JP3543320B2 - Mounting structure of electric circuit device - Google Patents

Mounting structure of electric circuit device Download PDF

Info

Publication number
JP3543320B2
JP3543320B2 JP2000091780A JP2000091780A JP3543320B2 JP 3543320 B2 JP3543320 B2 JP 3543320B2 JP 2000091780 A JP2000091780 A JP 2000091780A JP 2000091780 A JP2000091780 A JP 2000091780A JP 3543320 B2 JP3543320 B2 JP 3543320B2
Authority
JP
Japan
Prior art keywords
frequency
substrate
cable
mounting structure
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000091780A
Other languages
Japanese (ja)
Other versions
JP2001284857A (en
Inventor
智徳 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000091780A priority Critical patent/JP3543320B2/en
Publication of JP2001284857A publication Critical patent/JP2001284857A/en
Application granted granted Critical
Publication of JP3543320B2 publication Critical patent/JP3543320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気回路装置の実装構造に関し、特に、高周波電力増幅器の発熱部品の放熱を効率良く行う場合に好適な電気回路装置の実装構造に関する。
【0002】
【従来の技術】
従来より、例えばマイクロ無線用や移動無線の基地局用の高周波電力増幅器等の装置においては、搭載した発熱部品から発する熱を放熱させると共に、高周波信号を遮蔽する構造を用いている。図2は従来例の高周波電力増幅器の実装構造を示す分解斜視図である。従来例の高周波電力増幅器は、底を有するケース(以下、底有りケース)22に、高周波基板29、高周波信号入力コネクタ(以下、RF IN)25、高周波信号出力コネクタ(以下、RF OUT)26、発熱部品27、貫通コンデンサ30を取り付け、底有りケース22の上部に蓋21を取り付けると共に、底有りケース22の下部に放熱器24を取り付け、更に、貫通コンデンサ30の端子に基板23を取り付けた構造となっている。
【0003】
上記図2に示すような従来の高周波電力増幅器の実装構造では、底有りケース2により、高周波部と非高周波部が分離されているため、高周波信号の遮蔽効果を確保しつつ、基板23と高周波用基板29を接続するためには、底有りケース22に貫通コンデンサ30を取り付ける必要がある。
【0004】
一方、貫通コンデンサを必要としない、高周波部と非高周波部を一体化した高周波電力増幅器の実装構造として、図3に示すようなものが従来からあった。図3は他の従来例の高周波電力増幅器の実装構造を示す分解斜視図である。他の従来例の高周波電力増幅器は、基板33の部品取付穴41に発熱部品37を取り付けると共に、基板33の高周波線路39にRF IN35、RF OUT36を取り付け、基板33の上部に底が無いケース(以下、底無しケース)38を取り付け、更に、底無しケース38の上部に蓋31を取り付け、基板33の下部に放熱器34を取り付けた構造となっている。
【0005】
他方、パーソナルコンピュータやワークステーション等の機器に搭載するCPUやその周辺部品の実装構造においても、貫通コンデンサを使わないまでも、1GHzを越える信号処理が実行され、上記図2や上記図3に示したような実装構造を用いていた。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来例においては次のような問題点があった。
【0007】
上記図2に示したような従来例の高周波電力増幅器の実装構造では、上述したように、底有りケース22により高周波部と非高周波部が分離されているため、高周波信号の遮蔽効果を確保できるとの効果を奏する反面、基板23と高周波用基板29を接続するためには、底有りケース22に貫通コンデンサ30を取り付ける必要がある。このため、組立て工数・部品代が大きくなっていた。また、発熱部品27と放熱器24の間に底有りケース22があるため、熱伝導における熱抵抗が大きくなり、放熱効率が悪くなっていた。
【0008】
一方、上記図3に示したような他の従来例の高周波電力増幅器の実装構造では、基板33が高周波部と非高周波部に分かれていないため、高周波での損失を少なくするためには、非高周波部にまで高価な高周波用基板材料を使用する必要があった。或いは、安価にするためには、高周波での損失が大きい基板材料を高周波部にまで使用する必要があって、両者の相反する利点を補うことは困難であった。
【0009】
また、上記図3の他の従来例の高周波電力増幅器の実装構造で、高周波信号用コネクタ(RF IN35、RF OUT36)の取り付けを考えるとき、高周波線路39のグランドを確実に変換するという意味と、高周波信号の漏れを防止するという意味から、底無しケース38と基板33と放熱器34のそれぞれの端面が、同一面上に位置するように揃えて、RF OUT36の通常グランド側の外導体と接触させる必要がある。また、更に接触を確実にするため、底無しケース38と基板33と放熱器34のそれぞれの端面と、RF OUT36の外導体との間に、ばね性を持った金具等を挟んでグランドを正確に取ることもある。このため組立て工数・部品代が大きくなっていた。
【0010】
また、RF IN35とRF OUT36を互いに向かい合う面に取り付ける場合、端面を揃えるためには、底無しケース38と基板33と放熱器34を同じ大きさにし、加工精度を高くしてズレが無いようにする必要がある。このため、RF IN35とRF OUT36の取り付け位置が制限されたり、加工費が高額になったりしていた。
【0011】
他方、パソコン等のコンピュータ機器に搭載するマイクロプロセッサの実装構造においても、上記と同様に、放熱効率が悪い、組立て工数・部品代が大きいなどの欠点があった。
【0012】
