JP3543111B2 - Superconducting image detector - Google Patents

Superconducting image detector Download PDF

Info

Publication number
JP3543111B2
JP3543111B2 JP2000394757A JP2000394757A JP3543111B2 JP 3543111 B2 JP3543111 B2 JP 3543111B2 JP 2000394757 A JP2000394757 A JP 2000394757A JP 2000394757 A JP2000394757 A JP 2000394757A JP 3543111 B2 JP3543111 B2 JP 3543111B2
Authority
JP
Japan
Prior art keywords
superconducting
radiation
stj
tunnel junction
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000394757A
Other languages
Japanese (ja)
Other versions
JP2002196081A (en
Inventor
博 仲川
昌宏 青柳
弘 佐藤
博司 赤穂
京介 前畑
健二 石橋
徹 田井野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000394757A priority Critical patent/JP3543111B2/en
Publication of JP2002196081A publication Critical patent/JP2002196081A/en
Application granted granted Critical
Publication of JP3543111B2 publication Critical patent/JP3543111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、放射線の入射分布を検出する超伝導イメージ検出器に関し、特に検出素子である超伝導接合素子に印加する磁場を個別に調節できる超伝導イメージ検出器に関する。
【0002】
【従来の技術】
超伝導トンネル接合(以下、STJ,Superconductive Tunnel Junction)を用いた放射線検出器は従来の半導体のものに比べて、耐放射線特性が優れ、エネルギー分散型でありながら高エネルギー分解能(〜数eV)、広い計測領域(赤外,可視,X線,α線,高エネルギー放射線)及び高計数率(〜10kCPS)などの特徴を持つことから光や電子,イオンの照射による励起現象を利用した各種の元素、分子の精密微量分光分析(蛍光X線法,電子ビーム励起X線法,イオンビーム衝撃X線法など)ヘの応用が期待されている。また、極微弱フオトンの検出とエネルギー分析が同時におこなえるので、宇宙の謎を解くための高性能な目として人工衛星に搭載することが計画されている。
【0003】
STJはそれ自身の電極に入射した放射線による励起電子をトンネル効果を利用して検出することができるが、検出面積を大きくするために接合面積を大きくすると、接合のもつ電気容量が大きくなるため、S/N比が劣化する。そのため、一般に接合の大きさは数百ミクロンメートル程度であった。
【0004】
STJを用いて大きな有感面積を得るためのアイデアとして、
l)2次元平面上にSTJ素子をアレイ状に並べて大きな面積にする。これらのSTJにおいてそれぞれの出カ波形を計測すれば、放射線が入射したSTJを特定でき、入射放射線の位置とエネルギーを検出する方法や、
2)広い面積の基板に入射した放射線励起によるフオノンを基板周囲に配置したSTJで検出してその時の検出信号の波形と時刻の情報から2次元平面上に入射した放射線の位置とエネルギ一とを同時に検出する方法(例えば、特開平8−262144号公報)が提案されている。
【0005】
後者の方法にも基板としてサファイアなどの絶縁性材料を用いる場合と、そのような基板上にNbなどの超伝導電極を形成して、この電極内で生成した放射線による励起信号を周囲のSTJで検出する方法が知られている。これらの方法では入射放射線による信号を3個(X方向,Y方向,Z方向)以上のSTJで信号波形の時刻および強さを観測することで入射位置とエネルギーを同時に測定することができる。これを3次元的に表示すれぱ、カラー情報(エネルギー)をもつ入射イメージが得られることになる。
【0006】
図3により、従来の超伝導イメージ検出器を説明する。図3は複数個のSTJ検出要素を有する超伝導イメージ検出器のSTJをとおる面を示す。1a,1bは複数個のSTJの中の2個のSTJで、2,3は超伝導薄膜、4はトンネル障壁絶縁薄膜で構成され、9は赤外,可視,X線,α線,高エネルギー放射線,粒子線など(放射線で総称する)の入射によってフオノンあるいは準粒子などを発生する基板を表す。Φは図示しない外部磁界発生装置、例えば電磁石で発生され、複数のSTJ(図では1a,1b)の接合に平行に印加される磁場を表す。図(b)の3Aはベース電極で、複数の図(a)の基板側超伝導薄膜3を兼ねて、基板面上に集積して、放射線の入射面とする例である。
【0007】
図(a)の従来例において、放射線11が基板9に入射すると、基板に9にフォノンを発生し、フォノンのエネルギは格子波となって基板9内を伝搬する。これが複数のSTJの超伝導薄膜4に到達すると、超伝導薄膜内の超伝導電子を励起して、STJに準粒子が生成し、この電流がトンネル接合によって検出される。格子波が複数のSTJに到達する時間差及びそのときのエネルギを計測すると、これらの計測値により放射線11の入射位置及びエネルギが検出できる。
【0008】
図(b)の従来例では、超伝導体のベース電極3Aに入射した放射線11は超伝導体内の電子を励起し、発生した準粒子が複数のSTJへの到達時間差及びエネルギの計測により放射線11の入射位置及びエネルギを計測する。以下、同じ要素は同じ参照符号を付し、説明を省略する。
【0009】
【発明が解決しようとする課題】
STJ素子を用いた放射線検出器は極低温環境下(〜1K)で素子のジョセフソン電流とフィスケステップ電流が抑制した条件で動作するため、素子に外部から強度の高い(100ガウス)均一平行磁場Φを与える必要があった。しかしながら、イメージ情報を得るためには空間的に離れた場所に複数個のSTJを配置する必要が生じ、そのすべての素子に同等の磁場を与えることは困難であった。
【0010】
ところが、外部磁界下におかれたSTJの磁場依存性はSTJの特性(電流密度、接合形状、漏洩電流)や外部磁界の入射角度など素子の作製上のバラツキや素子の設置状況などによって大きく影響されることが知られている。図4は外部磁場Φの印加によりSTJのジョセフソン電流が抑制される効果(フランフォーファーパターン)を示す図である。
【0011】
同図に示すようにジョセフソン電流を零にするために4Φ0の外部磁場(実際は100Φ0)を各STJに印加しても、外部磁場の不均一印加により、例えば特定のSTJに図4で3.5Φ0の磁場が印加されると、ジョセフソン電流は零から0.1Ic(0)に上昇する。これは他のSTJ検出素子との検出感度を異ならせることになる。また、STJの作製による個々の特性と設置のバラツキにより特性曲線等が個々に相異しているので、この特性の相異もSTJの検出感度を均一にできない原因となっている。
【0012】
特にイメージ情報を抽出する上記の複数個のSTJを用いた入射放射線の検出法では、それぞれのSTJに検出性能の違いがあると精密な位置測定とエネルギー分解能を得ることが困難になっていた。これを解決する方法にSTJの数を増やして保証することも可能であるが、検出器自身とデータの処理を複雑にするので得策ではなかった。
【0013】
【課題を解決するための手段】
上記の課題を解決するために,本発明は、本発明人らが特願平11−219286号特許願(特開2000−150975号)で出願したところのグランドプレーンを設けた基板上のSTJ上にマイクロストリップ線路による超伝導コイルを直接に結合させた構造のSTJ素子を検出イメージを得るためのSTJに適用して、個々のSTJのジョセフソン電流とフイスケステップ電流の抑制効果を個々のSTJで調整して、最高の検出条件の下で入射放射線の位置とエネルギーを測定する検出器を提供する。
【0014】
即ち、本発明は、放射線の入射によってフオノンあるいは準粒子などを発生する基板又は超伝導薄膜の領域の周囲に複数の超伝導トンネル接合が集積され、各々のSTJにそれぞれ異なるマイクロストリップコイルが各STJの上に電磁的に結合するように集積された構造であって、各STJ間の電圧信号を取り出し、マイクロストリップ線路に電流を流してトンネル接合のジョセフソン電流及びフィスケステップを抑制した状態でトンネル接合間の電圧信号を取り出し、基板又は超伝導薄膜に入射する放射線の放射位置及びエネルギをイメージ検出するイメージ検出器を提供する。マイクロストリップコイルに流れる電流を調整することにより、それぞれのSTJのジョセフソン電流およびフィスケステップの抑制効果が等しくなるように調整する。
【0015】
【発明の実施の形態】
図1に本発明の超伝導イメージ検出器の一実施例を示す。図の実施例では、放射線が入射する基板9の4隅に4個のSTJ,1a〜1dを集積し、各STJの上側に絶縁物を介して各STJと磁気的に結合した超伝導体のマイクロストリップコイル10a〜10dを設けたものを示している。図中、5はバイアス線、6はマイクロストリップコイルの電流線、7はSTJ間の電圧検出用端子、8はバイアス線と超伝導薄膜2とを接続する接続端子を表している。STJが2個のときは1次元x方向、3個のとき2次元x‐y方向、4個以上のとき3次元x‐y‐z方向におけるイメージ検出ができる。
【0016】
図2は本発明の原理を説明する図である。図(a)は図1の実施例に対応するもので、図(b)は図(a)の超伝導薄膜3を放射線入射面の超伝導体ベース電極3Aに兼ねた実施例で、STJの1a,1bにおける断面を示す。各STJに印加される磁場Φa,Φb,・・・は各マイクロストリップコイル10a〜10bの電流により誘起される磁場で、この磁場は対向する超伝導体層にミラー電流を流して各磁場を各STJ付近に局所化し、しかもSTJの接合に平行に印加される。
【0017】
各磁場Φa,Φb,・・・を誘起するマイクロストリップコイル電流Ima,Imb,Imc,Imd(図1参照)は、図示されていない装置でそれそれ別々に調整できるようになっている。イメージ検出器の作成後に、ジョセフソン電流及びフィスケステップを抑制する状態での各STJのジョセフソン電流が零、場合によっては零近傍の設定値にするマイクロストリップコイル電流を計測する。この計測電流と同一電流をそれぞれのマイクロストリップコイルに流して、それぞれのSTJの感度を最大にする。これにより、STJ及びマイクロストリップコイル等素子の作製で生じた不均一も合わせて補償し、各STJの検出感度を最大にすることができる。更に、検出器が設置される環境磁場に対してもSTJの検出感度を最大にできる。
【0018】
【発明の効果】
本発明によれば、STJの特性や外部磁界の入射角度など素子の作製上のバラツキを個々に調整できるので、STJを用いたイメージ放射線検出器の検出性能の向上と安定動作の両方について改善を図ることができ、高性能な放射線検出器の実現が可能となった。
【図面の簡単な説明】
【図1】図1は本発明の構造図を模式的に示す図である。
【図2】図2は本発明の原理を説明する図である。
【図3】図3は従来のイメージ検出器の原理を説明する図である。
【図4】図4は磁場印加によるジョセフソン電流の抑制効果を説明する図である。
【符号の説明】
1a〜1d STJ
2,3 超伝導薄膜
3A ベース電極
4 トンネル障壁絶縁薄膜
9 基板
10a〜10d マイクロストリップコイル
Φ,Φa〜Φb 外部印加磁場
11 放射線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a superconducting image detector that detects an incident distribution of radiation, and more particularly to a superconducting image detector that can individually adjust a magnetic field applied to a superconducting junction element that is a detecting element.
[0002]
[Prior art]
Radiation detectors using superconductive tunnel junctions (hereinafter referred to as STJs) have better radiation resistance than conventional semiconductors, and have high energy resolution (up to several eV) despite being energy dispersive. Various elements utilizing excitation phenomena caused by irradiation of light, electrons and ions due to its characteristics such as wide measurement range (infrared, visible, X-ray, α-ray, high-energy radiation) and high counting rate (up to 10 kCPS) It is expected to be applied to precise microspectroscopy of molecules (fluorescence X-ray method, electron beam excitation X-ray method, ion beam impact X-ray method, etc.). In addition, since the detection of extremely weak photons and energy analysis can be performed simultaneously, it is planned to be mounted on artificial satellites as a high-performance eye to solve the mysteries of the universe.
[0003]
The STJ can detect excited electrons due to radiation incident on its own electrode using the tunnel effect. However, if the junction area is increased to increase the detection area, the electric capacity of the junction increases. The S / N ratio deteriorates. Therefore, the size of the joint was generally about several hundred micrometers.
[0004]
As an idea to get a large sensitive area using STJ,
1) STJ elements are arranged in an array on a two-dimensional plane to have a large area. By measuring each output waveform in these STJs, it is possible to identify the STJ on which the radiation has entered, and to detect the position and energy of the incident radiation,
2) The phonon caused by radiation excitation incident on the substrate having a large area is detected by the STJ arranged around the substrate, and the position and energy of the radiation incident on the two-dimensional plane are obtained from the waveform and time information of the detection signal at that time. A method for simultaneous detection (for example, Japanese Patent Application Laid-Open No. 8-262144) has been proposed.
[0005]
Also in the latter method, a case where an insulating material such as sapphire is used as a substrate, a case where a superconducting electrode such as Nb is formed on such a substrate, and an excitation signal due to radiation generated in this electrode is transmitted to a surrounding STJ. Methods for detecting are known. In these methods, the incident position and energy can be measured simultaneously by observing the time and intensity of the signal waveform in three or more (X, Y, and Z directions) STJs of the signal due to the incident radiation. If this is displayed three-dimensionally, an incident image having color information (energy) can be obtained.
[0006]
A conventional superconducting image detector will be described with reference to FIG. FIG. 3 shows a plane through an STJ of a superconducting image detector having a plurality of STJ detecting elements. 1a and 1b are two STJs out of a plurality of STJs, 2 and 3 are superconducting thin films, 4 is a tunnel barrier insulating thin film, 9 is infrared, visible, X-ray, α-ray, high energy A substrate that generates phonons, quasiparticles, or the like upon incidence of radiation, particle beams, or the like (collectively, radiation) Φ represents a magnetic field generated by an external magnetic field generator (not shown), for example, an electromagnet, and applied in parallel to a junction of a plurality of STJs (1a and 1b in the figure). FIG. 3B shows an example of a base electrode 3A, which also serves as the substrate side superconducting thin film 3 in FIG.
[0007]
In the conventional example shown in FIG. 1A, when the radiation 11 is incident on the substrate 9, phonons are generated on the substrate 9, and the energy of the phonons is transmitted as a lattice wave in the substrate 9. When this reaches the superconducting thin film 4 of a plurality of STJs, it excites superconducting electrons in the superconducting thin film, quasiparticles are generated in the STJ, and this current is detected by the tunnel junction. When the time difference at which the lattice wave reaches a plurality of STJs and the energy at that time are measured, the incident position and energy of the radiation 11 can be detected from these measured values.
[0008]
In the conventional example shown in FIG. 2B, the radiation 11 incident on the base electrode 3A of the superconductor excites electrons in the superconductor, and the generated quasiparticles measure the difference in arrival time between the plurality of STJs and the energy of the radiation 11 by measuring the energy. The incident position and energy of are measured. Hereinafter, the same elements are denoted by the same reference numerals, and description thereof will be omitted.
[0009]
[Problems to be solved by the invention]
A radiation detector using an STJ element operates in a very low temperature environment (up to 1K) under conditions where the Josephson current and Fiske step current of the element are suppressed. It was necessary to apply a magnetic field Φ. However, in order to obtain image information, it is necessary to arrange a plurality of STJs at spatially separated places, and it has been difficult to apply an equivalent magnetic field to all the elements.
[0010]
However, the magnetic field dependence of the STJ exposed to an external magnetic field is greatly affected by the characteristics of the STJ (current density, junction shape, leakage current), variations in element fabrication such as the incident angle of the external magnetic field, and the state of element installation. Is known to be. FIG. 4 is a diagram showing the effect (Franforfar pattern) of suppressing the Josephson current of the STJ by applying an external magnetic field Φ.
[0011]
As shown in the figure, even if an external magnetic field of 4Φ0 (actually 100Φ0) is applied to each STJ in order to reduce the Josephson current to zero, non-uniform application of the external magnetic field causes, for example, a specific STJ to be applied to a particular STJ in FIG. When a magnetic field of 5Φ0 is applied, the Josephson current rises from zero to 0.1 Ic (0). This makes the detection sensitivity different from other STJ detection elements. Further, since characteristic curves and the like are different from each other due to individual characteristics due to the manufacture of the STJ and variations in installation, the difference in the characteristics also causes the detection sensitivity of the STJ to be not uniform.
[0012]
In particular, in the method of detecting incident radiation using a plurality of STJs for extracting image information, it is difficult to obtain accurate position measurement and energy resolution if each STJ has a difference in detection performance. It is possible to increase the number of STJs to guarantee this, but it is not advisable because it complicates the processing of the detector itself and data.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has been developed on STJ on a substrate provided with a ground plane, which was filed by the present inventors in Japanese Patent Application No. 11-219286 (Japanese Patent Application No. 2000-150975). An STJ element having a structure in which a superconducting coil made of a microstrip line is directly coupled to an STJ for obtaining a detection image, and the effect of suppressing the Josephson current and the Fiske step current of each STJ is reduced. To provide a detector that measures the position and energy of the incident radiation under the best detection conditions.
[0014]
That is, according to the present invention, a plurality of superconducting tunnel junctions are integrated around a substrate or a superconducting thin film region which generates phonons or quasiparticles upon incidence of radiation, and a different microstrip coil is provided for each STJ. Is a structure integrated so as to be electromagnetically coupled on top of each other, taking out a voltage signal between each STJ, flowing a current through a microstrip line, and suppressing a Josephson current and a Fiske step of a tunnel junction. Provided is an image detector for extracting a voltage signal between tunnel junctions and detecting the radiation position and energy of radiation incident on a substrate or a superconducting thin film. The current flowing through the microstrip coil is adjusted so that the Josephson current of each STJ and the effect of suppressing the Fiske step become equal.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the superconducting image detector according to the present invention. In the embodiment shown in the figure, four STJs, 1a to 1d are integrated at four corners of the substrate 9 on which radiation is incident, and a superconductor magnetically coupled to each STJ via an insulator is provided above each STJ via an insulator. The figure provided with microstrip coils 10a to 10d is shown. In the figure, 5 is a bias line, 6 is a current line of a microstrip coil, 7 is a voltage detection terminal between STJs, and 8 is a connection terminal for connecting the bias line and the superconducting thin film 2. When the number of STJs is two, images can be detected in the one-dimensional x direction, when there are three STJs, in the two-dimensional xy direction, and when there are four or more STJs, the image can be detected in the three-dimensional xyz direction.
[0016]
FIG. 2 is a diagram illustrating the principle of the present invention. FIG. 1A corresponds to the embodiment of FIG. 1, and FIG. 2B is an embodiment in which the superconducting thin film 3 of FIG. 1A also serves as a superconductor base electrode 3A on the radiation incident surface. 1A and 1B show cross sections. The magnetic fields .PHI.a, .PHI.b,... Applied to the respective STJs are magnetic fields induced by the currents of the microstrip coils 10a to 10b. It is localized near the STJ and is applied in parallel with the junction of the STJ.
[0017]
The microstrip coil currents Ima, Imb, Imc, Imd (see FIG. 1) that induce the respective magnetic fields Φa, Φb,... Can be individually adjusted by devices not shown. After the image detector is created, the Josephson current of each STJ in a state where the Josephson current and the Fiske step are suppressed is measured to be zero, and in some cases, the microstrip coil current is set to a set value near zero. The same current as this measurement current is applied to each microstrip coil to maximize the sensitivity of each STJ. This makes it possible to compensate for the non-uniformity generated in the fabrication of elements such as STJs and microstrip coils, and to maximize the detection sensitivity of each STJ. Furthermore, the detection sensitivity of the STJ can be maximized even with respect to the environmental magnetic field where the detector is installed.
[0018]
【The invention's effect】
According to the present invention, it is possible to individually adjust variations in device fabrication such as STJ characteristics and an incident angle of an external magnetic field, and therefore, it is possible to improve both the detection performance and the stable operation of an image radiation detector using an STJ. This has enabled the realization of a high-performance radiation detector.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a structural diagram of the present invention.
FIG. 2 is a diagram illustrating the principle of the present invention.
FIG. 3 is a diagram illustrating the principle of a conventional image detector.
FIG. 4 is a diagram for explaining the effect of suppressing a Josephson current by applying a magnetic field.
[Explanation of symbols]
1a to 1d STJ
2, 3 Superconducting thin film 3A Base electrode 4 Tunnel barrier insulating thin film 9 Substrates 10a to 10d Microstrip coils Φ, Φa to Φb Externally applied magnetic field 11 Radiation

Claims (2)

放射線の入射によってフォノンを発生する基板と、
基板の領域の周囲に集積され、該フォノンの到達を検出する複数の超伝導トンネル接合と、
各超伝導トンネル接合の上に超伝導トンネル接合と電磁的に結合された、異なるマイクロストリップコイルとを集積した構造であって、
複数のマイクロストリップコイルに流れる電流をそれぞれ調整することにより、対応する超伝導トンネル接合に印加する磁場を調整し、かつ
各超伝導トンネル接合の電圧信号をそれぞれ取り出し、取り出された複数の電圧信号に基づいて基板に入射される放射線の入射位置及びエネルギーを検出することを特徴とする超伝導イメージ検出器。
A substrate that generates phonons upon incidence of radiation,
A plurality of superconducting tunnel junctions integrated around a region of the substrate to detect the arrival of the phonons;
A superconducting tunnel junction on each superconducting tunnel junction, and a structure in which different microstrip coils are electromagnetically coupled,
By adjusting the currents flowing through the plurality of microstrip coils, respectively, the magnetic field applied to the corresponding superconducting tunnel junction is adjusted, and the voltage signal of each superconducting tunnel junction is respectively taken out. A superconducting image detector for detecting an incident position and energy of radiation incident on a substrate based on a voltage signal of the superconducting image.
放射線の入射によって準粒子を発生する超伝導薄膜と、
超伝導薄膜の領域の周囲に絶縁膜を介して超伝導薄膜を集積して超伝導トンネル接合を構成し、発生した準粒子の到達を検出する複数の該超伝導トンネル接合と、
該各超伝導トンネル接合の上に超伝導トンネル接合と電磁的に結合された、異なるマイクロストリップコイルとを集積した構造であって、
複数のマイクロストリップコイルに流れる電流をそれぞれ調整することにより、対応する超伝導トンネル接合に印加する磁場を調整し、かつ
各超伝導トンネル接合の電圧信号をそれぞれ取り出し、取り出された電圧信号に基づいて入射される放射線の入射位置及びエネルギーを検出することを特徴とする超伝導イメージ検出器。
A superconducting thin film that generates quasiparticles upon incidence of radiation,
A plurality of superconducting tunnel junctions that form a superconducting tunnel junction by integrating a superconducting thin film via an insulating film around a region of the superconducting thin film, and detect arrival of generated quasiparticles;
A structure in which a different microstrip coil electromagnetically coupled to the superconducting tunnel junction is integrated on each of the superconducting tunnel junctions,
By adjusting the current flowing through each of the plurality of microstrip coils, the magnetic field applied to the corresponding superconducting tunnel junction is adjusted, and the voltage signal of each superconducting tunnel junction is extracted, and the extracted voltage is extracted. A superconducting image detector for detecting an incident position and energy of incident radiation based on a signal.
JP2000394757A 2000-12-26 2000-12-26 Superconducting image detector Expired - Lifetime JP3543111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000394757A JP3543111B2 (en) 2000-12-26 2000-12-26 Superconducting image detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394757A JP3543111B2 (en) 2000-12-26 2000-12-26 Superconducting image detector

Publications (2)

Publication Number Publication Date
JP2002196081A JP2002196081A (en) 2002-07-10
JP3543111B2 true JP3543111B2 (en) 2004-07-14

Family

ID=18860335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394757A Expired - Lifetime JP3543111B2 (en) 2000-12-26 2000-12-26 Superconducting image detector

Country Status (1)

Country Link
JP (1) JP3543111B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631102B2 (en) * 2002-07-26 2011-02-16 雅彦 倉門 Superconductor radiation sensor system
JP4941788B2 (en) * 2009-05-01 2012-05-30 雅彦 倉門 Superconductor radiation sensor system

Also Published As

Publication number Publication date
JP2002196081A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
Pellegrini et al. 3D double sided detector fabrication at IMB-CNM
US20040178348A1 (en) Pixelated photon detector
US4445036A (en) Solid state fast-neutron spectrometer/dosimeter and detector therefor
Shishido et al. High-speed neutron imaging using a current-biased delay-line detector of kinetic inductance
Iizawa et al. Energy-resolved neutron imaging with high spatial resolution using a superconducting delay-line kinetic inductance detector
US4873482A (en) Superconducting transmission line particle detector
JP3543111B2 (en) Superconducting image detector
CN104620387B (en) Photon counting semiconductor detector
JPWO2006038706A1 (en) Electromagnetic wave detecting element and electromagnetic wave detecting device using the same
Iizawa et al. Temperature dependent characteristics of neutron signals from a current-biased Nb nanowire detector with 10B converter
US4996392A (en) Superconductor magnetic image detection device
Nishimura et al. Fine residual stress distribution measurement of steel materials by SOI pixel detector with synchrotron X-rays
JP4206278B2 (en) Radiation measurement equipment
US20200013943A1 (en) Superconducting element, particle detection device, and particle detection method
JP3459983B2 (en) Superconducting tunnel junction detector
US6037596A (en) Photoconducting positions monitor and imaging detector
JP7064750B2 (en) Neutron imaging device
Nishimura et al. Kinetic inductance neutron detector operated at near critical temperature
JP3561788B2 (en) Radiation detection element and radiation detector
Yesilkoy IR detection and energy harvesting using antenna coupled MIM tunnel diodes
US20220069191A1 (en) Particle detector, particle detection apparatus, and particle detection method
Liu et al. Performance of AC-LGAD strip sensor designed for the DarkSHINE experiment
RU2659717C2 (en) Semiconductor pixel detector of charged strongly ionized particles (multicharged ions)
JP3331369B2 (en) Superconducting detector
Asami et al. Mapping study of gain and hole diameter of Japanese GEMs

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3543111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term