JP2002196081A - Superconductive image detector - Google Patents

Superconductive image detector

Info

Publication number
JP2002196081A
JP2002196081A JP2000394757A JP2000394757A JP2002196081A JP 2002196081 A JP2002196081 A JP 2002196081A JP 2000394757 A JP2000394757 A JP 2000394757A JP 2000394757 A JP2000394757 A JP 2000394757A JP 2002196081 A JP2002196081 A JP 2002196081A
Authority
JP
Japan
Prior art keywords
stj
radiation
superconducting
stjs
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000394757A
Other languages
Japanese (ja)
Other versions
JP3543111B2 (en
Inventor
Hiroshi Nakagawa
博 仲川
Masahiro Aoyanagi
昌宏 青柳
Hiroshi Sato
弘 佐藤
Hiroshi Akaho
博司 赤穂
Kyosuke Maehata
京介 前畑
Kenji Ishibashi
健二 石橋
Toru Taino
徹 田井野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000394757A priority Critical patent/JP3543111B2/en
Publication of JP2002196081A publication Critical patent/JP2002196081A/en
Application granted granted Critical
Publication of JP3543111B2 publication Critical patent/JP3543111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To uniformize detection sensitivity of a superconductive tunnel junction(STJ) to improve both enhancement of detection performance and a stable operation, and to provide image detection of high performance. SOLUTION: A phonon, a quasiparticle or the like is generated by making a radiation incident into a substrate. An incident position and energy of the radiation are measured based on a propagation time difference and energy detected by plural STJs integrated in a periphery of the substrate. Micro strip coils different each other are integrated in the respective STJs to be coupled electromagnetically onto the respective STJs, and a current flowing in the each micro strip coil is regulated to unify the detection sensitivity of the each STJ in an induced magnetic field. Since a Josephson current is restrained thereby to get uniform, a dispersion on manufacturing an element such as a characteristic in the STJ and an incident angle of an external magnetic field is regulated individually.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射線の入射分布
を検出する超伝導イメージ検出器に関し、特に検出素子
である超伝導接合素子に印加する磁場を個別に調節でき
る超伝導イメージ検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting image detector for detecting an incident distribution of radiation, and more particularly to a superconducting image detector capable of individually adjusting a magnetic field applied to a superconducting junction element as a detecting element.

【0002】[0002]

【従来の技術】超伝導トンネル接合(以下、STJ,Su
perconductive Tunnel Junction)を用いた放射線検
出器は従来の半導体のものに比べて、耐放射線特性が優
れ、エネルギー分散型でありながら高エネルギー分解能
(〜数eV)、広い計測領域(赤外,可視,X線,α
線,高エネルギー放射線)及び高計数率(〜10kCP
S)などの特徴を持つことから光や電子,イオンの照射
による励起現象を利用した各種の元素、分子の精密微量
分光分析(蛍光X線法,電子ビーム励起X線法,イオン
ビーム衝撃X線法など)ヘの応用が期待されている。ま
た、極微弱フオトンの検出とエネルギー分析が同時にお
こなえるので、宇宙の謎を解くための高性能な目として
人工衛星に搭載することが計画されている。
2. Description of the Related Art Superconducting tunnel junctions (hereinafter, STJ, Su)
Radiation detectors using perconductive tunnel junctions have better radiation resistance than conventional semiconductors, are energy dispersive, have high energy resolution (up to several eV), and have a wide measurement range (infrared, visible, X-ray, α
Line, high energy radiation) and high counting rate (~ 10kCP)
S), etc., so that precise trace spectroscopy analysis of various elements and molecules using excitation phenomena by irradiation of light, electrons and ions (fluorescence X-ray method, electron beam excitation X-ray method, ion beam impact X-ray Application) is expected. In addition, since the detection of extremely weak photons and energy analysis can be performed simultaneously, it is planned to be mounted on artificial satellites as a high-performance eye to solve the mysteries of the universe.

【0003】STJはそれ自身の電極に入射した放射線
による励起電子をトンネル効果を利用して検出すること
ができるが、検出面積を大きくするために接合面積を大
きくすると、接合のもつ電気容量が大きくなるため、S
/N比が劣化する。そのため、一般に接合の大きさは数
百ミクロンメートル程度であった。
[0003] The STJ can detect the excited electrons due to the radiation incident on its own electrode by utilizing the tunnel effect. However, if the junction area is increased to increase the detection area, the electric capacity of the junction increases. S
/ N ratio deteriorates. Therefore, the size of the joint is generally about several hundred micrometers.

【0004】STJを用いて大きな有感面積を得るため
のアイデアとして、 l)2次元平面上にSTJ素子をアレイ状に並べて大き
な面積にする。これらのSTJにおいてそれぞれの出カ
波形を計測すれば、放射線が入射したSTJを特定で
き、入射放射線の位置とエネルギーを検出する方法や、 2)広い面積の基板に入射した放射線励起によるフオノ
ンを基板周囲に配置したSTJで検出してその時の検出
信号の波形と時刻の情報から2次元平面上に入射した放
射線の位置とエネルギ一とを同時に検出する方法(例え
ば、特開平8−262144号公報)が提案されてい
る。
[0004] As an idea for obtaining a large sensitive area using an STJ, 1) STJ elements are arranged in an array on a two-dimensional plane to have a large area. By measuring the output waveforms of these STJs, it is possible to identify the STJ on which the radiation is incident, to detect the position and energy of the incident radiation, and 2) to detect the phonon by radiation excitation incident on a wide area substrate. A method of simultaneously detecting the position and energy of radiation incident on a two-dimensional plane from a waveform of a detection signal and time information at that time, which is detected by an STJ arranged in the surrounding area (for example, Japanese Patent Application Laid-Open No. 8-262144). Has been proposed.

【0005】後者の方法にも基板としてサファイアなど
の絶縁性材料を用いる場合と、そのような基板上にNb
などの超伝導電極を形成して、この電極内で生成した放
射線による励起信号を周囲のSTJで検出する方法が知
られている。これらの方法では入射放射線による信号を
3個(X方向,Y方向,Z方向)以上のSTJで信号波
形の時刻および強さを観測することで入射位置とエネル
ギーを同時に測定することができる。これを3次元的に
表示すれぱ、カラー情報(エネルギー)をもつ入射イメ
ージが得られることになる。
In the latter method, the case where an insulating material such as sapphire is used as a substrate and the case where Nb
A method is known in which a superconducting electrode such as that described above is formed, and an excitation signal due to radiation generated in the electrode is detected by surrounding STJs. In these methods, the incident position and the energy can be measured simultaneously by observing the time and intensity of the signal waveform in three or more (X, Y, and Z directions) STJs of the signal due to the incident radiation. If this is displayed three-dimensionally, an incident image having color information (energy) can be obtained.

【0006】図3により、従来の超伝導イメージ検出器
を説明する。図3は複数個のSTJ検出要素を有する超
伝導イメージ検出器のSTJをとおる面を示す。1a,
1bは複数個のSTJの中の2個のSTJで、2,3は
超伝導薄膜、4はトンネル障壁絶縁薄膜で構成され、9
は赤外,可視,X線,α線,高エネルギー放射線,粒子
線など(放射線で総称する)の入射によってフオノンあ
るいは準粒子などを発生する基板を表す。Φは図示しな
い外部磁界発生装置、例えば電磁石で発生され、複数の
STJ(図では1a,1b)の接合に平行に印加される
磁場を表す。図(b)の3Aはベース電極で、複数の図
(a)の基板側超伝導薄膜3を兼ねて、基板面上に集積
して、放射線の入射面とする例である。
Referring to FIG. 3, a conventional superconducting image detector will be described. FIG. 3 shows a plane through the STJ of a superconducting image detector having a plurality of STJ detecting elements. 1a,
1b is two STJs among a plurality of STJs, 2 and 3 are superconducting thin films, 4 is a tunnel barrier insulating thin film, 9
Denotes a substrate that generates phonons or quasiparticles upon incidence of infrared rays, visible rays, X-rays, α-rays, high-energy radiation, particle beams, and the like (collectively referred to as radiation). Φ represents a magnetic field generated by an external magnetic field generator (not shown), for example, an electromagnet, and applied in parallel to a junction of a plurality of STJs (1a, 1b in the figure). FIG. 3B shows a base electrode 3A, which also serves as the substrate-side superconducting thin film 3 in FIG.

【0007】図(a)の従来例において、放射線11が
基板9に入射すると、基板に9にフォノンを発生し、フ
ォノンのエネルギは格子波となって基板9内を伝搬す
る。これが複数のSTJの超伝導薄膜4に到達すると、
超伝導薄膜内の超伝導電子を励起して、STJに準粒子
が生成し、この電流がトンネル接合によって検出され
る。格子波が複数のSTJに到達する時間差及びそのと
きのエネルギを計測すると、これらの計測値により放射
線11の入射位置及びエネルギが検出できる。
In the conventional example shown in FIG. 1A, when the radiation 11 is incident on the substrate 9, phonons are generated on the substrate 9, and the energy of the phonons propagates in the substrate 9 as lattice waves. When this reaches a plurality of STJ superconducting thin films 4,
The superconducting electrons in the superconducting thin film are excited to generate quasiparticles in the STJ, and this current is detected by the tunnel junction. When the time difference at which the lattice wave reaches a plurality of STJs and the energy at that time are measured, the incident position and energy of the radiation 11 can be detected from these measured values.

【0008】図(b)の従来例では、超伝導体のベース
電極3Aに入射した放射線11は超伝導体内の電子を励
起し、発生した準粒子が複数のSTJへの到達時間差及
びエネルギの計測により放射線11の入射位置及びエネ
ルギを計測する。以下、同じ要素は同じ参照符号を付
し、説明を省略する。
In the conventional example shown in FIG. 1B, radiation 11 incident on the base electrode 3A of the superconductor excites electrons in the superconductor, and the generated quasiparticles measure the time difference between arrival at a plurality of STJs and the energy. To measure the incident position and energy of the radiation 11. Hereinafter, the same elements are denoted by the same reference numerals, and description thereof will be omitted.

【0009】[0009]

【発明が解決しようとする課題】STJ素子を用いた放
射線検出器は極低温環境下(〜1K)で素子のジョセフ
ソン電流とフィスケステップ電流が抑制した条件で動作
するため、素子に外部から強度の高い(100ガウス)
均一平行磁場Φを与える必要があった。しかしながら、
イメージ情報を得るためには空間的に離れた場所に複数
個のSTJを配置する必要が生じ、そのすべての素子に
同等の磁場を与えることは困難であった。
The radiation detector using the STJ element operates under the condition that the Josephson current and the Fiske step current of the element are suppressed in an extremely low temperature environment (up to 1K). High strength (100 Gauss)
It was necessary to apply a uniform parallel magnetic field Φ. However,
In order to obtain image information, it is necessary to arrange a plurality of STJs at spatially separated places, and it has been difficult to apply an equivalent magnetic field to all the elements.

【0010】ところが、外部磁界下におかれたSTJの
磁場依存性はSTJの特性(電流密度、接合形状、漏洩
電流)や外部磁界の入射角度など素子の作製上のバラツ
キや素子の設置状況などによって大きく影響されること
が知られている。図4は外部磁場Φの印加によりSTJ
のジョセフソン電流が抑制される効果(フランフォーフ
ァーパターン)を示す図である。
However, the magnetic field dependence of the STJ exposed to an external magnetic field depends on the characteristics of the STJ (current density, junction shape, leakage current), the variation in the fabrication of the element such as the incident angle of the external magnetic field, and the installation state of the element. It is known to be greatly affected by Fig. 4 shows STJ by applying external magnetic field Φ.
FIG. 4 is a diagram showing an effect (Franforfar pattern) of suppressing the Josephson current of FIG.