本発明の目的は、効率良く放熱を行うと共に、組立て工数の削減・部品代の削減・高周波特性の向上・基板価格の削減を図り、更に底無しケースや放熱器の加工精度を上げることを不要とした電気回路装置の実装構造を提供するものである。
【0013】
【課題を解決するための手段】
本発明は、基板と高周波基板と回路素子と放熱器を備えた電気回路装置の実装構造において、前記基板を前記放熱器とケースとの間に挟持し、前記回路素子としての発熱部品を前記基板に設けた部品取付穴を介して前記放熱器に直接取り付け、前記高周波基板を前記基板の前記部品取付穴に取り付け、前記回路素子としての高周波用コネクタを前記ケースに設けたケーブル取付穴を介して同軸管のSJケーブルにより前記高周波基板に接続したことを特徴とする。
【0014】
また、本発明の電気回路装置の実装構造は、図1を参照しつつ説明すれば、基板(3)と高周波基板(9)と回路素子と放熱器(4)を備えた電気回路装置の実装構造において、前記基板を前記放熱器とケース(8)との間に挟持し、前記回路素子としての発熱部品(7)を前記基板に設けた部品取付穴(11)を介して前記放熱器に直接取り付け、前記高周波基板を前記基板の前記部品取付穴に取り付け、前記回路素子としての高周波用コネクタ(6)を前記ケースに設けたケーブル取付穴(14)を介してSJケーブル(12)により前記高周波基板に接続する。
【0015】
[作用]
本発明の電気回路装置の実装構造は、発熱部品を放熱器に直接取り付ける。このため、効率良く放熱させることができる。また、従来のように、基板と高周波基板を接続するための貫通コンデンサを設ける必要がなくなり、基板材料を高周波部と非高周波部で使い分けることが可能となる。このため、組立て工数の削減・部品代の削減・高周波特性の向上・基板価格の削減ができる。更に、高周波用基板と高周波用コネクタの間の高周波線路グランド変換は、SJケーブルを介して行われるため、ケースと基板と放熱器のそれぞれの端面を揃えてグランド変換をする必要が無く、ばね性を持った金具を挟む必要も無くなる。このため、組立て工数の削減と部品代の削減ができる。更にまた、上記のように、高周波用基板と高周波用コネクタの間の高周波線路グランド変換は、SJケーブルを介して行われるため、ケースと基板と放熱器のそれぞれの端面を揃える必要が無いことにより、従来のように放熱器の大きさをケースに合わせる必要が無くなる。このため、高周波用コネクタの取り付け位置の自由度が上がり、ケースや放熱器の加工精度を上げる必要が無くなる。
【0016】
【発明の実施の形態】
[本実施形態]
次に、本発明の実施形態について図面を参照して詳細に説明する。
【0017】
(1)構成の説明
本発明の実施形態の高周波電力増幅器の実装構造は、特に、高周波(数100MHz〜10数GHz)の高出力(数W〜数10W以上)の電力増幅器に適用する場合に好適であり、電力増幅素子の高周波トランジスタ、電力増幅電界効果トランジスタ(以下、PWR FET)やアイソレータの吸収抵抗等の発熱部品を放熱器に直接取り付け、高周波信号用コネクタと基板の接続にSJケーブルを用いた点が特徴となっている。
【0018】
図1は本発明の実施形態の高周波電力増幅器の実装構造を示す分解斜視図である。本発明の実施形態の高周波電力増幅器は、電子機器に搭載されるものであり、蓋1、基板3、放熱器4、同軸コネクタのRF IN5、RF OUT6、発熱部品7、底無しケース8、高周波基板9、SJケーブル12、ケーブル押さえ金具13を備えている。図中11は基板3の部品取付穴、14は底無しケース8のケーブル取付穴、15は基板3の高周波線路、16は高周波基板9の高周波線路である。また、17はRF IN5を押さえ込む切り欠きである。
【0019】
上記構成を詳述すると、基板3には、部品取付穴11が形成されており、高周波基板9が基板3の部品取付穴11に取り付けられると共に、RF IN5が基板3の長手方向端部に取り付けられる。放熱器4の上部には、基板3が取り付けられると共に、電力増幅素子の発熱部品7が基板3の部品取付穴11を介して直接取り付けられる。底無しケース8は、基板3の上部に取り付けられるものであり、底無しケース8の長手方向端面には、RF OUT6の端部に接続されたSJケーブル12が貫通可能なケーブル取付穴14が形成されている。
【0020】
RF OUT6は、底無しケース8の外側に取り付けられ、SJケーブル12は、ケーブル取付穴14を貫通されケーブル押さえ金具13により放熱器4に取り付けられると共に、高周波基板9に取り付けられる。このSJケーブル12は、同軸管で芯線の内導体と外導体とを銅材あるいはこれをメッキして形成し、50Ωのインピーダンスで、同軸ケーブルとして芯線と外導体と間にテフロン等が充填されているか、セミレジットとして所定間隔でテフロンスペーサを配置して芯線と外導体とを固定しており、折り曲げ等の柔軟性も有している。そして、外導体は半田付け可能で、グランド電位として接地できるので、放熱効果をも有し、同軸コネクタのRF OUT6を通して外部に熱拡散することもできる。
【0021】
底無しケース8の上部には、蓋1が取り付けられる。更に詳述すると、基板3は、底無しケース8と放熱器4の間に挟み込まれた状態で取り付けられる。基板3には、導通穴が多数設けられており、基板3の側面は、金属めっき等により高周波的な漏れが無いように構成されている。蓋1は、底無しケース8の上部に取り付けられ、底無しケース8を高周波的に遮蔽している。ここで、基板3に部品取付穴11を形成したことにより、上記のごとく発熱部品7を放熱器4に直接取り付けられるようになっている。発熱部品7としては、PWR FETの他、アイソレータや電力吸収抵抗等がある。
【0022】
また、入力側コネクタであるRF IN5は、基板3の側面から取り付けられ、その信号ラインの芯線が底なしケース8と接触しないように切り欠き17を設けられて、基板3の高周波線路15に接続される。出力側コネクタであるRF OUT6は、SJケーブル12により高周波用基板9に接続される。ここで、SJケーブル12の芯線である内導体は、高周波用基板9の高周波線路16に接続され、SJケーブル12の外導体は、ケーブル押さえ金具13によって放熱器4に取り付けられて、グランドに落とされている。
【0023】
(2)動作の説明
次に、本発明の実施形態の動作について図1を参照して詳細に説明する。
【0024】
本発明の実施形態の高周波電力増幅器の実装構造においては、上記図1に示したように、基板3に部品取付穴11を形成しているため、発熱部品7を放熱器4に直接取り付けることができる。また、RF OUT6と高周波用基板9の接続にSJケーブル12を用いているため、RF OUT6の外導体は底無しケース8にのみ接触させるだけで良い。これにより、発熱部品7の効率良い放熱が可能となる。また、底無しケース8と基板3と放熱器4のそれぞれの端面を、従来のように同一面上に位置するように揃える必要が無くなる。
【0025】
即ち、本発明の実施形態によれば、基板3に部品取付穴11を形成することにより、発熱部品7を放熱器4に直接取り付けることができ、これにより、効率良く放熱させることができるという効果が得られる。
【0026】
また、従来のように、基板3と高周波基板9を接続するための貫通コンデンサを設ける必要がなくなり、基板材料を高周波部と非高周波部で使い分けることが可能となり、これにより、組立て工数の削減・部品代の削減・高周波特性の向上・基板価格の削減という効果もある。
【0027】
更に、高周波用基板9とRF OUT6の間の高周波線路グランド変換は、SJケーブル12を介して行われるため、底無しケース8と基板3と放熱器4のそれぞれの端面を揃えてグランド変換をする必要が無く、ばね性を持った金具を挟む必要も無くなり、これにより、組立て工数の削減と部品代の削減という効果が得られる。
【0028】
更にまた、上記のように、高周波用基板9とRF OUT6の間の高周波線路グランド変換は高周波的に正確に接地電位に確保することをいい、SJケーブル12を介して接地が行われるため、底無しケース8と基板3と放熱器4のそれぞれの端面を揃える必要が無いことにより、従来のように放熱器4の大きさを底無しケース8に合わせる必要が無くなり、これにより、RF OUT6の取り付け位置の自由度が上がり、底無しケース8や放熱器4の加工精度を上げる必要が無くなるという効果もある。
【0029】
[他の実施形態]
本発明は上記実施形態以外に下記の他の実施形態が考えられる。
【0030】
本発明の他の実施形態としては、その基本的構成は上記図1に示した通りであり、上記図1の実施形態では、高周波信号出力コネクタ(RF OUT)6にのみSJケーブル12による接続を適用したが、本発明はこれに限定されるものではなく、他の実施形態として、高周波信号入力コネクタ(RF IN)5や他の高周波用コネクタ(例えば、方向性結合器を用いた高周波信号監視用コネクタ)にも適用可能である。
【0031】
また、上記図1の実施形態では、ケーブル押さえ金具13によりSJケーブル12の外導体を放熱器4に取り付けたが、本発明はこれに限定されるものではなく、他の実施形態として、SJケーブル12の外導体を基板3に半田付けにて取り付けることも考えられる。この場合、部品取付穴11はSJケーブル12を取り付ける位置にはあけないでおく。これにより、ケーブル押さえ金具13の取り付けが不要になるため、更なる組立て工数と部品代の削減という効果が得られる。その他に、SJケーブル12の外導体を導電性接着剤にて放熱器4に取り付けることも可能である。
【0032】
更に、上記図1の実施形態では、高周波用基板9を出力部分にのみ使用しているが、本発明はこれに限定されるものではなく、他の実施形態として、特に出力部分だけである必要は無く、他の高周波信号の損失を小さくしたい個所にも使用可能である。
【0033】
更にまた、上記図1の実施形態では、電子機器に搭載する高周波電力増幅器の実装構造を例に上げたが、本発明はこれに限定されるものではなく、他の実施形態として、例えばパソコンやワークステーション等に搭載するCPUやドライブICの実装構造にも適用可能である。
【0034】
【発明の効果】
以上説明したように本発明によれば、基板と高周波基板と回路素子と放熱器を備えた電気回路装置の実装構造において、前記基板を前記放熱器とケースとの間に挟持し、前記回路素子としての発熱部品を前記基板に設けた部品取付穴を介して前記放熱器に直接取り付け、前記高周波基板を前記基板の前記部品取付穴に取り付け、前記回路素子としての高周波用コネクタを前記ケースに設けたケーブル取付穴を介してSJケーブルにより前記高周波基板に接続する構造としているため、下記のような効果を奏する。
【0035】
発熱部品を放熱器に直接取り付けることができ、これにより、効率良く放熱させることができるという効果が得られる。
【0036】
また、従来のように、基板と高周波基板を接続するための貫通コンデンサを設ける必要がなくなり、基板材料を高周波部と非高周波部で使い分けることが可能となり、これにより、組立て工数の削減・部品代の削減・高周波特性の向上・基板価格の削減という効果もある。
【0037】
更に、高周波用基板と高周波用コネクタの間の高周波線路グランド変換は、SJケーブルを介して行われるため、ケースと基板と放熱器のそれぞれの端面を揃えてグランド変換をする必要が無く、ばね性を持った金具を挟む必要も無くなり、これにより、組立て工数の削減と部品代の削減という効果が得られる。
【0038】
更にまた、上記のように、高周波用基板と高周波用コネクタの間の高周波線路グランド変換は、SJケーブルを介して行われるため、ケースと基板と放熱器のそれぞれの端面を揃える必要が無いことにより、従来のように放熱器の大きさをケースに合わせる必要が無くなり、これにより、高周波用コネクタの取り付け位置の自由度が上がり、ケースや放熱器の加工精度を上げる必要が無くなるという効果もある。
【図面の簡単な説明】
【図1】本発明の実施形態の高周波電力増幅器の実装構造を示す分解斜視図である。
【図2】従来例の高周波電力増幅器の実装構造を示す分解斜視図である。
【図3】他の従来例の高周波電力増幅器の実装構造を示す分解斜視図である。
【符号の説明】
1 蓋
3 基板
4 放熱器
5 RF IN
6 RF OUT
7 発熱部品
8 底無しケース
9 高周波基板
11 部品取付穴
12 SJケーブル
13 ケーブル押さえ金具
14 ケーブル取付穴
15、16 高周波線路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mounting structure of an electric circuit device, and more particularly to a mounting structure of an electric circuit device suitable for efficiently dissipating heat of a heat-generating component of a high-frequency power amplifier.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a device such as a high-frequency power amplifier for a micro radio or a mobile radio base station, a structure for dissipating heat generated from a mounted heat-generating component and shielding a high-frequency signal has been used. FIG. 2 is an exploded perspective view showing a mounting structure of a conventional high-frequency power amplifier. In a conventional high-frequency power amplifier, a high-frequency board 29, a high-frequency signal input connector (hereinafter, RF IN) 25, a high-frequency signal output connector (hereinafter, RF OUT) 26, A structure in which a heat-generating component 27 and a feedthrough capacitor 30 are mounted, a lid 21 is mounted on an upper part of a case 22 having a bottom, a radiator 24 is mounted on a lower part of the case 22 having a bottom, and a substrate 23 is further mounted on a terminal of the feedthrough capacitor 30. It has become.
[0003]
In the mounting structure of the conventional high-frequency power amplifier shown in FIG. 2, since the high-frequency portion and the non-high-frequency portion are separated by the bottomed case 2, the substrate 23 and the high-frequency In order to connect the use substrate 29, it is necessary to attach the feedthrough capacitor 30 to the bottomed case 22.
[0004]
On the other hand, as a mounting structure of a high-frequency power amplifier which does not require a feedthrough capacitor and integrates a high-frequency portion and a non-high-frequency portion, there has conventionally been one shown in FIG. FIG. 3 is an exploded perspective view showing a mounting structure of another conventional high-frequency power amplifier. In another conventional high-frequency power amplifier, a heat-generating component 37 is mounted in a component mounting hole 41 of a substrate 33, RF IN 35 and RF OUT 36 are mounted on a high-frequency line 39 of the substrate 33, and a case in which there is no bottom above the substrate 33 ( Hereinafter, a bottomless case 38 is attached, a lid 31 is attached to an upper portion of the bottomless case 38, and a radiator 34 is attached to a lower portion of the substrate 33.
[0005]
On the other hand, even in the mounting structure of a CPU and peripheral components mounted on a device such as a personal computer or a workstation, signal processing exceeding 1 GHz is executed without using a feedthrough capacitor. Such a mounting structure was used.
[0006]
[Problems to be solved by the invention]
However, the conventional example described above has the following problems.
[0007]
In the mounting structure of the conventional high-frequency power amplifier as shown in FIG. 2, since the high-frequency portion and the non-high-frequency portion are separated by the bottomed case 22, the shielding effect of the high-frequency signal can be ensured as described above. On the other hand, in order to connect the substrate 23 and the high-frequency substrate 29, it is necessary to attach the feedthrough capacitor 30 to the bottomed case 22. For this reason, the number of assembling steps and parts costs have been increased. In addition, since the bottomed case 22 is provided between the heat-generating component 27 and the radiator 24, the thermal resistance in heat conduction is increased, and the radiation efficiency is deteriorated.
[0008]
On the other hand, in the mounting structure of another conventional high-frequency power amplifier as shown in FIG. 3, the substrate 33 is not divided into a high-frequency part and a non-high-frequency part. It was necessary to use an expensive high-frequency substrate material up to the high-frequency portion. Alternatively, in order to reduce the cost, it is necessary to use a substrate material having a large loss at high frequencies up to the high-frequency portion, and it has been difficult to compensate for the conflicting advantages of the two.
[0009]
In addition, in the mounting structure of the high frequency power amplifier of the conventional example shown in FIG. 3, when attaching the high frequency signal connectors (RF IN 35, RF OUT 36), it means that the ground of the high frequency line 39 is surely converted. In order to prevent the leakage of the high frequency signal, the respective end faces of the bottomless case 38, the board 33, and the radiator 34 are aligned so as to be located on the same plane, and are brought into contact with the outer conductor on the normal ground side of the RF OUT 36. There is a need. In order to further secure the contact, the ground is accurately placed between the respective end faces of the bottomless case 38, the substrate 33, and the radiator 34, and the outer conductor of the RF OUT 36 with a metal fitting having a spring property interposed therebetween. I sometimes take it. For this reason, the number of assembling man-hours and parts costs have increased.
[0010]
When the RF IN 35 and the RF OUT 36 are mounted on the surfaces facing each other, the bottomless case 38, the substrate 33, and the radiator 34 are made to have the same size in order to align the end faces, and the processing accuracy is increased so that there is no displacement. There is a need. For this reason, the mounting positions of the RF IN 35 and the RF OUT 36 have been limited, and the processing cost has been high.
[0011]
On the other hand, the mounting structure of a microprocessor mounted on a computer device such as a personal computer also has disadvantages such as poor heat dissipation efficiency and large assembly man-hours and parts cost, as described above.
[0012]
The object of the present invention is to efficiently dissipate heat, reduce assembly man-hours, reduce parts costs, improve high-frequency characteristics, reduce board costs, and eliminate the need to increase the processing accuracy of bottomless cases and radiators. It is intended to provide a mounting structure of the electric circuit device according to the present invention.
[0013]
[Means for Solving the Problems]
The present invention relates to a mounting structure of an electric circuit device including a substrate, a high-frequency substrate, a circuit element, and a radiator, wherein the substrate is sandwiched between the radiator and a case, and a heat-generating component as the circuit element is mounted on the substrate. Directly attached to the radiator through the component mounting hole provided in the above, the high-frequency board is mounted in the component mounting hole of the substrate, and a high-frequency connector as the circuit element is provided through the cable mounting hole provided in the case. It is characterized in that it is connected to the high-frequency board by a coaxial SJ cable.
[0014]
In addition, the mounting structure of the electric circuit device of the present invention will be described with reference to FIG. 1. The mounting structure of the electric circuit device including the substrate (3), the high-frequency substrate (9), the circuit element, and the radiator (4) In the structure, the substrate is sandwiched between the radiator and the case (8), and the heat-generating component (7) as the circuit element is connected to the radiator through a component mounting hole (11) provided in the substrate. Direct mounting, mounting the high-frequency board in the component mounting hole of the board, and connecting the high-frequency connector (6) as the circuit element with the SJ cable (12) through a cable mounting hole (14) provided in the case. Connect to high frequency board.
[0015]
[Action]
In the mounting structure of the electric circuit device according to the present invention, the heat-generating component is directly attached to the radiator. Therefore, heat can be efficiently dissipated. Further, unlike the related art, it is not necessary to provide a feedthrough capacitor for connecting the substrate and the high-frequency substrate, so that the substrate material can be selectively used for the high-frequency portion and the non-high-frequency portion. For this reason, it is possible to reduce the number of assembling steps, the cost of parts, the improvement of high-frequency characteristics, and the cost of boards. Further, since the high-frequency line ground conversion between the high-frequency board and the high-frequency connector is performed via the SJ cable, it is not necessary to perform the ground conversion by aligning the respective end surfaces of the case, the board, and the radiator, and the spring property is improved. It is no longer necessary to sandwich the bracket with For this reason, the number of assembly steps and the cost of parts can be reduced. Furthermore, as described above, since the high-frequency line ground conversion between the high-frequency board and the high-frequency connector is performed via the SJ cable, it is not necessary to align the respective end faces of the case, the board, and the radiator. This eliminates the need to adjust the size of the radiator to the case as in the related art. Therefore, the degree of freedom of the mounting position of the high-frequency connector is increased, and it is not necessary to increase the processing accuracy of the case and the radiator.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
[This embodiment]
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
(1) Description of Configuration The mounting structure of the high-frequency power amplifier according to the embodiment of the present invention is particularly applied to a high-frequency (several 100 MHz to several tens GHz) high-output (several W to several tens W or more) power amplifier. It is preferable that a heat-generating component such as a high-frequency transistor of a power amplifying element, a power-amplifying field-effect transistor (hereinafter, PWR FET) or an absorption resistor of an isolator is directly attached to a radiator, and an SJ cable is used to connect a high-frequency signal connector to a board. The feature is that it is used.
[0018]
FIG. 1 is an exploded perspective view showing a mounting structure of a high-frequency power amplifier according to an embodiment of the present invention. The high-frequency power amplifier according to the embodiment of the present invention is mounted on an electronic device, and includes a lid 1, a board 3, a radiator 4, a coaxial connector RF IN5, RF OUT6, a heat-generating component 7, a bottomless case 8, a high-frequency board. 9, an SJ cable 12 and a cable holder 13 are provided. In the figure, reference numeral 11 denotes a component mounting hole of the substrate 3, 14 denotes a cable mounting hole of the bottomless case 8, 15 denotes a high-frequency line of the substrate 3, and 16 denotes a high-frequency line of the high-frequency substrate 9. Reference numeral 17 denotes a notch for holding down the RF IN5.
[0019]
More specifically, the component mounting hole 11 is formed in the substrate 3. The high-frequency substrate 9 is mounted in the component mounting hole 11 of the substrate 3, and the RF IN 5 is mounted on the longitudinal end of the substrate 3. Can be The board 3 is mounted on the radiator 4, and the heat generating component 7 of the power amplifying element is directly mounted through the component mounting hole 11 of the board 3. The bottomless case 8 is mounted on the upper part of the substrate 3, and a cable mounting hole 14 through which the SJ cable 12 connected to the end of the RF OUT 6 can penetrate is formed in the longitudinal end face of the bottomless case 8. I have.
[0020]
The RF OUT 6 is attached to the outside of the bottomless case 8, and the SJ cable 12 passes through the cable attachment hole 14 and is attached to the radiator 4 by the cable retainer 13 and is attached to the high-frequency board 9. The SJ cable 12 is formed by forming the inner conductor and the outer conductor of a core wire with a coaxial tube using a copper material or plating the same with a 50Ω impedance, and filling a coaxial cable with Teflon or the like as a coaxial cable between the core wire and the outer conductor. Alternatively, the core wire and the outer conductor are fixed by arranging Teflon spacers at a predetermined interval as a semi-credit, and have flexibility such as bending. Since the outer conductor can be soldered and can be grounded as a ground potential, it also has a heat radiation effect and can also diffuse heat to the outside through the RF OUT 6 of the coaxial connector.
[0021]
The lid 1 is attached to the upper part of the bottomless case 8. More specifically, the substrate 3 is attached in a state sandwiched between the bottomless case 8 and the radiator 4. The substrate 3 is provided with a large number of conduction holes, and the side surface of the substrate 3 is configured by metal plating or the like so that high-frequency leakage does not occur. The lid 1 is mounted on the upper part of the bottomless case 8 and shields the bottomless case 8 in high frequency. Here, by forming the component mounting holes 11 in the substrate 3, the heat generating components 7 can be directly mounted on the radiator 4 as described above. The heat generating component 7 includes an isolator, a power absorption resistor, and the like in addition to the PWR FET.
[0022]
The RF IN 5 serving as an input-side connector is attached from the side surface of the board 3, is provided with a notch 17 so that the core of the signal line does not contact the bottomless case 8, and is connected to the high-frequency line 15 of the board 3. You. RF OUT 6, which is an output-side connector, is connected to high-frequency substrate 9 by SJ cable 12. Here, the inner conductor that is the core wire of the SJ cable 12 is connected to the high-frequency line 16 of the high-frequency board 9, and the outer conductor of the SJ cable 12 is attached to the radiator 4 by the cable holding bracket 13 and dropped to the ground. Have been.
[0023]
(2) Description of Operation Next, the operation of the embodiment of the present invention will be described in detail with reference to FIG.
[0024]
In the mounting structure of the high-frequency power amplifier according to the embodiment of the present invention, since the component mounting hole 11 is formed in the substrate 3 as shown in FIG. 1, the heat generating component 7 can be directly mounted on the radiator 4. it can. In addition, since the SJ cable 12 is used to connect the RF OUT 6 and the high-frequency board 9, the outer conductor of the RF OUT 6 only needs to be brought into contact with the bottomless case 8 only. Thereby, efficient heat radiation of the heat-generating component 7 becomes possible. Further, it is not necessary to align the respective end faces of the bottomless case 8, the substrate 3, and the radiator 4 so as to be located on the same plane as in the related art.
[0025]
That is, according to the embodiment of the present invention, by forming the component mounting holes 11 in the substrate 3, the heat generating component 7 can be directly mounted on the radiator 4, whereby the heat can be efficiently radiated. Is obtained.
[0026]
Further, unlike the related art, there is no need to provide a feedthrough capacitor for connecting the substrate 3 and the high-frequency substrate 9, so that the substrate material can be selectively used in the high-frequency portion and the non-high-frequency portion, thereby reducing the number of assembly steps. It also has the effect of reducing parts costs, improving high-frequency characteristics, and reducing board costs.
[0027]
Furthermore, since the high-frequency line ground conversion between the high-frequency board 9 and the RF OUT 6 is performed via the SJ cable 12, it is necessary to perform the ground conversion by aligning the respective end faces of the bottomless case 8, the board 3, and the radiator 4. This eliminates the need to interpose a metal fitting having spring properties, thereby reducing the number of assembly steps and the cost of parts.
[0028]
Furthermore, as described above, the high-frequency line ground conversion between the high-frequency substrate 9 and the RF OUT 6 means that the ground potential is accurately secured at a high frequency, and the grounding is performed via the SJ cable 12. Since there is no need to align the respective end surfaces of the case 8, the substrate 3, and the radiator 4, it is not necessary to adjust the size of the radiator 4 to the bottomless case 8 as in the related art. There is also an effect that the degree of freedom is increased, and it is not necessary to increase the processing accuracy of the bottomless case 8 and the radiator 4.
[0029]
[Other embodiments]
The present invention may be embodied in the following other embodiments in addition to the above embodiment.
[0030]
In another embodiment of the present invention, the basic configuration is as shown in FIG. 1. In the embodiment of FIG. 1, only the high-frequency signal output connector (RF OUT) 6 is connected by the SJ cable 12. Although the present invention has been applied, the present invention is not limited to this, and as another embodiment, a high-frequency signal input connector (RF IN) 5 or another high-frequency connector (for example, a high-frequency signal monitoring using a directional coupler) Connector).
[0031]
In the embodiment of FIG. 1 described above, the outer conductor of the SJ cable 12 is attached to the radiator 4 by the cable retainer 13, but the present invention is not limited to this. Twelve outer conductors may be attached to the substrate 3 by soldering. In this case, the component mounting hole 11 is not opened at the position where the SJ cable 12 is mounted. This eliminates the necessity of attaching the cable retainer 13, thereby achieving an effect of further reducing the number of assembling steps and parts cost. Alternatively, the outer conductor of the SJ cable 12 can be attached to the radiator 4 with a conductive adhesive.
[0032]
Further, in the embodiment shown in FIG. 1, the high-frequency substrate 9 is used only for the output portion. However, the present invention is not limited to this, and in another embodiment, particularly, only the output portion is required. However, it can be used in places where it is desired to reduce the loss of other high-frequency signals.
[0033]
Furthermore, in the embodiment of FIG. 1, the mounting structure of the high-frequency power amplifier mounted on the electronic device has been described as an example. However, the present invention is not limited to this. The present invention is also applicable to a mounting structure of a CPU or a drive IC mounted on a workstation or the like.
[0034]
【The invention's effect】
As described above, according to the present invention, in a mounting structure of an electric circuit device including a substrate, a high-frequency substrate, a circuit element, and a radiator, the substrate is sandwiched between the radiator and a case, and the circuit element A heat-generating component is directly mounted on the radiator through a component mounting hole provided on the substrate, the high-frequency substrate is mounted on the component mounting hole of the substrate, and a high-frequency connector as the circuit element is provided on the case. Since the structure is such that the SJ cable is connected to the high-frequency board via the cable mounting hole, the following effects can be obtained.
[0035]
The heat-generating component can be directly attached to the radiator, thereby providing an effect of efficiently dissipating heat.
[0036]
Further, unlike the conventional case, there is no need to provide a feedthrough capacitor for connecting the substrate and the high-frequency substrate, and the substrate material can be selectively used for the high-frequency portion and the non-high-frequency portion, thereby reducing the number of assembling steps and the component cost. This also has the effect of reducing the cost, improving the high frequency characteristics, and reducing the cost of the substrate.
[0037]
Further, since the high-frequency line ground conversion between the high-frequency board and the high-frequency connector is performed via the SJ cable, it is not necessary to perform ground conversion by aligning the respective end faces of the case, the board, and the radiator. Therefore, it is not necessary to sandwich the metal fitting having the shape, and as a result, the effects of reducing the number of assembly steps and the cost of parts can be obtained.
[0038]
Furthermore, as described above, since the high-frequency line ground conversion between the high-frequency board and the high-frequency connector is performed via the SJ cable, there is no need to align the respective end faces of the case, the board, and the radiator. This eliminates the need to adjust the size of the radiator to the case as in the related art, thereby increasing the degree of freedom in the mounting position of the high-frequency connector and eliminating the need to increase the processing accuracy of the case and the radiator.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a mounting structure of a high-frequency power amplifier according to an embodiment of the present invention.
FIG. 2 is an exploded perspective view showing a mounting structure of a conventional high frequency power amplifier.
FIG. 3 is an exploded perspective view showing a mounting structure of another conventional high-frequency power amplifier.
[Explanation of symbols]
1 Lid 3 Substrate 4 Heatsink 5 RF IN
6 RF OUT
Reference Signs List 7 Heating component 8 Bottomless case 9 High frequency board 11 Component mounting hole 12 SJ cable 13 Cable holding bracket 14 Cable mounting hole 15, 16 High frequency line

Claims (7)

基板と高周波基板と回路素子と放熱器を備えた電気回路装置の実装構造において、
前記基板を前記放熱器とケースとの間に挟持し、前記回路素子としての発熱部品を前記基板に設けた部品取付穴を介して前記放熱器に直接取り付け、前記高周波基板を前記基板の前記部品取付穴に取り付け、前記回路素子としての高周波用コネクタを前記ケースに設けたケーブル取付穴を介して同軸管のSJケーブルにより前記高周波基板に接続したことを特徴とする電気回路装置の実装構造。
In a mounting structure of an electric circuit device including a substrate, a high-frequency substrate, a circuit element, and a radiator,
The substrate is sandwiched between the radiator and the case, and a heat-generating component as the circuit element is directly mounted on the radiator through a component mounting hole provided in the substrate, and the high-frequency substrate is mounted on the component of the substrate. A mounting structure for an electric circuit device, wherein the mounting device is mounted in a mounting hole, and a high-frequency connector as the circuit element is connected to the high-frequency board by an SJ cable of a coaxial tube through a cable mounting hole provided in the case.
前記SJケーブルの内導体を前記高周波基板の高周波線路に接続し、前記SJケーブルの外導体を前記基板の前記部品取付穴を介して金具により前記放熱器に取り付けたことを特徴とする請求項1に記載の電気回路装置の実装構造。The inner conductor of the SJ cable is connected to a high-frequency line of the high-frequency board, and the outer conductor of the SJ cable is attached to the radiator by metal fittings through the component mounting hole of the board. The mounting structure of the electric circuit device according to 1. 前記SJケーブルの内導体を前記高周波基板の高周波線路に接続し、前記SJケーブルの外導体を半田付けにより前記基板に取り付けたことを特徴とする請求項1に記載の電気回路装置の実装構造。2. The mounting structure according to claim 1, wherein an inner conductor of the SJ cable is connected to a high-frequency line of the high-frequency board, and an outer conductor of the SJ cable is attached to the board by soldering. 前記SJケーブルの内導体を前記高周波基板の高周波線路に接続し、前記SJケーブルの外導体を導電性接着剤により前記放熱器に取り付けたことを特徴とする請求項1に記載の電気回路装置の実装構造。The electric circuit device according to claim 1, wherein an inner conductor of the SJ cable is connected to a high-frequency line of the high-frequency board, and an outer conductor of the SJ cable is attached to the radiator with a conductive adhesive. Mounting structure. 前記基板の側面を金属めっき等により高周波的に漏れが無いように構成すると共に、前記ケースの上部に該ケースを高周波的に遮蔽する蓋を取り付けたことを特徴とする請求項1乃至3の何れかに記載の電気回路装置の実装構造。4. The method according to claim 1, wherein the side surface of the substrate is formed by metal plating or the like so as not to leak at a high frequency, and a lid for shielding the case at a high frequency is attached to an upper portion of the case. A mounting structure of the electric circuit device according to any one of the above. 電子機器に搭載する高周波電力増幅器に適用可能であることを特徴とする請求項1乃至5の何れかに記載の電気回路装置の実装構造。The mounting structure of an electric circuit device according to any one of claims 1 to 5, wherein the mounting structure is applicable to a high-frequency power amplifier mounted on an electronic device. オーディオ機器に搭載する電力増幅器に適用可能であることを特徴とする請求項1乃至5の何れかに記載の電気回路装置の実装構造。The mounting structure of the electric circuit device according to claim 1, wherein the mounting structure is applicable to a power amplifier mounted on an audio device.
JP2000091780A 2000-03-29 2000-03-29 Mounting structure of electric circuit device Expired - Fee Related JP3543320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091780A JP3543320B2 (en) 2000-03-29 2000-03-29 Mounting structure of electric circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091780A JP3543320B2 (en) 2000-03-29 2000-03-29 Mounting structure of electric circuit device

Publications (2)

Publication Number Publication Date
JP2001284857A JP2001284857A (en) 2001-10-12
JP3543320B2 true JP3543320B2 (en) 2004-07-14

Family

ID=18607205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091780A Expired - Fee Related JP3543320B2 (en) 2000-03-29 2000-03-29 Mounting structure of electric circuit device

Country Status (1)

Country Link
JP (1) JP3543320B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654764B2 (en) * 2005-05-24 2011-03-23 日本電気株式会社 Mounting structure of high-frequency circuit device
JP5196728B2 (en) * 2006-03-20 2013-05-15 株式会社東芝 X-ray CT system

Also Published As

Publication number Publication date
JP2001284857A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
US8072065B2 (en) System and method for integrated waveguide packaging
EP3188229A1 (en) High-frequency module
US5379185A (en) Leadless surface mountable assembly
US5376909A (en) Device packaging
US5367434A (en) Electrical module assembly
EP0449435B1 (en) Construction for cooling of a RF power transistor
EP1671524B1 (en) Electrical circuit apparatus and method for assembling same
EP1986244A2 (en) Mounting structure
JP3543320B2 (en) Mounting structure of electric circuit device
US20060033207A1 (en) Microwave-monolithic-integrated-circuit-mounted substrate, transmitter device for transmission only and transceiver device for transmission/reception in microwave-band communication
JP4654764B2 (en) Mounting structure of high-frequency circuit device
US7838780B2 (en) Systems and methods for simple efficient assembly and packaging of electronic devices
JP2002314286A (en) Electronic device
JP3492594B2 (en) Semiconductor module
JP3092305B2 (en) Communication device and method of manufacturing the communication device
JP2009060092A (en) Conductive frame and shielded high-frequency circuit module
JPH0322554A (en) Heat dissipation device for electronic component
JP2003031987A (en) Electromagnetic shielding cap
JP3760877B2 (en) High frequency composite parts
JP2000183488A (en) Hybrid module
CN221102423U (en) Antenna device for small-sized communication equipment
JPH08274512A (en) Microwave semiconductor integrated circuit device
US20090180255A1 (en) Simple Efficient Assembly and Packaging of RF, FDD, TDD, HTS and/or Cryo-Cooled Electronic Devices
JPH03132059A (en) Ic mounting
JP6949239B2 (en) Antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees