子含有オルガノトリアルコキシシランおよび窒素原子含有オルガノトリアルコキシシランとテトラアルコキシシランとのモル比が0.01〜3の範囲が好ましく、0.1〜2の範囲が特に好ましい。このモル比が3より大きくなると目的物の性状が液体あるいはオイル状になってしまう場合があるので好ましくない。また、このモル比が0.01未満になると硫黄原子および窒素原子によるパラジウム成分の固定化能が発現せず、好ましくない。
【0018】
また、硫黄原子含有オルガノトリアルコキシシランと窒素原子含有オルガノトリアルコキシシランの混合比は、硫黄原子/窒素原子のモル比で1.5〜5の範囲、特には、2〜4の範囲になるのが好ましい。この比が1.5未満になるとパラジウム化合物またはその錯化合物と反応させ、触媒とした後、加水分解反応に用いるとパラジウム成分が脱落し、反応系を汚染してしまう場合が生じ、またこの比が5より大きくなると触媒を調製するために仕込んだパラジウム化合物またはその錯化合物の全てを固定化できない場合が生じる。
【0019】
上記アルコキシシランの混合物は、分子中に少なくとも1個のSi−F結合を有するフッ素含有ケイ素化合物もしくはフッ素塩化合物の存在下、水又は含水有機溶剤と反応させる。ここで用いられるフッ素含有ケイ素化合物としては、FSi(OCH3 3 、FSi(OCH2 −CH3 3 、(NH4 2 SiF6 などが例示される。また、フッ素塩化合物としては、NaF、KF、(CH3 CH2 CH2 CH2 4 NFなどが例示される。
【0020】
Si−F結合を有するフッ素含有素ケイ素化合物もしくはフッ素塩化合物の使用量は、硫黄原子含有オルガノトリアルコキシシラン、窒素原子含有オルガノトリアルコキシシラン、およびテトラアルコキシシランの総和Si/Fのモル比で1.0:0.0001から1.0:2.0の範囲が好ましい。
【0021】
これらアルコキシシランの混合物を上記フッ素含有ケイ素化合物もしくはフッ素塩化合物の存在下、水又は含水有機溶剤と反応させることにより、一般式(2)
b c Si(OR3 d (OH)e (4-b-c-d-e)/2 (2)
で示される硫黄原子および窒素原子含有ケイ素樹脂を得ることができる。上式中、Y、Z、およびR3 は前記と同じであり、b,c,dおよびeは、0<b<1,0<c<0.5,c<b,0<b+c<1,0≦d<0.1,0<e<1,0<b+c+d+e<2を満足する正数である。
【0022】
次に、上記硫黄原子および窒素原子含有ケイ素樹脂と、パラジウム化合物またはその錯化合物(iv)との反応による触媒の調製について述べる。まず、パラジウム化合物またはその錯化合物(iv)は、一般式(3)
PdLf (3)
で示される。上式中、Lはアミノ基またはメルカプト基により置換可能である少なくとも1個の配位子を表わし、fはPdの遊離価を満足するような数である。具体的には、以下の化合物が例示されるが、これらに限定されるものではない。
【0023】
PdCl2 ,PdBr2 ,Pd(CN)2 ,Pd(NO3 2
Pd〔OC(=O)CH3 2 ,Pd(C6 5 CN)2
Pd〔CH3 C(=O)CH=C(−O)CH3 2
Pd(H2 NCH2 CH2 NH2 )Cl2
Pd2 〔C6 5 CH=CHC(=O)CH=CHC6 5 3
硫黄原子および窒素原子含有ケイ素樹脂と上記パラジウム化合物またはその錯化合物との反応は、通常環境温度から100℃程度の範囲で行うことができる。好ましくは、60〜70℃の範囲である。また、この反応は無溶媒でも行うことができるが、適当な溶媒の存在下で行うことが好ましい。なかでも、テトラヒドロフラン、ジエチルエーテル、アセトン、酢酸エチル、ジメチルスルホキシド、ジメチルホルムアミド、メタノール、エタノール、イソプロパノール等の極性溶媒および/または水の中が好ましい。
【0024】
硫黄原子および窒素原子含有ケイ素樹脂と上記パラジウム化合物またはその錯化合物との混合比は、硫黄原子および窒素原子含有ケイ素樹脂中の硫黄原子および窒素原子/パラジウム化合物またはその錯化合物中のパラジウム原子のモル比で2〜200の範囲が好ましく、3〜100がより好ましい。このモル比が2未満になると、パラジウム化合物またはその錯化合物の全てを固定化できない場合が生じ、また200を超えるようになると、パラジウム成分の固定化はされるものの、パラジウム成分の触媒活性が極端に低下してしまう場合がある。
【0025】
硫黄原子および窒素原子含有ケイ素樹脂と上記パラジウム化合物またはその錯化合物とを反応させた後、水素化ホウ素ナトリウム等の還元剤で生成物を還元してもよい。
【0026】
硫黄原子および窒素原子含有ケイ素樹脂と上記パラジウム化合物またはその錯化合物とを反応させた後、生成した固体を濾過し、アルコールおよび水で洗浄した後、乾燥することによって、本発明のSi−H結合含有有機ケイ素化合物の加水分解反応用触媒を得ることができる。
【0027】
次に、本発明の上記触媒を用いたSi−H結合含有有機ケイ素化合物の加水分解反応によるシラノール類の製造方法について述べる。この加水分解反応は上記式(1)のSi−H結合を有する有機ケイ素化合物と理論等量以上の水とを上記触媒の存在下で反応させる。さらにこの反応は、通常環境温度から100℃程度の範囲で行うことができる。好ましくは、40〜70℃の範囲である。また、この反応は無触媒でも行うことができるが、適当な溶媒の存在下で行うことが好ましい。なかでも、テトラヒドロフラン、ジエチルエーテル、アセトン、酢酸エチル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒が好ましい。また、この触媒は固体であるので、バッチ式あるいは連続式で上記反応を行なうことができる。バッチ式で反応を行なう場合、反応終了後は濾過等の分離操作により触媒を分離し、該触媒はそのまま次の反応にリサイクルすることができる。また、連続式で反応を行なう場合には、Si−H結合含有有機ケイ素化合物、水、および溶媒の混合物をこの触媒床の上または中に通すことにより行なうことができる。なお、上記触媒の使用量は、特に制限されないが、パラジウム量として0.1〜2000ppmであることが好ましい。
また、上記加水分解後は、常法に従い、触媒を濾別し、目的とするオルガノシラノールを減圧蒸留することにより単離することができる。この場合、本発明においては、この減圧蒸留時にシラノールが縮合することがなく、高収率で目的オルガノシラノールを得ることができる。また、濾別した触媒は繰り返して使用することができる。
【0028】
【実施例】
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0029】
〔実施例1〕
〔硫黄原子および窒素原子含有ケイ素樹脂の調製〕攪拌装置付4つ口フラスコに、フッ化カリウム1.16g(0.02モル)および水1600.0g(88.8モル)を仕込み、室温にてメルカプトプロピルトリメトキシシラン131.3g(0.67モル)、γ−フェニルアミノプロピルトリメトキシシラン84.2g(0.33モル)、およびテトラメトキシシラン152.0g(1.00モル)の混合物を攪拌下、3分間で滴下した。室温下、2分間攪拌したところ、反応系は白色ゲル化した。さらに室温下、1時間攪拌後、生成した固体を濾別し、蒸留水、続いてアセトン洗浄した。次いで減圧乾燥し、溶媒を除去後、メルカプトプロピル基およびγ−フェニルアミノプロピル基含有ケイ素樹脂を202.4g、収率98%で得た。このメルカプトプロピル基およびγ−フェニルアミノプロピル基含有ケイ素樹脂中の硫黄分および窒素分は、それぞれ10.1wt%、2.2wt%であった。