【0011】同図に示すようにジョセフソン電流を零に
するために4Φ0の外部磁場(実際は100Φ0)を各
STJに印加しても、外部磁場の不均一印加により、例
えば特定のSTJに図4で3.5Φ0の磁場が印加され
ると、ジョセフソン電流は零から0.1Ic(0)に上昇す
る。これは他のSTJ検出素子との検出感度を異ならせ
ることになる。また、STJの作製による個々の特性と
設置のバラツキにより特性曲線等が個々に相異している
ので、この特性の相異もSTJの検出感度を均一にでき
ない原因となっている。
As shown in FIG. 1, even if an external magnetic field of 4Φ0 (actually 100Φ0) is applied to each STJ in order to reduce the Josephson current to zero, non-uniform application of the external magnetic field causes, for example, a specific STJ to be applied to a specific STJ. When a magnetic field of 3.5Φ0 is applied, the Josephson current rises from zero to 0.1 Ic (0). This makes the detection sensitivity different from other STJ detection elements. In addition, since characteristic curves and the like are different from each other due to individual characteristics due to the manufacture of the STJ and variations in installation, the difference in characteristics also causes the detection sensitivity of the STJ to be not uniform.

【0012】特にイメージ情報を抽出する上記の複数個
のSTJを用いた入射放射線の検出法では、それぞれの
STJに検出性能の違いがあると精密な位置測定とエネ
ルギー分解能を得ることが困難になっていた。これを解
決する方法にSTJの数を増やして保証することも可能
であるが、検出器自身とデータの処理を複雑にするので
得策ではなかった。
In particular, in the incident radiation detection method using a plurality of STJs for extracting image information, it is difficult to obtain accurate position measurement and energy resolution if there is a difference in detection performance between the respective STJs. I was It is possible to increase the number of STJs to guarantee this, but it is not advisable because it complicates the processing of the detector itself and data.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めに,本発明は、本発明人らが特願平11−21928
6号特許願(特開2000−150975号)で出願し
たところのグランドプレーンを設けた基板上のSTJ上
にマイクロストリップ線路による超伝導コイルを直接に
結合させた構造のSTJ素子を検出イメージを得るため
のSTJに適用して、個々のSTJのジョセフソン電流
とフイスケステップ電流の抑制効果を個々のSTJで調
整して、最高の検出条件の下で入射放射線の位置とエネ
ルギーを測定する検出器を提供する。
In order to solve the above-mentioned problems, the present invention has been proposed by the present inventors in Japanese Patent Application No. 11-21928.
An image is obtained by detecting an STJ element having a structure in which a superconducting coil formed by a microstrip line is directly coupled to an STJ on a substrate provided with a ground plane, which was filed in Japanese Patent Application No. 6 (JP-A-2000-150975). Detector that adjusts the Josephson current and Fiske step current suppression effect of each STJ in each STJ, and measures the position and energy of incident radiation under the best detection conditions I will provide a.

【0014】即ち、本発明は、放射線の入射によってフ
オノンあるいは準粒子などを発生する基板又は超伝導薄
膜の領域の周囲に複数の超伝導トンネル接合が集積さ
れ、各々のSTJにそれぞれ異なるマイクロストリップ
コイルが各STJの上に電磁的に結合するように集積さ
れた構造であって、各STJ間の電圧信号を取り出し、
マイクロストリップ線路に電流を流してトンネル接合の
ジョセフソン電流及びフィスケステップを抑制した状態
でトンネル接合間の電圧信号を取り出し、基板又は超伝
導薄膜に入射する放射線の放射位置及びエネルギをイメ
ージ検出するイメージ検出器を提供する。マイクロスト
リップコイルに流れる電流を調整することにより、それ
ぞれのSTJのジョセフソン電流およびフィスケステッ
プの抑制効果が等しくなるように調整する。
That is, according to the present invention, a plurality of superconducting tunnel junctions are integrated around an area of a substrate or a superconducting thin film which generates phonons or quasiparticles by the incidence of radiation, and different microstrip coils are provided for each STJ. Is a structure integrated so as to be electromagnetically coupled on each STJ, extracting a voltage signal between each STJ,
A current is passed through the microstrip line to extract the voltage signal between the tunnel junctions while suppressing the Josephson current and Fiske step of the tunnel junctions, and image the radiation position and energy of radiation incident on the substrate or superconducting thin film. Provide an image detector. The current flowing through the microstrip coil is adjusted so that the Josephson current of each STJ and the effect of suppressing the Fiske step become equal.

【0015】[0015]

【発明の実施の形態】図1に本発明の超伝導イメージ検
出器の一実施例を示す。図の実施例では、放射線が入射
する基板9の4隅に4個のSTJ,1a〜1dを集積
し、各STJの上側に絶縁物を介して各STJと磁気的
に結合した超伝導体のマイクロストリップコイル10a
〜10dを設けたものを示している。図中、5はバイア
ス線、6はマイクロストリップコイルの電流線、7はS
TJ間の電圧検出用端子、8はバイアス線と超伝導薄膜
2とを接続する接続端子を表している。STJが2個の
ときは1次元x方向、3個のとき2次元x‐y方向、4
個以上のとき3次元x‐y‐z方向におけるイメージ検
出ができる。
FIG. 1 shows an embodiment of a superconducting image detector according to the present invention. In the embodiment shown in the figure, four STJs, 1a to 1d are integrated at four corners of a substrate 9 on which radiation is incident, and a superconductor magnetically coupled to each STJ via an insulator is provided above each STJ via an insulator. Microstrip coil 10a
10 to 10d are shown. In the figure, 5 is a bias line, 6 is a microstrip coil current line, 7 is S
A terminal for voltage detection between TJ and 8 is a connection terminal for connecting the bias line and the superconducting thin film 2. When the number of STJs is two, the dimension is one-dimensional x-direction.
When the number is more than three, image detection in three-dimensional xyz directions can be performed.

【0016】図2は本発明の原理を説明する図である。
図(a)は図1の実施例に対応するもので、図(b)は
図(a)の超伝導薄膜3を放射線入射面の超伝導体ベー
ス電極3Aに兼ねた実施例で、STJの1a,1bにお
ける断面を示す。各STJに印加される磁場Φa,Φ
b,・・・は各マイクロストリップコイル10a〜10
bの電流により誘起される磁場で、この磁場は対向する
超伝導体層にミラー電流を流して各磁場を各STJ付近
に局所化し、しかもSTJの接合に平行に印加される。
FIG. 2 is a diagram for explaining the principle of the present invention.
FIG. 1A corresponds to the embodiment of FIG. 1, and FIG. 2B is an embodiment in which the superconducting thin film 3 of FIG. 1A also serves as the superconductor base electrode 3A on the radiation incident surface. 1A and 1B show cross sections. Magnetic fields Φa, Φ applied to each STJ
b,... indicate the respective microstrip coils 10a to 10
This is a magnetic field induced by the current b. This magnetic field is applied to the superconductor layer opposite to each other by flowing a mirror current to localize each magnetic field near each STJ and in parallel with the junction of the STJs.

【0017】各磁場Φa,Φb,・・・を誘起するマイ
クロストリップコイル電流Ima,Imb,Imc,I
md(図1参照)は、図示されていない装置でそれそれ
別々に調整できるようになっている。イメージ検出器の
作成後に、ジョセフソン電流及びフィスケステップを抑
制する状態での各STJのジョセフソン電流が零、場合
によっては零近傍の設定値にするマイクロストリップコ
イル電流を計測する。この計測電流と同一電流をそれぞ
れのマイクロストリップコイルに流して、それぞれのS
TJの感度を最大にする。これにより、STJ及びマイ
クロストリップコイル等素子の作製で生じた不均一も合
わせて補償し、各STJの検出感度を最大にすることが
できる。更に、検出器が設置される環境磁場に対しても
STJの検出感度を最大にできる。
The microstrip coil currents Ima, Imb, Imc, I that induce the respective magnetic fields Φa, Φb,.
The md (see FIG. 1) can be individually adjusted with a device not shown. After the image detector is created, the Josephson current of each STJ in the state where the Josephson current and the Fiske step are suppressed is measured to be zero, and in some cases, the microstrip coil current is set to a set value near zero. The same current as this measurement current is passed through each microstrip coil, and each S
Maximize TJ sensitivity. This makes it possible to compensate for non-uniformity caused by the fabrication of elements such as STJs and microstrip coils, and to maximize the detection sensitivity of each STJ. Furthermore, the detection sensitivity of the STJ can be maximized even with respect to the environmental magnetic field where the detector is installed.

【0018】[0018]

【発明の効果】本発明によれば、STJの特性や外部磁
界の入射角度など素子の作製上のバラツキを個々に調整
できるので、STJを用いたイメージ放射線検出器の検
出性能の向上と安定動作の両方について改善を図ること
ができ、高性能な放射線検出器の実現が可能となった。
According to the present invention, it is possible to individually adjust variations in the fabrication of elements such as the characteristics of the STJ and the angle of incidence of an external magnetic field, so that the detection performance of the image radiation detector using the STJ can be improved and stable operation can be achieved. In both cases, improvements could be achieved, and a high-performance radiation detector could be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の構造図を模式的に示す図であ
る。
FIG. 1 is a diagram schematically showing a structural diagram of the present invention.

【図2】図2は本発明の原理を説明する図である。FIG. 2 is a diagram illustrating the principle of the present invention.

【図3】図3は従来のイメージ検出器の原理を説明する
図である。
FIG. 3 is a diagram illustrating the principle of a conventional image detector.

【図4】図4は磁場印加によるジョセフソン電流の抑制
効果を説明する図である。
FIG. 4 is a diagram illustrating the effect of suppressing a Josephson current by applying a magnetic field.

【符号の説明】[Explanation of symbols]

1a〜1d STJ 2,3 超伝導薄膜 3A ベース電極 4 トンネル障壁絶縁薄膜 9 基板 10a〜10d マイクロストリップコイル Φ,Φa〜Φb 外部印加磁場 11 放射線 1a to 1d STJ 2,3 Superconducting thin film 3A Base electrode 4 Tunnel barrier insulating thin film 9 Substrate 10a to 10d Microstrip coil Φ, Φa to Φb Externally applied magnetic field 11 Radiation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤穂 博司 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 前畑 京介 福岡県福岡市東区箱崎6−10−1 九州大 学工学部内 (72)発明者 石橋 健二 福岡県福岡市東区箱崎6−10−1 九州大 学工学部内 (72)発明者 田井野 徹 福岡県福岡市東区箱崎6−10−1 九州大 学工学部内 Fターム(参考) 2G065 AA04 AA18 AB02 AB04 BA31 BA34 2G088 FF02 FF06 FF14 FF15 GG22 JJ05 JJ09 4M113 AA01 AC24 AC30 AD51  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Ako 1-1-4, Umezono, Tsukuba, Ibaraki Pref. Electronic Technology Research Institute (72) Inventor Kyosuke Maehata 6-10- Hakozaki, Higashi-ku, Fukuoka, Fukuoka 1 Kyushu University Faculty of Engineering (72) Inventor Kenji Ishibashi 6-10-1 Hakozaki, Higashi-ku, Fukuoka City, Fukuoka Prefecture (72) Inventor Toru Taino 6-10-1 Hakozaki, Higashi-ku, Fukuoka City, Fukuoka Kyushu Univ. Faculty of Engineering F-term (reference) 2G065 AA04 AA18 AB02 AB04 BA31 BA34 2G088 FF02 FF06 FF14 FF15 GG22 JJ05 JJ09 4M113 AA01 AC24 AC30 AD51

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 放射線の入射によってフオノンあるいは
準粒子などを発生する基板又は超伝導薄膜の領域の周囲
に複数の超伝導トンネル接合が集積され、 各々の超伝導トンネル接合に異なるマイクロストリップ
コイルが各超伝導トンネル接合の上に電磁的に結合する
ように集積された構造であって、 各超伝導トンネル接合間の電圧信号を取り出し、基板又
は超伝導薄膜に入射される放射線の入射位置及びエネル
ギを検出することを特徴とする超伝導イメージ検出器。
A plurality of superconducting tunnel junctions are integrated around an area of a substrate or a superconducting thin film which generates phonons or quasiparticles upon incidence of radiation, and a different microstrip coil is provided for each superconducting tunnel junction. A structure integrated so as to be electromagnetically coupled on a superconducting tunnel junction. A voltage signal between each superconducting tunnel junction is taken out, and an incident position and energy of radiation incident on a substrate or a superconducting thin film are determined. A superconducting image detector characterized by detecting.
【請求項2】 請求項1のマイクロストリップコイルに
流れる電流を調整することにより、それぞれの超伝導ト
ンネル接合に印加する磁場を調整することを特徴とする
超伝導イメージ検出器。
2. The superconducting image detector according to claim 1, wherein a magnetic field applied to each superconducting tunnel junction is adjusted by adjusting a current flowing through the microstrip coil.
JP2000394757A 2000-12-26 2000-12-26 Superconducting image detector Expired - Lifetime JP3543111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000394757A JP3543111B2 (en) 2000-12-26 2000-12-26 Superconducting image detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394757A JP3543111B2 (en) 2000-12-26 2000-12-26 Superconducting image detector

Publications (2)

Publication Number Publication Date
JP2002196081A true JP2002196081A (en) 2002-07-10
JP3543111B2 JP3543111B2 (en) 2004-07-14

Family

ID=18860335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394757A Expired - Lifetime JP3543111B2 (en) 2000-12-26 2000-12-26 Superconducting image detector

Country Status (1)

Country Link
JP (1) JP3543111B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061212A (en) * 2002-07-26 2004-02-26 Masahiko Kurakado Superconductor radiation sensor system
JP2009168827A (en) * 2009-05-01 2009-07-30 Masahiko Kurakado Superconductor radiation sensor system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061212A (en) * 2002-07-26 2004-02-26 Masahiko Kurakado Superconductor radiation sensor system
JP4631102B2 (en) * 2002-07-26 2011-02-16 雅彦 倉門 Superconductor radiation sensor system
JP2009168827A (en) * 2009-05-01 2009-07-30 Masahiko Kurakado Superconductor radiation sensor system

Also Published As

Publication number Publication date
JP3543111B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
US4445036A (en) Solid state fast-neutron spectrometer/dosimeter and detector therefor
Bolotnikov et al. High-efficiency CdZnTe gamma-ray detectors
Iizawa et al. Energy-resolved neutron imaging with high spatial resolution using a superconducting delay-line kinetic inductance detector
JPWO2006095659A1 (en) Neutron detector and neutron imaging sensor
Chen et al. Numerical modeling of charge sharing in CdZnTe pixel detectors
US4873482A (en) Superconducting transmission line particle detector
Brossard et al. Spherical proportional counters; development, improvement and understanding
JP2002196081A (en) Superconductive image detector
Iizawa et al. Temperature dependent characteristics of neutron signals from a current-biased Nb nanowire detector with 10B converter
US7161352B2 (en) Beam current measuring device and apparatus using the same
Banu et al. Performance evaluation of position-sensitive silicon detectors with four-corner readout
JP4206278B2 (en) Radiation measurement equipment
Kaya et al. Characterization and calibration of radiation-damaged double-sided silicon strip detectors
Nishimura et al. Fine residual stress distribution measurement of steel materials by SOI pixel detector with synchrotron X-rays
Leonardi et al. GEANT4-based full simulation of the PADME experiment at the DAΦNE BTF
US6037596A (en) Photoconducting positions monitor and imaging detector
CN105826158B (en) Two-dimensional angular is distributed proton spectrometer
Litke et al. The silicon microstrip detector
RU2813557C1 (en) Position-sensitive detector of thermal and cold neutrons based on plane-parallel resistive chamber
Akimenko et al. Study of strip fiber prototype shower maximum detector for the STAR experiment at RHIC
Nishimura et al. Kinetic inductance neutron detector operated at near critical temperature
JP3459983B2 (en) Superconducting tunnel junction detector
Krautscheid et al. Gridpix: Production and application of integrated pixel readouts
Jeon et al. Study on Phonon Amplification of Neganov–Luke Light Detectors
Castoldi et al. Laser mapping of the inter-strip response in double sided silicon strip detectors for particle identification

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3543111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term