【0030】
〔パラジウム含有触媒の調製〕攪拌装置付4つ口フラスコに、上記ケイ素樹脂3.78g、エタノール30.0g、および塩化パラジウム0.3gを仕込み、60℃、6時間攪拌した。その後、水素化ホウ素ナトリウム0.08gを添加し、さらに60℃、1時間攪拌後、生成した固体を濾別し、アセトン、続いて蒸留水で洗浄した。次いで減圧乾燥し、溶媒を除去後、褐色固体状触媒を3.50g得た。この触媒中のパラジウム量の計算値および測定値は、いずれも4.6wt%であり、パラジウムは定量的に固定化されていた。
【0031】
〔上記触媒を用いたシラノール合成反応〕攪拌装置付4つ口フラスコに、上記のようにして調製した触媒4.3g、水81.6g(4.53モル)、およびメチルエチルケトン1002.7gを仕込み、60℃にて1,1,1,3,5,7,7,7−オクタメチルテトラシロキサン501.2g(1.78モル)を攪拌下、4.5時間で滴下した。滴下と共に水素ガスの発生がみられた。60℃、6時間の攪拌後、ガスクロマトグラフィー/質量分析(以下、GC−MSと略記する。)にて反応混合物を分析したところ、原料の1,1,1,3,5,7,7,7−オクタメチルテトラシロキサンは完全に消費され、目的生成物である1,1,1,3,5,7,7,7−オクタメチルテトラシロキサン−3,5−ジオールが87.4%生成していた。この反応混合物から触媒を濾別し、濾液を減圧下、濃縮した。濃縮物を減圧蒸留したところ、1,1,1,3,5,7,7,7−オクタメチルテトラシロキサン−3,5−ジオールを96〜98℃/35mmTorrの無色透明オイルの留分として得た。1,1,1,3,5,7,7,7−オクタメチルテトラシロキサン−3,5−ジオールの単離収率は、76.2%であり、純度は98.5%であった。
【0032】
〔実施例2〕
γ−フェニルアミノプロピルトリメトキシシランをγ−メチルアミノプロピルトリメトキシシラン63.7g(0.33モル)に代えた以外は、実施例1の〔硫黄原子および窒素原子含有ケイ素樹脂の調製〕と同様な反応を行なったところ、メルカプトプロピル基およびγ−メチルアミノプロピル基含有ケイ素樹脂を183.0g、収率98%で得た。このメルカプトプロピル基およびγ−メチルアミノプロピル基含有ケイ素樹脂中の硫黄分および窒素分は、それぞれ11.0wt%、2.4wt%であった。
【0033】
攪拌装置付4つ口フラスコに、上記ケイ素樹脂4.03g、エタノール30.8g、および塩化パラジウム0.30gを仕込み、60℃、6時間攪拌した。その後、水素化ホウ素ナトリウム0.09gを添加し、さら60℃、1時間攪拌後、生成した固体を濾別し、アセトン、続いて蒸留水で洗浄した。次いで減圧乾燥し、溶媒を除去後、褐色固体状触媒を3.58g得た。この触媒中のパラジウム量の計算値および測定値は、いずれも4.3wt%であり、パラジウムは定量的に固定化されていた。
【0034】
攪拌装置付4つ口フラスコに、上記のようにして調製した触媒0.3g、水2.3g(0.13モル)、およびメチルエチルケトン30.3gを仕込み、60℃にて1,1,3,3−テトラメチルジシロキサン6.7g(0.05モル)を攪拌下、1時間で滴下した。滴下と共に水素ガスの発生がみられた。60℃、3時間の攪拌後、GC−MSにて反応混合物を分析したところ、原料の1,1,3,3−テトラメチルジシロキサンは完全に消費され、目的生成物である1,1,3,3−テトラメチルジシロキサン−1,3−ジオールは85.4%生成していた。この反応混合物から触媒を濾別した後、濾液中のパラジウム量を測定したところ、0.1ppm以下であった。なお、濾別した触媒をリサイクルし、同じ反応を同スケールで5回行なったが、1,1,3,3−テトラメチルジシロキサン−1,3−ジオールの収率は変わらず、触媒活性の低下はみられなかった。
【0035】
〔実施例3〕
撹拌装置付4つ口フラスコに実施例1で調製したパラジウム含有ケイ素樹脂0.4g、水2.4g(0.13モル)、およびメチルエチルケトン35.3gを仕込み、60℃にて1,4−ビス(ジメチルシリル)ベンゼン9.7g(0.05モル)を撹拌下、1時間で滴下した。滴下と共に水素ガスの発生がみられた。60℃、4時間の撹拌後、GC−MSにて反応混合物を分析したところ、原料の1,4−ビス(ジメチルシリル)ベンゼンは完全に消費され、目的生成物である1,4−ビス(ジメチルヒドロキシシリル)ベンゼンは、92.6%生成していた。この反応混合物中から触媒を濾別した後、濾液中のパラジウム量を測定したところ、0.1ppm以下であった。なお濾別した触媒をリサイクルし、同じ反応を同スケールで6回行なったが、1,4−ビス(ジメチルヒドロキシシリル)ベンゼンの収率は変わらず、触媒活性の低下はみられなかった。
【0036】
〔比較例1〕
攪拌装置付4つ口フラスコに、あらかじめ水洗した5%パラジウム−カーボン3.3g、水81.2g(4.51モル)、およびメチルエチルケトン994.0gを仕込み、60℃にて1,1,1,3,5,7,7,7−オクタメチルテトラシロキサン500.0g(1.77モル)を攪拌下、4.5時間で滴下した。滴下と共に水素ガスの発生がみられた。60℃、6時間の攪拌後、GC−MSにて反応混合物を分析したところ、原料の1,1,1,3,5,7,7,7−オクタメチルテトラシロキサンは完全に消費され、目的生成物である1,1,1,3,5,7,7,7−オクタメチルテトラシロキサン−3,5−ジオールが76.7%生成していた。この反応混合物から触媒を濾別し、濾液を減圧下、濃縮した。濃縮物を減圧蒸留したところ、1,1,1,3,5,7,7,7−オクタメチルテトラシロキサン−3,5−ジオールを96〜98℃/35mmTorrの無色透明オイルの留分として得た。1,1,1,3,5,7,7,7−オクタメチルテトラシロキサン−3,5−ジオールの単離収率は、27.2%であり、純度は98.2%であった。なお、釜残をゲルパーミエーションクロマトグラフィー(以下、GPCと略記する。)にて分析したところ、平均分子量Mwは2400、分散度Mw/Mnは1.22の高分子量体のみであった。
【0037】
〔比較例2〕
攪拌装置付4つ口フラスコに、あらかじめ水洗した5%パラジウム−カーボン0.1g、水2.3g(0.13モル)、およびメチルエチルケトン30.6gを仕込み、60℃にて1,1,3,3−テトラメチルジシロキサン6.7g(0.05モル)を攪拌下、1時間で滴下した。滴下と共に水素ガスの発生がみられた。60℃、3時間の攪拌後、GC−MSにて反応混合物を分析したところ、原料の1,1,3,3−テトラメチルジシロキサンは完全に消費され、目的生成物である1,1,3,3−テトラメチルジシロキサン−1,3−ジオールは80.4%生成していた。この反応混合物から触媒を濾別した後の濾液は薄褐色に着色しており、その濾液中のパラジウム量を測定したところ、16.1ppmであった。
【0038】
【発明の効果】
本発明のオルガノシラノールの製造方法は、上述した特定の固体支持体に化学的に結合した特定のパラジウム化合物もしくはその錯化合物からなる触媒の使用により、Si−H結合を有する有機ケイ素化合物を加水分解することによって、反応系を該触媒成分で汚染することなしに、相当するオルガノシラノールを収率よく、かつ高純度に製造できるという特徴を有する。[0001]
[Industrial applications]
The present invention relates to a method for producing organosilanols by hydrolyzing an organosilicon compound having a Si—H bond.
[0002]
Problems to be solved by the prior art and the invention
It is well known that organosilanols useful as a plasticizer for silicone rubber and intermediates for synthesizing various silicone compounds can be obtained by a hydrolysis reaction of an organosilicon compound having a Si-H bond. It is more widely used in manufacturing than before. Several catalysts that promote this hydrolysis reaction are known, but carbon or alumina carrying a transition metal such as palladium, rhodium, and platinum is generally used. For example, triethylsilane (EtThreeSiH) is hydrolyzed in the presence of ruthenium-carbon to obtain triethylsilanol (Et).ThreeThe reaction for obtaining SiOH) with a yield of 87% is Journal
of Organic Chemistry,31, 855 (1966).
[0003]
Hydrolysis of an organosilicon compound having a plurality of Si-H bonds by a similar method yields the corresponding polysilanol, but at a reduced yield. This is because the transition metal component is physically adsorbed on the carbon, so that some transition metal component is dropped into the reaction system, which promotes condensation between polysilanols having higher reactivity than monosilanol. That's why. In this case, condensation between polysilanols occurs even when the pH of the reaction system is adjusted with a pH buffer solution. In addition, when the polysilanol produced is purified by distillation from the reaction mixture, condensation between the polysilanol occurs due to a synergistic effect between the transition metal component dropped from the catalyst and heating, and the isolation yield is greatly reduced.
[0004]
The present invention solves the above-mentioned conventional problems and provides a method capable of producing a target organosilanol in high yield from an organosilicon compound having a Si-H bond even in the case of polysilanol. The purpose is to:
[0005]
Means and Action for Solving the Problems
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, when hydrolyzing an organosilicon compound having a Si-H bond represented by the following general formula (1), the solid support is chemically bonded to the solid support. A catalyst comprising a bound specific palladium compound or a complex thereof, that is, the following general formula (2)
YbZcSi (ORThree)d(OH)eO(4-bcde) / 2        (2)
Wherein Y represents a sulfur atom-containing monovalent organic functional group having up to 11 carbon atoms and containing at least one sulfur atom, which is attached to the silicon atom via a silicon-carbon bond. , Z represents a nitrogen-containing monovalent organic functional group having up to 11 carbon atoms and containing at least one nitrogen atom, which is attached to the silicon atom via a silicon-carbon bond;ThreeRepresents a monovalent hydrocarbon group having 1 to 4 carbon atoms, and b, c, d, and e are 0 <b <1, 0 <c <0.5, c <b, 0 <b + c <1, 0 ≦ It is a positive number satisfying d <0.1, 0 <e <1, 0 <b + c + d + e <2. )
And a silicon resin containing a sulfur atom and a nitrogen atom represented by the following general formula (3)
PdLf                                                  (3)
(In the formula, L represents a ligand that can be substituted by an amino group or a mercapto group, and f is a number that satisfies the free value of Pd.)
It has been found that by using a catalyst obtained by the reaction with a palladium compound or a complex compound thereof represented by the formula (1), the corresponding organosilanol can be selectively obtained without contaminating the reaction system with the catalyst component. Further, when hydrolyzing an organosilicon compound having a plurality of Si-H bonds and purifying a highly reactive polysilanol generated from the reaction mixture by distillation, the palladium component does not fall off from the catalyst. The present inventors have found that polysilanol can be obtained with a higher isolation yield than the method, and have accomplished the present invention.
[0006]
Accordingly, the present invention provides a method for producing an organosilanol, which comprises hydrolyzing an organosilicon compound having a Si—H bond represented by the following general formula (1) in the presence of the catalyst.
[0007]
Embedded image
Figure 0003543400
[0008]
(Where R1Represents a monovalent hydrocarbon group having 1 to 10 carbon atoms or a triorganosilyloxy group having a monovalent hydrocarbon group having 1 to 6 carbon atoms,TwoRepresents a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms or a triorganosilyloxy group having a monovalent hydrocarbon group having 1 to 6 carbon atoms, respectively, and X represents an oxygen atom or a divalent group having 1 to 6 carbon atoms. A represents an integer of 0 to 6; )
Hereinafter, the present invention will be described in more detail. In the method for producing an organosilanol according to the present invention, the Si—H bond-containing organosilicon compound used as a starting material is represented by the following general formula (1).
[0009]
Embedded image
Figure 0003543400
[0010]
In the above formula, R1Is a monovalent hydrocarbon group having 1 to 10 carbon atoms or a triorganosilyloxy group having a monovalent hydrocarbon group having 1 to 6 carbon atoms, and specifically, a methyl group, an ethyl group Alkyl groups such as propyl, butyl, pentyl and hexyl groups; alkenyl groups such as vinyl group, allyl group, butenyl group, hexenyl group and isopropenyl group; aryl groups such as phenyl group, tolyl group and xylyl group; Aralkyl groups such as benzyl group and phenethyl group; halogen-substituted alkyl groups such as chloroethyl group and 3,3,3-trifluoropropyl group; trimethylsilyloxy group, triethylsilyloxy group, t-butyldimethylsilyloxy group and triphenyl Examples thereof include a silyloxy group. RTwoIs a hydrogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, or a triorganosilyloxy group having a monovalent hydrocarbon group having 1 to 6 carbon atoms, and specifically, a methyl group Alkyl groups such as ethyl group, propyl group, butyl group, pentyl group and hexyl group; alkenyl groups such as vinyl group, allyl group, butenyl group, hexenyl group and isopropenyl group; phenyl group, tolyl group, xylyl group and the like Aryl group; aralkyl group such as benzyl group and phenethyl group; halogen atom-substituted alkyl group such as chloroethyl group and 3,3,3-trifluoropropyl group; trimethylsilyloxy group, triethylsilyloxy group and t-butyldimethylsilyloxy group And a triphenylsilyloxy group. X is an oxygen atom or a divalent hydrocarbon group having 1 to 6 carbon atoms such as methylene and phenylene. a is 0 or an integer of 1 to 6.
[0011]
The present invention hydrolyzes the Si—H bond-containing organosilicon compound in the presence of a catalyst, whereby an organosilanol in which the Si—H group of the organosilicon compound is hydrolyzed to a Si—OH group is obtained. It is something that can be done.
[0012]
Here, in the present invention, the following general formula (2) is used as the catalyst.
YbZcSi (ORThree)d(OH)eO(4-bcde) / 2        (2)
And a catalyst obtained by reacting a silicon resin containing a sulfur atom and a nitrogen atom represented by the formula with a palladium compound or a complex compound thereof. In addition, as this silicon resin, there are silica and polysilsesquioxane.
[0013]
In this case, the silicon resin of the formula (2) is obtained by forming (i) a sulfur atom-containing organotrialkoxysilane, (ii) a nitrogen atom-containing organotrialkoxysilane, and (iii) a tetraalkoxysilane into a Si—F bond. Can be obtained by reaction in water or a water-containing organic solvent in the presence of a fluorine-containing silicon compound or a fluorine salt compound having the following formula: (a) a sulfur atom- and nitrogen atom-containing silicon resin, and (iv) a palladium compound or a complex compound thereof. The catalyst of the present invention can be prepared by the reaction of
[0014]
The sulfur-containing organotrialkoxysilane (i) used here is represented by the general formula (4)
YSi (ORThree)Three                                        (4)
Indicated by In the above formula, Y is a monovalent group having up to 11 carbon atoms and consisting of carbon, hydrogen and optionally oxygen, which is bonded to silicon via a silicon-carbon bond, wherein Y has at least There is an organic functional group containing one sulfur atom,ThreeIs a monovalent hydrocarbon group having 1 to 4 carbon atoms. Here, Y is R11-Sx-R12It is preferably a thiol or thioether functional group represented by-. Where R11Is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an aryl group having 6 to 10 carbon atoms, or -R13-Si (OR14)ThreeAnd R is13Is a linear or branched alkylene group having 1 to 10 carbon atoms, R14Is a monovalent hydrocarbon group having 1 to 4 carbon atoms. X represents an integer of 1 to 4. Specific examples include, but are not limited to, the following compounds.
[0015]
HS (CHTwo)ThreeSi (OCHThree)Three
HS (CHTwo)ThreeSi (OCHTwoCHThree)Three
HS (CHTwo)6Si (OCHThree)Three
HS (CHTwo)6Si (OCHTwoCHThree)Three
HS (CHTwo)8Si (OCHThree)Three
HS (CHTwo)8Si (OCHTwoCHThree)Three
HS (CHTwo)TenSi (OCHThree)Three
HS (CHTwo)TenSi (OCHTwoCHThree)Three
HSCHTwoC6HFour(CHTwo)TwoSi (OCHThree)Three
HSCHTwoC6HFour(CHTwo)TwoSi (OCHTwoCHThree)Three
CHThreeS (CHTwo)ThreeSi (OCHThree)Three
CHThreeS (CHTwo)ThreeSi (OCHTwoCHThree)Three
CHThreeCHTwoS (CHTwo)ThreeSi (OCHThree)Three
CHThreeCHTwoS (CHTwo)ThreeSi (OCHTwoCHThree)Three
CHThreeCHTwoCHTwoS (CHTwo)ThreeSi (OCHThree)Three
CHThreeCHTwoCHTwoS (CHTwo)ThreeSi (OCHTwoCHThree)Three
CHTwo= CHCHTwoS (CHTwo)ThreeSi (OCHThree)Three
CHTwo= CHCHTwoS (CHTwo)ThreeSi (OCHTwoCHThree)Three
C6HFiveCHTwoS (CHTwo)ThreeSi (OCHThree)Three
C6HFiveCHTwoS (CHTwo)ThreeSi (OCHTwoCHThree)Three
S ((CHTwo)ThreeSi (OCHThree)Three)Two
S ((CHTwo)ThreeSi (OCHTwoCHThree)Three)Two
SFour((CHTwo)ThreeSi (OCHThree)Three)Two
SFour((CHTwo)ThreeSi (OCHTwoCHThree)Three)Two
SFour((CHTwoC6HFourCHTwoCHTwo) Si (OCHThree)Three)Two
SFour((CHTwoC6HFourCHTwoCHTwo) Si (OCHTwoCHThree)Three)Two
The nitrogen-containing organotrialkoxysilane (ii) used herein is represented by the general formula (5)
ZSi (ORThree)Three                                        (5)
Indicated by In the above formula, Z is a monovalent group having up to 11 carbon atoms and consisting of carbon, hydrogen and optionally oxygen, bonded to silicon via a silicon-carbon bond, Organic functional groups containing nitrogen atoms, RThreeIs the same as above. Here, as Z, R15R16NR13An amino functional group represented by-or NC-R13It is preferably a cyano functional group represented by-. Where R15And R16Is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an aryl group having 6 to 10 carbon atoms,15R16NR17-Group or -R13-Si (OR14)ThreeGroup. Note that R13And R14Has the same meaning as described above. Specifically, the following compounds are exemplified, but not limited thereto.
[0016]
HTwoN (CHTwo)ThreeSi (OCHThree)Three
HTwoN (CHTwo)ThreeSi (OCHTwoCHThree)Three
HTwoN (CHTwo)6Si (OCHThree)Three
HTwoN (CHTwo)6Si (OCHTwoCHThree)Three
HTwoN (CHTwo)8Si (OCHThree)Three
HTwoN (CHTwo)8Si (OCHTwoCHThree)Three
HTwoN (CHTwo)TenSi (OCHThree)Three
HTwoN (CHTwo)TenSi (OCHTwoCHThree)Three
(CHThree) HN (CHTwo)ThreeSi (OCHThree)Three
(CHThree) HN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(CHThree) HN (CHTwo)6Si (OCHThree)Three
(CHThree) HN (CHTwo)6Si (OCHTwoCHThree)Three
(CHThree) HN (CHTwo)8Si (OCHThree)Three
(CHThree) HN (CHTwo)8Si (OCHTwoCHThree)Three
(CHThree) HN (CHTwo)TenSi (OCHThree)Three
(CHThree) HN (CHTwo)TenSi (OCHTwoCHThree)Three
(CHThreeCHTwo) HN (CHTwo)ThreeSi (OCHThree)Three
(CHThreeCHTwo) HN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(CHThreeCHTwo) HN (CHTwo)6Si (OCHThree)Three
(CHThreeCHTwo) HN (CHTwo)6Si (OCHTwoCHThree)Three
(CHThreeCHTwo) HN (CHTwo)8Si (OCHThree)Three
(CHThreeCHTwo) HN (CHTwo)8Si (OCHTwoCHThree)Three
(CHThreeCHTwo) HN (CHTwo)TenSi (OCHThree)Three
(CHThreeCHTwo) HN (CHTwo)TenSi (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwo) HN (CHTwo)ThreeSi (OCHThree)Three
(CHThreeCHTwoCHTwo) HN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwo) HN (CHTwo)6Si (OCHThree)Three
(CHThreeCHTwoCHTwo) HN (CHTwo)6Si (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwo) HN (CHTwo)8Si (OCHThree)Three
(CHThreeCHTwoCHTwo) HN (CHTwo)8Si (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwo) HN (CHTwo)TenSi (OCHThree)Three
(CHThreeCHTwoCHTwo) HN (CHTwo)TenSi (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwoCHTwo) HN (CHTwo)ThreeSi (OCHThree)Three
(CHThreeCHTwoCHTwoCHTwo) HN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwoCHTwo) HN (CHTwo)6Si (OCHThree)Three
(CHThreeCHTwoCHTwoCHTwo) HN (CHTwo)6Si (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwoCHTwo) HN (CHTwo)8Si (OCHThree)Three
(CHThreeCHTwoCHTwoCHTwo) HN (CHTwo)8Si (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwoCHTwo) HN (CHTwo)TenSi (OCHThree)Three
(CHThreeCHTwoCHTwoCHTwo) HN (CHTwo)TenSi (OCHTwoCHThree)Three
(C6HFive) HN (CHTwo)ThreeSi (OCHThree)Three
(C6HFive) HN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(C6HFive) HN (CHTwo)6Si (OCHThree)Three
(C6HFive) HN (CHTwo)6Si (OCHTwoCHThree)Three
(C6HFive) HN (CHTwo)8Si (OCHThree)Three
(C6HFive) HN (CHTwo)8Si (OCHTwoCHThree)Three
(C6HFive) HN (CHTwo)TenSi (OCHThree)Three
(C6HFive) HN (CHTwo)TenSi (OCHTwoCHThree)Three
(C6HFiveCHTwo) HN (CHTwo)ThreeSi (OCHThree)Three
(C6HFiveCHTwo) HN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(C6HFiveCHTwo) HN (CHTwo)6Si (OCHThree)Three
(C6HFiveCHTwo) HN (CHTwo)6Si (OCHTwoCHThree)Three
(C6HFiveCHTwo) HN (CHTwo)8Si (OCHThree)Three
(C6HFiveCHTwo) HN (CHTwo)8Si (OCHTwoCHThree)Three
(C6HFiveCHTwo) HN (CHTwo)TenSi (OCHThree)Three
(C6HFiveCHTwo) HN (CHTwo)TenSi (OCHTwoCHThree)Three
(CHThree)TwoN (CHTwo)ThreeSi (OCHThree)Three
(CHThree)TwoN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(CHThree)TwoN (CHTwo)6Si (OCHThree)Three
(CHThree)TwoN (CHTwo)6Si (OCHTwoCHThree)Three
(CHThree)TwoN (CHTwo)8Si (OCHThree)Three
(CHThree)TwoN (CHTwo)8Si (OCHTwoCHThree)Three
(CHThree)TwoN (CHTwo)TenSi (OCHThree)Three
(CHThree)TwoN (CHTwo)TenSi (OCHTwoCHThree)Three
(CHThreeCHTwo)TwoN (CHTwo)ThreeSi (OCHThree)Three
(CHThreeCHTwo)TwoN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(CHThreeCHTwo)TwoN (CHTwo)6Si (OCHThree)Three
(CHThreeCHTwo)TwoN (CHTwo)6Si (OCHTwoCHThree)Three
(CHThreeCHTwo)TwoN (CHTwo)8Si (OCHThree)Three
(CHThreeCHTwo)TwoN (CHTwo)8Si (OCHTwoCHThree)Three
(CHThreeCHTwo)TwoN (CHTwo)TenSi (OCHThree)Three
(CHThreeCHTwo)TwoN (CHTwo)TenSi (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwo)TwoN (CHTwo)ThreeSi (OCHThree)Three
(CHThreeCHTwoCHTwo)TwoN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwo)TwoN (CHTwo)6Si (OCHThree)Three
(CHThreeCHTwoCHTwo)TwoN (CHTwo)6Si (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwo)TwoN (CHTwo)8Si (OCHThree)Three
(CHThreeCHTwoCHTwo)TwoN (CHTwo)8Si (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwo)TwoN (CHTwo)TenSi (OCHThree)Three
(CHThreeCHTwoCHTwo)TwoN (CHTwo)TenSi (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwoCHTwo)TwoN (CHTwo)ThreeSi (OCHThree)Three
(CHThreeCHTwoCHTwoCHTwo)TwoN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwoCHTwo)TwoN (CHTwo)6Si (OCHThree)Three
(CHThreeCHTwoCHTwoCHTwo)TwoN (CHTwo)6Si (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwoCHTwo)TwoN (CHTwo)8Si (OCHThree)Three
(CHThreeCHTwoCHTwoCHTwo)TwoN (CHTwo)8Si (OCHTwoCHThree)Three
(CHThreeCHTwoCHTwoCHTwo)TwoN (CHTwo)TenSi (OCHThree)Three
(CHThreeCHTwoCHTwoCHTwo)TwoN (CHTwo)TenSi (OCHTwoCHThree)Three
(C6HFive)TwoN (CHTwo)ThreeSi (OCHThree)Three
(C6HFive)TwoN (CHTwo)ThreeSi (OCHTwoCHThree)Three
(C6HFive)TwoN (CHTwo)6Si (OCHThree)Three
(C6HFive)TwoN (CHTwo)6Si (OCHTwoCHThree)Three
(C6HFive)TwoN (CHTwo)8Si (OCHThree)Three
(C6HFive)TwoN (CHTwo)8Si (OCHTwoCHThree)Three
(C6HFive)TwoN (CHTwo)TenSi (OCHThree)Three
(C6HFive)TwoN (CHTwo)TenSi (OCHTwoCHThree)Three
HTwoN (CHTwo)TwoNH (CHTwo)ThreeSi (OCHThree)Three
HTwoN (CHTwo)TwoNH (CHTwo)ThreeSi (OCHTwoCHThree)Three
HTwoN (CHTwo)6NH (CHTwo)ThreeSi (OCHThree)Three
HTwoN (CHTwo)6NH (CHTwo)ThreeSi (OCHTwoCHThree)Three
HTwoN (CHTwo)TwoNHCHTwoC6HFour(CHTwo)TwoSi (OCHThree)Three
HTwoN (CHTwo)TwoNHCHTwoC6HFour(CHTwo)TwoSi (OCHTwoCHThree)Three
HTwoN (CHTwo)TwoNH (CHTwo)TwoNH (CHTwo)ThreeSi (OCHThree)Three
HTwoN (CHTwo)TwoNH (CHTwo)TwoNH (CHTwo)ThreeSi (OCHTwoCHThree)Three
(CHThreeO)ThreeSi (CHTwo)ThreeNH (CHTwo)ThreeSi (OCHThree)Three
(CHThreeCHTwoO)ThreeSi (CHTwo)ThreeNH (CHTwo)ThreeSi (OCHTwoCHThree)Three
(CHThreeO)ThreeSi (CHTwo)ThreeNH (CHTwo)TwoNH (CHTwo)ThreeSi (OCHThree)Three
(CHThreeCHTwoO)ThreeSi (CHTwo)ThreeNH (CHTwo)TwoNH (CHTwo)ThreeSi (OCHTwoCHThree)Three
NC (CHTwo)TwoSi (OCHThree)Three
NC (CHTwo)TwoSi (OCHTwoCHThree)Three
NC (CHTwo)FiveSi (OCHThree)Three
NC (CHTwo)FiveSi (OCHTwoCHThree)Three
NC (CHTwo)7Si (OCHThree)Three
NC (CHTwo)7Si (OCHTwoCHThree)Three
NC (CHTwo)9Si (OCHThree)Three
NC (CHTwo)9Si (OCHTwoCHThree)Three
The tetraalkoxysilane (iii) used here is represented by the general formula (6)
Si (ORThree)Four                                          (6)
Indicated by In the above formula, RThreeIs the same as above. Specifically, the following compounds are exemplified, but not limited thereto.
[0017]
Si (OCHThree)Four, Si (OCTwoHFive)Four, Si (OCThreeH7)Four,
Si (OCFourH9)Four, Si [OC (= CHTwo) CHThree]Four
The mixing ratio between the above-mentioned organotrialkoxysilane containing a sulfur atom and the organotrialkoxysilane containing a nitrogen atom and tetraalkoxysilane is set so that the target product is solid. Specifically, the molar ratio of the sulfur-containing organotrialkoxysilane and the nitrogen-containing organotrialkoxysilane to the tetraalkoxysilane is preferably in the range of 0.01 to 3, and particularly preferably in the range of 0.1 to 2. If the molar ratio is more than 3, the properties of the target substance may become liquid or oily, which is not preferable. On the other hand, if the molar ratio is less than 0.01, the ability of immobilizing the palladium component by sulfur and nitrogen atoms is not exhibited, which is not preferable.
[0018]
The mixing ratio between the sulfur-containing organotrialkoxysilane and the nitrogen-containing organotrialkoxysilane is in the range of 1.5 to 5, particularly preferably in the range of 2 to 4 by the molar ratio of sulfur atom / nitrogen atom. Is preferred. If the ratio is less than 1.5, the catalyst reacts with a palladium compound or a complex compound thereof to form a catalyst, and if used in a hydrolysis reaction, the palladium component may fall off and contaminate the reaction system. If is more than 5, the palladium compound or its complex compound charged for preparing the catalyst may not be able to be immobilized.
[0019]
The mixture of the above alkoxysilanes is reacted with water or a water-containing organic solvent in the presence of a fluorine-containing silicon compound or fluorine salt compound having at least one Si-F bond in the molecule. As the fluorine-containing silicon compound used here, FSi (OCHThree)Three, FSi (OCHTwo-CHThree)Three, (NHFour)TwoSiF6And the like. Examples of the fluorine salt compound include NaF, KF, (CHThreeCHTwoCHTwoCHTwo)FourNF is exemplified.
[0020]
The amount of the fluorine-containing silicon compound or fluorine salt compound having a Si-F bond to be used is 1 mol per mole of the total Si / F of the sulfur-containing organotrialkoxysilane, the nitrogen-containing organotrialkoxysilane, and the tetraalkoxysilane. 0.0: 0.0001 to 1.0: 2.0.
[0021]
By reacting a mixture of these alkoxysilanes with water or a water-containing organic solvent in the presence of the above-mentioned fluorine-containing silicon compound or fluorine salt compound, the compound represented by the general formula (2)
YbZcSi (ORThree)d(OH)eO(4-bcde) / 2        (2)
Can be obtained. Where Y, Z, and RThreeIs the same as above, and b, c, d and e are 0 <b <1, 0 <c <0.5, c <b, 0 <b + c <1, 0 ≦ d <0.1, 0 < It is a positive number that satisfies e <1, 0 <b + c + d + e <2.
[0022]
Next, the preparation of a catalyst by the reaction of the above-described silicon resin containing a sulfur atom and a nitrogen atom with a palladium compound or its complex compound (iv) will be described. First, the palladium compound or its complex compound (iv) is represented by the general formula (3)
PdLf                                                  (3)
Indicated by In the above formula, L represents at least one ligand which can be substituted by an amino group or a mercapto group, and f is a number satisfying the free value of Pd. Specifically, the following compounds are exemplified, but not limited thereto.
[0023]
PdClTwo, PdBrTwo, Pd (CN)Two, Pd (NOThree)Two,
Pd [OC (= O) CHThree]Two, Pd (C6HFiveCN)Two,
Pd [CHThreeC (= O) CH = C (-O) CHThree]Two,
Pd (HTwoNCHTwoCHTwoNHTwo) ClTwo,
PdTwo[C6HFiveCH = CHC (= O) CH = CHC6HFive]Three,
The reaction of the silicon resin containing a sulfur atom and a nitrogen atom with the above-mentioned palladium compound or its complex compound can be carried out usually at a temperature in the range of ambient temperature to about 100 ° C. Preferably, it is in the range of 60 to 70 ° C. In addition, this reaction can be performed without a solvent, but is preferably performed in the presence of a suitable solvent. Among them, polar solvents such as tetrahydrofuran, diethyl ether, acetone, ethyl acetate, dimethylsulfoxide, dimethylformamide, methanol, ethanol, isopropanol and / or water are preferable.
[0024]
The mixing ratio of the silicon resin containing a sulfur atom and a nitrogen atom to the above palladium compound or a complex compound thereof is determined by the molar ratio of the sulfur atom and the nitrogen atom in the silicon resin containing a sulfur atom and a nitrogen atom to the palladium atom in the palladium compound or the complex compound. The ratio is preferably in the range of 2 to 200, more preferably 3 to 100. If the molar ratio is less than 2, the palladium compound or all of its complex compounds may not be able to be immobilized. If the molar ratio exceeds 200, the palladium component is immobilized, but the catalytic activity of the palladium component is extremely high. In some cases.
[0025]
After reacting the silicon resin containing a sulfur atom and a nitrogen atom with the above-mentioned palladium compound or its complex compound, the product may be reduced with a reducing agent such as sodium borohydride.
[0026]
After reacting the silicon resin containing a sulfur atom and a nitrogen atom with the above-mentioned palladium compound or its complex compound, the resulting solid is filtered, washed with alcohol and water, and then dried to obtain the Si—H bond of the present invention. A catalyst for a hydrolysis reaction of the contained organosilicon compound can be obtained.
[0027]
Next, a method for producing silanols by a hydrolysis reaction of a Si—H bond-containing organosilicon compound using the above catalyst of the present invention will be described. In this hydrolysis reaction, the organosilicon compound having a Si—H bond of the above formula (1) is reacted with a stoichiometric amount or more of water in the presence of the above catalyst. Further, this reaction can be carried out usually at a temperature in the range from the ambient temperature to about 100 ° C. Preferably, it is in the range of 40 to 70 ° C. This reaction can be carried out without a catalyst, but is preferably carried out in the presence of a suitable solvent. Of these, aprotic polar solvents such as tetrahydrofuran, diethyl ether, acetone, ethyl acetate, dimethylsulfoxide, and dimethylformamide are preferred. Further, since this catalyst is a solid, the above reaction can be performed in a batch system or a continuous system. When the reaction is performed in a batch system, after the reaction is completed, the catalyst is separated by a separation operation such as filtration, and the catalyst can be directly recycled to the next reaction. When the reaction is carried out in a continuous system, the reaction can be carried out by passing a mixture of an Si—H bond-containing organosilicon compound, water and a solvent over or through the catalyst bed. The amount of the catalyst used is not particularly limited, but is preferably 0.1 to 2000 ppm as palladium.
After the hydrolysis, the catalyst can be filtered off according to a conventional method, and the desired organosilanol can be isolated by distillation under reduced pressure. In this case, in the present invention, the desired organosilanol can be obtained in high yield without condensing silanol during the vacuum distillation. Further, the catalyst separated by filtration can be used repeatedly.
[0028]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0029]
[Example 1]
[Preparation of Silicon Resin Containing Sulfur Atom and Nitrogen Atom] In a four-necked flask equipped with a stirrer, 1.16 g (0.02 mol) of potassium fluoride and 1600.0 g (88.8 mol) of water were charged. A mixture of 131.3 g (0.67 mol) of mercaptopropyltrimethoxysilane, 84.2 g (0.33 mol) of γ-phenylaminopropyltrimethoxysilane, and 152.0 g (1.00 mol) of tetramethoxysilane was stirred. The solution was dropped for 3 minutes. After stirring at room temperature for 2 minutes, the reaction system became a white gel. After stirring at room temperature for 1 hour, the generated solid was separated by filtration and washed with distilled water and then with acetone. Next, the resultant was dried under reduced pressure, and after removing the solvent, 202.4 g of a silicon resin containing a mercaptopropyl group and a γ-phenylaminopropyl group was obtained at a yield of 98%. The sulfur content and the nitrogen content in the mercaptopropyl group- and γ-phenylaminopropyl group-containing silicon resin were 10.1 wt% and 2.2 wt%, respectively.
[0030]
[Preparation of palladium-containing catalyst] In a four-necked flask equipped with a stirrer, 3.78 g of the above silicon resin, 30.0 g of ethanol, and 0.3 g of palladium chloride were charged and stirred at 60 ° C for 6 hours. Thereafter, 0.08 g of sodium borohydride was added, and the mixture was further stirred at 60 ° C. for 1 hour, and the generated solid was separated by filtration and washed with acetone and subsequently with distilled water. Next, the resultant was dried under reduced pressure, and the solvent was removed, thereby obtaining 3.50 g of a brown solid catalyst. The calculated value and the measured value of the amount of palladium in this catalyst were both 4.6 wt%, and the palladium was fixed quantitatively.
[0031]
[Silanol synthesis reaction using the above catalyst] In a four-necked flask equipped with a stirrer, 4.3 g of the catalyst prepared as described above, 81.6 g (4.53 mol) of water, and 1002.7 g of methyl ethyl ketone were charged. At 60 ° C., 501.2 g (1.78 mol) of 1,1,1,3,5,7,7,7-octamethyltetrasiloxane was added dropwise with stirring over 4.5 hours. Hydrogen gas generation was observed with the dropwise addition. After stirring at 60 ° C. for 6 hours, the reaction mixture was analyzed by gas chromatography / mass spectrometry (hereinafter abbreviated as GC-MS), and the raw materials 1,1,1,3,5,7,7 were analyzed. , 7-Octamethyltetrasiloxane is completely consumed, and 87.4% of 1,1,1,3,5,7,7,7-octamethyltetrasiloxane-3,5-diol as a target product is produced. Was. The catalyst was filtered off from the reaction mixture, and the filtrate was concentrated under reduced pressure. When the concentrate was distilled under reduced pressure, 1,1,1,3,5,7,7,7-octamethyltetrasiloxane-3,5-diol was obtained as a colorless transparent oil fraction at 96 to 98 ° C./35 mmTorr. Was. The isolation yield of 1,1,1,3,5,7,7,7,7-octamethyltetrasiloxane-3,5-diol was 76.2%, and the purity was 98.5%.
[0032]
[Example 2]
Same as [Preparation of sulfur atom- and nitrogen atom-containing silicon resin] in Example 1 except that 63.7 g (0.33 mol) of γ-methylaminopropyltrimethoxysilane was used instead of γ-phenylaminopropyltrimethoxysilane. As a result, 183.0 g of a silicon resin containing a mercaptopropyl group and a γ-methylaminopropyl group was obtained at a yield of 98%. The sulfur content and the nitrogen content in the mercaptopropyl group and γ-methylaminopropyl group-containing silicon resin were 11.0 wt% and 2.4 wt%, respectively.
[0033]
In a four-necked flask equipped with a stirrer, 4.03 g of the above silicon resin, 30.8 g of ethanol, and 0.30 g of palladium chloride were charged and stirred at 60 ° C. for 6 hours. Thereafter, 0.09 g of sodium borohydride was added, and the mixture was further stirred at 60 ° C. for 1 hour. Then, the generated solid was separated by filtration and washed with acetone and subsequently with distilled water. After drying under reduced pressure to remove the solvent, 3.58 g of a brown solid catalyst was obtained. The calculated value and the measured value of the amount of palladium in this catalyst were both 4.3 wt%, and the palladium was fixed quantitatively.
[0034]
In a four-necked flask equipped with a stirrer, 0.3 g of the catalyst prepared as described above, 2.3 g (0.13 mol) of water, and 30.3 g of methyl ethyl ketone were charged. 6.7 g (0.05 mol) of 3-tetramethyldisiloxane was added dropwise with stirring for 1 hour. Hydrogen gas generation was observed with the dropwise addition. After stirring at 60 ° C. for 3 hours, the reaction mixture was analyzed by GC-MS. As a result, the raw material 1,1,3,3-tetramethyldisiloxane was completely consumed, and the target product 1,1,1 85.4% of 3,3-tetramethyldisiloxane-1,3-diol was produced. After filtering off the catalyst from the reaction mixture, the amount of palladium in the filtrate was measured and found to be 0.1 ppm or less. The filtered catalyst was recycled, and the same reaction was carried out 5 times on the same scale. However, the yield of 1,1,3,3-tetramethyldisiloxane-1,3-diol was not changed, and the catalytic activity was not changed. No decrease was seen.
[0035]
[Example 3]
A 4-neck flask equipped with a stirrer was charged with 0.4 g of the palladium-containing silicon resin prepared in Example 1, 2.4 g (0.13 mol) of water, and 35.3 g of methyl ethyl ketone. 9.7 g (0.05 mol) of (dimethylsilyl) benzene was added dropwise with stirring for 1 hour. Hydrogen gas generation was observed with the dropwise addition. After stirring at 60 ° C. for 4 hours, the reaction mixture was analyzed by GC-MS. As a result, 1,4-bis (dimethylsilyl) benzene as the raw material was completely consumed, and the target product, 1,4-bis ( Dimethylhydroxysilyl) benzene was produced at 92.6%. After filtering off the catalyst from the reaction mixture, the amount of palladium in the filtrate was measured and found to be 0.1 ppm or less. The filtered catalyst was recycled, and the same reaction was carried out six times on the same scale. However, the yield of 1,4-bis (dimethylhydroxysilyl) benzene did not change, and no reduction in the catalytic activity was observed.
[0036]
[Comparative Example 1]
In a four-necked flask equipped with a stirrer, 3.3 g of 5% palladium-carbon previously washed with water, 81.2 g (4.51 mol) of water, and 994.0 g of methyl ethyl ketone were charged. 50,0 g (1.77 mol) of 3,5,7,7,7-octamethyltetrasiloxane was added dropwise over 4.5 hours while stirring. Hydrogen gas generation was observed with the dropwise addition. After stirring at 60 ° C. for 6 hours, the reaction mixture was analyzed by GC-MS. As a result, 1,1,1,3,5,7,7,7-octamethyltetrasiloxane as a raw material was completely consumed. The product, 1,1,1,3,5,7,7,7-octamethyltetrasiloxane-3,5-diol, was produced at 76.7%. The catalyst was filtered off from the reaction mixture, and the filtrate was concentrated under reduced pressure. When the concentrate was distilled under reduced pressure, 1,1,1,3,5,7,7,7-octamethyltetrasiloxane-3,5-diol was obtained as a colorless transparent oil fraction at 96 to 98 ° C./35 mmTorr. Was. The isolated yield of 1,1,1,3,5,7,7,7,7-octamethyltetrasiloxane-3,5-diol was 27.2%, and the purity was 98.2%. When the residue was analyzed by gel permeation chromatography (hereinafter abbreviated as GPC), it was found that only the high molecular weight product having an average molecular weight Mw of 2400 and a dispersity Mw / Mn of 1.22 was found.
[0037]
[Comparative Example 2]
In a four-necked flask equipped with a stirrer, 0.1 g of 5% palladium-carbon previously washed with water, 2.3 g (0.13 mol) of water, and 30.6 g of methyl ethyl ketone were charged. 6.7 g (0.05 mol) of 3-tetramethyldisiloxane was added dropwise with stirring for 1 hour. Hydrogen gas generation was observed with the dropwise addition. After stirring at 60 ° C. for 3 hours, the reaction mixture was analyzed by GC-MS. As a result, the raw material 1,1,3,3-tetramethyldisiloxane was completely consumed, and the target product 1,1,1 3,3-Tetramethyldisiloxane-1,3-diol was produced at 80.4%. The filtrate after filtering off the catalyst from the reaction mixture was colored light brown, and the amount of palladium in the filtrate was measured to be 16.1 ppm.
[0038]
【The invention's effect】
The method for producing an organosilanol of the present invention comprises hydrolyzing an organosilicon compound having a Si-H bond by using a catalyst comprising a specific palladium compound or a complex compound thereof chemically bonded to the specific solid support described above. By doing so, the corresponding organosilanol can be produced with high yield and high purity without contaminating the reaction system with the catalyst component.

Claims (3)

下記一般式(1)
Figure 0003543400
(式中、R1 はそれぞれ炭素数1〜10の一価炭化水素基又は炭素数1〜6の一価炭化水素基を有するトリオルガノシリルオキシ基を表し、R2 はそれぞれ水素原子、炭素数1〜10の一価炭化水素基又は炭素数1〜6の一価炭化水素基を有するトリオルガノシリルオキシ基を表し、Xは酸素原子又は炭素数1〜6の二価炭化水素基を表し、aは0〜6の整数である。)
で示されるSi−H結合を有する有機ケイ素化合物を、下記一般式(2)
bc Si(OR3d (OH)e(4-b-c-d-e)/2 (2)
(式中、Yは11個までの炭素原子を有し、かつ少なくとも1個の硫黄原子を含み、ケイ素原子に対してケイ素−炭素結合を介して結合する硫黄原子含有一価有機官能基を表し、Zは、11個までの炭素原子を有し、かつ少なくとも1個の窒素原子を含み、ケイ素原子に対してケイ素−炭素結合を介して結合する窒素原子含有一価有機官能基を表し、R3 は炭素数1〜4の一価炭化水素基を表し、b,c,d,eは、0<b<1,0<c<0.5,c<b,0<b+c<1,0≦d<0.1,0<e<1,0<b+c+d+e<2を満足する正数である。)
で示される硫黄原子及び窒素原子含有ケイ素樹脂と下記一般式(3)
PdLf (3)
(式中、Lはアミノ基又はメルカプト基により置換可能である配位子を表し、fはPdの遊離価を満足するような数である。)
で示されるパラジウム化合物又はその錯化合物との反応によ得られる触媒の存在下で加水分解させることを特徴とするオルガノシラノール類の製造方法。
The following general formula (1)
Figure 0003543400
(Wherein, R 1 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms or a triorganosilyloxy group having a monovalent hydrocarbon group having 1 to 6 carbon atoms, and R 2 represents a hydrogen atom and a carbon number, respectively) Represents a monoorganic hydrocarbon group having 1 to 10 monovalent hydrocarbon groups or a monovalent hydrocarbon group having 1 to 6 carbon atoms, X represents an oxygen atom or a divalent hydrocarbon group having 1 to 6 carbon atoms, a is an integer of 0 to 6.)
An organosilicon compound having a Si—H bond represented by the following general formula (2)
Y b Z c Si (OR 3 ) d (OH) e O (4-bcde) / 2 (2)
Wherein Y represents a sulfur atom-containing monovalent organic functional group having up to 11 carbon atoms and containing at least one sulfur atom, which is attached to the silicon atom via a silicon-carbon bond. , Z represents a nitrogen-containing monovalent organic functional group having up to 11 carbon atoms and containing at least one nitrogen atom, which is attached to the silicon atom via a silicon-carbon bond; 3 represents a monovalent hydrocarbon group having 1 to 4 carbon atoms, and b, c, d, and e are 0 <b <1, 0 <c <0.5, c <b, 0 <b + c <1, 0 It is a positive number satisfying ≦ d <0.1, 0 <e <1, 0 <b + c + d + e <2.)
And a silicon resin containing a sulfur atom and a nitrogen atom represented by the following general formula (3)
PdL f (3)
(In the formula, L represents a ligand that can be substituted with an amino group or a mercapto group, and f is a number that satisfies the free value of Pd.)
Method for producing organo silanols, characterized in that is hydrolyzed in the presence of O Ri resulting catalyst for the reaction of the in the palladium compound or a complex compound represented.
上記硫黄原子及び窒素原子含有ケイ素樹脂が、下記一般式(4)
YSi(OR33 (4)
(式中、Y及びR3 は上記と同様の意味を示す。)
で示される硫黄原子含有オルガノトリアルコキシシランと、下記一般式(5)
Si(OR33 (5)
(式中、Z及びR3 は上記と同様の意味を示す。)
で示される窒素原子含有オルガノトリアルコキシシランと、下記一般式(6)
Si(OR34 (6)
(式中、R3 は上記と同様の意味を示す。)
で示されるテトラアルコキシシランとを、Si−F結合を有するフッ素含有ケイ素化合物もしくはフッ素塩化合物の存在下に水又は含水有機溶剤中で反応させることにより得られたものである請求項1記載の方法。
The silicon resin containing a sulfur atom and a nitrogen atom is represented by the following general formula (4)
YSi (OR 3 ) 3 (4)
(In the formula, Y and R 3 have the same meaning as described above.)
And a sulfur atom-containing organotrialkoxysilane represented by the following general formula (5)
Z Si (OR 3 ) 3 (5)
(In the formula, Z and R 3 have the same meanings as described above.)
And a nitrogen-containing organotrialkoxysilane represented by the following general formula (6):
Si (OR 3 ) 4 (6)
(Wherein, R 3 has the same meaning as described above.)
The method according to claim 1, which is obtained by reacting a tetraalkoxysilane represented by the formula (1) with water or a water-containing organic solvent in the presence of a fluorine-containing silicon compound or a fluorine salt compound having a Si-F bond. .
上記触媒中の窒素原子及び硫黄原子とパラジウム原子とのモル比が2〜200である請求項1又は2記載の方法。3. The method according to claim 1, wherein the molar ratio of the nitrogen atom and the sulfur atom to the palladium atom in the catalyst is 2 to 200.
JP31114394A 1994-11-21 1994-11-21 Method for producing organosilanols Expired - Fee Related JP3543400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31114394A JP3543400B2 (en) 1994-11-21 1994-11-21 Method for producing organosilanols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31114394A JP3543400B2 (en) 1994-11-21 1994-11-21 Method for producing organosilanols

Publications (2)

Publication Number Publication Date
JPH08143581A JPH08143581A (en) 1996-06-04
JP3543400B2 true JP3543400B2 (en) 2004-07-14

Family

ID=18013637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31114394A Expired - Fee Related JP3543400B2 (en) 1994-11-21 1994-11-21 Method for producing organosilanols

Country Status (1)

Country Link
JP (1) JP3543400B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6116912B2 (en) * 2010-02-19 2017-04-19 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Branched siloxanes and methods for synthesis
JP5569549B2 (en) 2012-03-27 2014-08-13 コニカミノルタ株式会社 Colorant production method, colorant composition, toner, ink jet recording ink, and color filter
JP6562378B2 (en) * 2015-01-16 2019-08-21 セメダイン株式会社 Liquid gasket for electronic equipment
JP7284719B2 (en) * 2020-01-07 2023-05-31 信越化学工業株式会社 Method for producing 1,1,3,3-tetraalkoxydisiloxane-1,3-diol

Also Published As

Publication number Publication date
JPH08143581A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
JPH069657A (en) Organopentasiloxane and its production
KR20000052531A (en) An organosilicon endcapper having one silicon-bonded hydrogen atom
JPH06172536A (en) Room temperature curing silicone sealant and its preparation
JPH06172535A (en) Preparation of cluster azasilacycloalkyl- functional polysiloxane
JPH05178998A (en) Production of acrylic organopolysiloxane
KR20000052517A (en) A cyclic organosilicon endcapper having one silicon-bonded hydrogen atom
US5508369A (en) Organopolysiloxanes having a silanol group and process of making them
US4652663A (en) Novel organosilicon compound
CA2405195C (en) Preparation of secondary aminoisobutylalkoxysilanes
JPH0674277B2 (en) Silyl carbamate and its manufacturing method
JP3543400B2 (en) Method for producing organosilanols
CA2210586A1 (en) Cyclic silane esters and solvolysis products thereof, and processes for the preparation of the cyclic silane esters and the solvolysis products
US5565540A (en) Method for the preparation of SiOH-containing organosiloxane oligomer
CN1058719C (en) Silane (type) compound containing branched-chain alkyl chain
JPH05222066A (en) New organosilicon compound
JP5170834B2 (en) Storage stability imparting agent for dealcohol-free room temperature curable silicone rubber composition
JP3522860B2 (en) Hydrosilation method
JP3881424B2 (en) Alkoxysilane compounds containing organosilyl groups and carbamate bonds
RU2165426C1 (en) Organosilicon compounds containing carbamide groups, preparation and use thereof
JPS6220194B2 (en)
KR20000052521A (en) A cyclic organosilicon endcapper having one aliphatic unsaturation
JP3915883B2 (en) Organosilicon compound
US4623741A (en) Chlorosilane compounds
JPH0717752B2 (en) Process for producing alkoxy-functional organopolysiloxane
US7205372B2 (en) Functionalization of silicones and anti-adhesive coatings made therefrom

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees