JP3542657B2 - Lining equipment used for tunnel lining method - Google Patents

Lining equipment used for tunnel lining method Download PDF

Info

Publication number
JP3542657B2
JP3542657B2 JP04482195A JP4482195A JP3542657B2 JP 3542657 B2 JP3542657 B2 JP 3542657B2 JP 04482195 A JP04482195 A JP 04482195A JP 4482195 A JP4482195 A JP 4482195A JP 3542657 B2 JP3542657 B2 JP 3542657B2
Authority
JP
Japan
Prior art keywords
buried pipe
pipe
hardened layer
gap
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04482195A
Other languages
Japanese (ja)
Other versions
JPH08218781A (en
Inventor
伸吾 長島
毅 大工原
稔 蔵品
幹雄 竹内
亨介 三島
洋 和田
威 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Okumura Corp
Original Assignee
Tokyo Gas Co Ltd
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Okumura Corp filed Critical Tokyo Gas Co Ltd
Priority to JP04482195A priority Critical patent/JP3542657B2/en
Publication of JPH08218781A publication Critical patent/JPH08218781A/en
Application granted granted Critical
Publication of JP3542657B2 publication Critical patent/JP3542657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明はトンネル掘削壁面に硬化層よりなる覆工を施工しながら埋設管を推進埋設するトンネル覆工方法に用いる覆工装置であって、硬化層と埋設管との間の隙間に注入する滑材の圧力を一定に保持するための装置に関するものである。
【0002】
【従来の技術】
シールド機によって地盤を掘削すると共に該シールド機の後端にヒューム管等の埋設管を後続させて発進立坑側からジャッキにより埋設管及びシールド掘削機を推進する工法においては、埋設管とシールド掘削機により掘削されたトンネル壁面との隙間に滑材を注入しながら円滑に推進させることが行われており、この工法によって推進距離の長大化や推進設備の縮小化を図っている。
【0003】
この滑材の注入は、図9に示すように、シールド機aの径と埋設管bの径との差によって生じる隙間cに、シールド機aに後続する一本目の埋設管bの先端部に穿設した注入口dを用いて注入される。この時、発進立坑eの坑口には、パッキンfが配設されており、そのため滑材が立坑内に漏れる虞れがないが、注入した滑材が地盤に浸透したり、或いは地下水が埋設管b、bの接合部等から浸入することがある。
【0004】
そこで本願出願人等は、特公平6ー63432号公報に記載しているように、シールド機の掘進に従ってシールド機と埋設管との外径の差によって生じる空隙部に硬化性材料を注入し、この硬化性材料を硬化させながらシールド機を掘進させると共に注入した硬化性材料と埋設管との間の隙間に滑材を注入して硬化性材料の内周面に直接接する薄い滑材層を埋設管の外周面に形成する覆工方法を提案した。
【0005】
【発明が解決しようとする課題】
しかしながら、埋設管はシールド機と一体的に推進、停止するものであるから上記のような覆工方法によれば、停止中に埋設管と掘削壁面との間の空隙部に注入した硬化性材料が硬化すると埋設管の外周面に該硬化性材料が一体に付着し、埋設管の推進時には付着、硬化した硬化性材料が共に前進移動して掘削地盤が崩壊し、その上、推進抵抗力が増大して作業能率が低下するばかりでなく、良好な硬化層の形成が困難となる等の問題点が生じる。
【0006】
そのため、本願発明者等はシールド機の後端に円筒形の型枠を配設し、この型枠とトンネル掘削壁面との間の空隙部に硬化性材料を注入すると共に型枠を前後動させることによって硬化性材料を型枠に付着させることなくトンネル掘削壁面に一体に固着した硬化層に形成し、この硬化層と埋設管との間の隙間に滑材を注入しながら埋設管を推進、埋設する方法を開発したが、型枠を前後動させると、該型枠の後方側に連通している上記硬化層と埋設管との間の隙間に注入した滑材の圧力が型枠の前後動によって変動する上に、滑材注入ポンプの脈動によっても変動して、この変動圧が硬化層に伝達してクラックが発生し、その結果、滑材が地盤中に逸散したり地下水が滑材に混入したりして埋設管を円滑に推進させることができなくなる。本発明はこのような問題点を全面的に解消することを目的としたトンネル覆工方法に用いる覆工装置を提供するものである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に記載したトンネル覆工方法に用いる覆工装置は、シールド機又は仮管の後端に、円筒形型枠を前後摺動自在に外嵌させた内筒を一体に連結すると共にこの内筒の後端に埋設管を後続させ、上記円筒形型枠を前後動させながら該型枠とトンネル掘削壁面との間の空隙部に硬化性材料を注入して硬化層を形成し、この硬化層を後続埋設管の推進により該埋設管に被覆させる一方、埋設管と硬化層との間の隙間に滑材を注入するトンネル覆工方法に用いる覆工層であって、滑材を注入する配管路中に滑材圧保持装置としてのアキュムレータを配設したことを特徴とするものである。
【0008】
又、本発明の請求項2に記載したトンネル覆工方法に用いる覆工装置は、シールド機又は仮管の後端に、円筒形型枠を前後摺動自在に外嵌させた内筒を一体に連結すると共にこの内筒の後端にアダプターを介して埋設管を後続させ、上記円筒形型枠を前後動させながら該型枠とトンネル掘削壁面との間の空隙部に硬化性材料を注入して硬化層を形成し、この硬化層を後続埋設管の推進により該埋設管に被覆させる一方、埋設管と硬化層との間の隙間に滑材を注入するトンネル覆工方法に用いる覆工装置であって、上記アダプターの外周端面を硬化層の内周面に摺接させると共に該アダプターと上記円筒形型枠の後端面との間の空間部に内筒後端部を貫通させてアキュムレータの管路を連通させたことを特徴とするものである。
【0009】
【作用】
トンネル掘削壁面と円筒形型枠との間の空隙部に硬化性材料を注入すると共に円筒形型枠を前後動させると、その動きによって硬化性材料が円筒形型枠の外周面に付着するのを防止されながら徐々に硬化してトンネル掘削壁面に一体に固着した円筒形状の硬化層が形成される。この硬化層が一定の強度に達したのち、シールド機又は仮管と一体的に埋設管を推進させると、埋設管が該硬化層内に進入する。この時、硬化層との摩擦力を低減させるために硬化層と埋設管との間の隙間に滑材を注入する。
【0010】
この滑材の注入によって埋設管の推進抵抗が小さくなると共に、円筒形型枠や該埋設管に硬化層の付着も生じないので、埋設管はシールド機又は推進仮管と一体的に円滑に推進し、推進距離の長大化や推進設備の縮小化が図られるものである。さらに、上記のように型枠を前後動させると、その前後動によって硬化層と埋設管との間の隙間に注入した滑材が隙間内で圧縮されたり、吸引されて滑材圧が変動しようとし、その上、滑材の注入ポンプの脈動によっても変動しようとするが、その変動圧は滑材を注入している隙間に連通させた配管を通じてアキュムレータによって吸収され、型枠の前後摺動や注入ポンプの脈動にも拘わらず、滑材圧が一定圧に保持されて硬化層にクラックが発生するのを阻止できるものである。
【0011】
また、請求項2に記載したように、上記型枠の前後摺動空間部と滑材注入空隙部とをアダプターを介して遮断している場合には、型枠の後端面とアダプターとの間の空間部にアキュムレータの管路を連通させておくことによって型枠の前後動による空間部の容積の変動にも拘わらず、管路を通じて該空間部に供給している液圧をアキュムレータにより一定に保持して上記同様に硬化層にクラックが発生するのを防止するものである。
【0012】
【実施例】
本発明の実施例を図面について説明すると、図1〜図5において、トンネルを掘削するシールド機1の後端には該シールド機1の外殻と同一外径を有する短筒体2を一体的に連結してあり、この短筒体2の内周面数カ所にリブ2aを固着し、該リブ2aの後端面に一定長さを有する内筒3の前端を一体的に固着している。内筒3の前後端部は外径に向かって肉厚の円形摺接面3a、3bに形成され、これらの円形摺接面3a、3bにシール4を介して円筒形型枠5の前後端部の内周面を摺動自在に密接させている。なお、円筒形型枠5の前端部外周面は短筒体2の後端に一体に設けているリング状妻板2cの内周面に摺動自在に密接させている。
【0013】
この円筒形型枠5はシールド機1の外殻よりも小径で且つ内筒3と同長またはやゝ長く形成されていると共にその外周面にセラミックとフッ素樹脂との複合コーティング等からなる離型層5aを層着してあり、この離型層5aによって後述する硬化性材料6の硬化層6aと円筒形型枠5との離型性を一層良好にしている。又、上記短筒体2の内周面数カ所にジャッキ7を装着し、このジャッキ7のロッド後端を円筒形型枠5の前端面に一体的に連結し、これらのジャッキ7のロッドを伸縮させることにより円筒形型枠5を内筒3上で前後摺動させるように構成している。
【0014】
さらに、上記短筒体2の適所には該短筒体2の一部に内周面からトンネル掘削壁面8と円筒形型枠5との間の空隙部9に連通する硬化性材料注入孔10を穿設してなる注入部材10a を一体に設けていると共に、この注入孔10に短筒体2内側から注入管11とバルブ21を有する洗浄水供給管12とを連結、連通させている。注入管11の先端部にはバルブ22を有する戻り管13と急結材供給管14とが注入管11に設けたバルブ23を介して順次、分岐状態で接続している。なお、上記注入孔10を円筒形型枠5の前端部適所に設け、この注入孔10に可撓性注入短管の外端開口部を接続し、該可撓性注入短管の内端開口部を内筒3の内周面に臨ませてその開口部に上記注入管11等を連結、連通させた構造としておいてもよい。
【0015】
15はシールド機1に連結した上記内筒3に後続してトンネル掘削壁面8内に順次継ぎ足しながら推進、埋設されるヒューム管等の埋設管で、その外径は円筒形型枠5の外径よりも僅かに小径に形成されていると共に最前部の埋設管15の前端部には筒状アダプター16を一体的に固着してあり、このアダプター16の前端面を上記内筒3の後端面にボルト・ナット等によって一体的に連結している。
【0016】
アダプター16の前端面と上記型枠5の後端面間には型枠5が前後摺動可能な空間部17が設けられていると共に該アダプター16の適所には埋設管15とこの埋設管15を被覆する硬化層6aとの間の隙間20に滑材21を注入する滑材注入孔22が穿設されてあり、この滑材注入孔22に埋設管15内側から逆止弁27、バルブ28を有する滑材注入管23を連結、連通させている。さらに、上記隙間20の前端はアダプター16の外周面と硬化層6aの隙間を通じて型枠5の後方空間部17に連通していると共に滑材注入管23の先端部には滑材圧を一定に保持するためのアキュムレータ18の配管19を連結、連通させている。なお、上記シールド機1は公知のようにモータ1aによりカッター板1bを回転させてトンネルを掘削すると共に掘削した土砂は後方の埋設管15内を通じて排出するように構成している。
【0017】
次に、上記のように構成した装置によってトンネル掘削壁面8に埋設管15を被覆する硬化層6aよりなる覆工を施す方法について説明する。まず、シールド機1に内筒3を介して後続させる埋設管15は、発進立坑29内において推進ジャッキ30によってトンネル掘削壁面8内に挿入、推進され、1本の埋設管15が推進されると次の埋設管15を接続して推進される。この推進力は埋設管15から内筒3を介してシールド機1に伝達され、シールド機1はそのカッター板1bによってトンネルを掘削しながら到達立坑(図示せず)に向かって前進する。
【0018】
埋設管15の推進に従ってシールド機1が一定長、掘進すると、該シールド機1によって掘削されたトンネル掘削壁面8と円筒形型枠5との間に、シールド機1の外殻径と円筒形型枠5の外径との差に相当する断面円環状の空隙部9が形成される。この空隙部9にシールド機1を停止させた状態でトンネル内から注入管11、注入孔10を通じて硬化性材料6を注入し、該空隙部9内に充満させる。
【0019】
硬化性材料6としてはセメントと砂とを混練したモルタル、あるいはこのモルタルにベントナイトを添加した材料や水ガラスと砂との混合物等のように、注入時には液状体で注入後、一定時間経過すれば硬化して所定の強度を有する硬化層6aを形成するものであればよい。この硬化性材料6が空隙部9に注入する直前に供給管14を通じて硬化性材料6の硬化を促進させる急結材を注入管11に供給し、硬化性材料6に混入させた状態で空隙部9内に注入する。
【0020】
空隙部9内に硬化性材料6を注入したのち、シールド機1の後端短筒体2内に装着しているジャッキ7のロッドを伸縮させて円筒形型枠5を前後方向に往復動させると、硬化性材料6がその振動によって全体的に均一な密度で空隙部9内に充満すると共に硬化性材料6と円筒形型枠5との接触面が縁切りされて硬化性材料6が円筒形型枠5の外周面に付着するのを防止される。この硬化性材料6の付着防止は、円筒形型枠5の外周面に層着している離型層5aによって一層確実に行われると共に硬化性材料6の硬化が進行するに従って離型層5aと摺接する該硬化性材料6の内周面が平滑化されて完全な剥離状態となる。
【0021】
一方、トンネル掘削壁面8に対しては硬化性材料6が完全に付着し、この状態で硬化性材料6の硬化が進行してトンネル掘削壁面8に一体的に固着した円筒形状の硬化層6aが徐々に形成される。この硬化層6aの形状が内径方向に変形しない程度の一定の強度まで該硬化層6aが硬化したのち、発進立坑29側から推進ジャッキ30により埋設管15の後端面を押圧推進し、内筒3を介してその推進力をシールド機1に伝達してシールド機1を一定長(円筒形型枠5の長さ以下の距離だけ)掘進させ、その掘進長に応じた新たなトンネル掘削壁面8を形成して再び上記同様に該トンネル掘削壁面8と円筒形型枠5との間の空隙部9に硬化性材料6を注入する。
【0022】
このように、一定長のトンネル掘削壁面8が掘削形成される1サイクル毎に、該トンネル掘削壁面8と円筒形型枠5との間の空隙部9に硬化性材料6の注入と円筒形型枠5の前後動下における硬化の進行を行わせ、一定強度まで硬化した硬化層6aを形成していくものであるが、硬化層6aが完全に硬化したのち、シールト機1を埋設管15の推進によって一定長、掘進させてもよく、硬化層6aが一定強度まで達したのち完全に硬化するまでの間、その硬化速度に同調してシールド機1を埋設管15の推進によって一定長、徐々に掘進させてもよい。
【0023】
なお、硬化性材料6がトンネル掘削壁面8と円筒形型枠5との空隙部9に注入、充満させる毎に、直ちに硬化性材料注入管23のバルブ26を閉止する一方、戻り管13のバルブ25を開放した状態にして洗浄水供給管14から洗浄水を注入孔10を通じて注入管23の先端部を流動させ、該注入孔10と注入管23に充填されている硬化性材料6を戻り管13を通じて排除し、次の注入に支障を生じないようにする。また、空隙部9に臨んでいる注入孔10の開口端には硬化性材料6が注入孔10内に逆流するのを阻止するようにしている。
【0024】
上記のように空隙部9内に注入、充満した硬化性材料6が一定の強度まで硬化して硬化層6aをしたのち、埋設管15と共にシールド機1を推進させると、この硬化層6a内に埋設管15が進入するが、この埋設管15の外径が円筒形型枠5よりもやゝ小径に形成しているので、硬化層6aの内周面と埋設管15の外周面との間に薄い隙間20が形成される。この隙間20に最前部の埋設管15内から注入管22を通じて滑材21を注入、充満させると、埋設管15の外周面が該滑材層を介して掘削壁面8と一体化した硬化層6aの内周面に摺接し、円筒形型枠5の外周面に対する硬化性材料6の付着防止と相まって推進抵抗が減少する。
【0025】
一方、硬化層6aの内周面と埋設管15の外周面との間の隙間20が型枠5の後方空間部17に連通しているので、型枠5を上記のように前後動させると、隙間20に注入している滑材21が型枠5の後動時には圧縮作用を受け、型枠5の前動時には吸引作用を受けてその滑材圧が大小に変動し、その上、滑材21の注入ポンプ(図示せず)の脈動によっても変動しようとするが、滑材圧が硬化性材料注入管23から配管19内の液体に通じてアキュムレータ18に伝達し、滑材圧が増大する方向に変動するとアキュムレータ18によってその圧力が吸収され、減少する方向に変動しようとすると加圧されて隙間20に充満している滑材21の圧力は常に一定圧となるように保持されるものである。
【0026】
図6は本発明の別な実施例を示すもので、上記実施例においては硬化層6aと埋設管15との間の隙間20に連通する滑材注入孔22にアキュムレータ18を配設して、隙間20に充填している滑材21の圧力を一定に保持するようにしたが、この実施例においてはアキュムレータ18を別な箇所に単独的に配設して型枠5の前後動による該型枠後方の空間部の圧力変動を吸収するように構成しているものである。
【0027】
即ち、内筒2と最前部の埋設管15との間に介在、連結している上記アダプター16の前端外周部を外径方向に延設して外周端面が硬化層6aの内周面に摺接する突縁部16a に形成し、この突縁部16a と上記型枠5の後端面との間に設けられた空間部20a に内筒後端部を貫通させてアキュムレータ18の管路19a を連通させてなるものである。その他の構造は図2に示した上記例と同様であるので、同一番号を付して構成および作用の説明は省略する。
【0028】
このように構成したので、円筒形型枠5とトンネル掘削壁面8との間の空隙部9に注入した硬化性材料6を、型枠5を前後動させながら硬化させる際に、該型枠5の前後動によって型枠後方側の空間部20a 内が加圧、減圧作用を受けて変動し、その変動圧の影響によって硬化層6aにクラック(亀裂)が発生する虞れがあるが、上記のようにアキュムレータ18の管路19a 内の液体を空間部20a に充満させているので、この液体が型枠5の前後動によって発生する空間部20a 内の変動圧に応じて加圧或いは減圧され、加圧時にはアキュムレータ18によって該液体圧を減少させる一方、減圧時には液体圧を増大させて空間部20a 内の圧力を一定圧に保持するものである。この実施例においては、アダプター16の突縁部16a によって空間部20a と硬化層6aと埋設管15との間の隙間20とが遮断されているので、型枠5の前後動による上記変動圧は隙間20に伝達することはない。
【0029】
なお、以上の各実施例においては、シールド機1によってトンネルを掘進しながらそのトンネル掘削壁面8と円筒形型枠5との間の空隙部9内に硬化性材料6を注入しているが、このシールド機1に替えて、図8に示すように既に埋設されている仮管41に円筒形型枠5を摺動自在に外嵌させている上記内筒3を介して埋設管15を後続させ、仮管41と埋設管15とを一体に推進させながら上記と同様にトンネル掘削壁面8と埋設管15との間に硬化性材料6の硬化による硬化層6aを施工してもよい。
【0030】
仮管41の埋設は、図7に示すように発進立坑29から到達立坑31に向かってシールド機1Aによりトンネルを掘削しながらその掘進に従って該シールド機1Aに仮管41を順次後続させて推進し、到達立坑31に達したシールド機1Aを撤去して両縦坑29、31間に多数本の直列状に埋設したのち、発進立坑29側において最後部の仮管41の後端に上記実施例同様に該仮管41と同一外径を有する短筒体2を連結すると共に、この短筒体2に仮管41よりもその外径が小さい円筒形型枠5を摺動自在に被嵌させている内筒3を介してこの円筒形型枠5よりもやゝ小径の埋設管15を後続させ、図8に示すように推進ジャッキ30によって埋設管15を推進させながらその推進に従って仮管41の後方側に生じるトンネル掘削壁面8と埋設管15との間に硬化性材料6を注入し、円筒形型枠5を短筒体2内に装着しているジャッキ7によって前後摺動又は周方向に往復動させて硬化性材料6が円筒形型枠5の外周面に付着するのを防止しながら硬化層6aを形成するものである。
【0031】
この硬化層6aを埋設管15の推進に従って該埋設管15に被覆させ、該硬化層6aと埋設管15との間の隙間に滑材21を注入させて円滑の推進を可能にする。その他の構造並びに作用は上記実施例と同様であるので省略するが、この仮管41に埋設管15を後続させてトンネル掘削壁面8に埋設管15の外周を被覆する硬化層6aを形成していく方法によれば、埋設管15の推進と共に仮管41を到達立坑31側から牽引することができるので、小さな推進力で埋設管15の敷設作業が行なえる。また、到達立坑31側から仮管41内を通じて硬化性材料6や滑材21の供給が可能となる利点を有する。
【0032】
【発明の効果】
以上のように本発明によれば、シールド機又は仮管の後端に、円筒形型枠を前後摺動自在に外嵌させた内筒を一体に連結すると共にこの内筒の後端に埋設管を後続させ、上記円筒形型枠を前後動させながら該型枠とトンネル掘削壁面との間の空隙部に硬化性材料を注入して硬化層を形成し、この硬化層を後続埋設管の推進により該埋設管に被覆させるものであるから、円筒形型枠の往復動によって硬化性材料が該円筒形型枠の外周面に付着、硬化するのを防止しながら硬化層を成形することができ、従って、該硬化層が円筒形型枠に付着することなく縁切り状態となっているので、埋設管の推進抵抗が極めて小さくなって円滑な推進が可能となるものである。
【0033】
さらに、埋設管と硬化層との間の隙間に滑材を注入するものであるから、上記円筒形型枠上での硬化性材料の付着防止と相まって埋設管を円滑に推進させることができ、従って、推進距離の長大化と推進設備の縮小化を図ることができるばかりでなく、滑材を注入する配管路中に、或いはアダプターによって滑材層と遮断された型枠後方の空間部に連通する管路にアキュムレータを設けているので、型枠の前後動や滑材注入ポンプの脈動によって滑材層に発生する変動圧、或いは型枠の前後動によって型枠後方空間部内に発生する変動圧をアキュムレータによって吸収させることができ、そのため、滑材層や型枠後方空間部内を常に一定圧に保持することができて硬化層に上記変動圧によるクラックが発生するのを防止することがてきるものである。
【図面の簡単な説明】
【図1】施工状態を示す簡略縦断側面図、
【図2】シールド機に連結した円筒形型枠と埋設管部分の縦断側面図、
【図3】図2におけるAーA線断面図、
【図4】図2におけるBーB線断面図、
【図5】図2におけるCーC線断面図、
【図6】本発明の別な実施例を示す縦断側面図、
【図7】仮管に埋設管を後続させながら覆工を施工している状態の簡略縦断側面図、
【図8】仮管を埋設している状態の縦断側面図、
【図9】従来例を示す縦断側面図。
【符号の説明】
1 シールド機
3 内筒
5 円筒形型枠
6 硬化性材料
6a 硬化層
7 ジャッキ
8 トンネル掘削壁面
9 空隙部
15 埋設管
16 アダプター
17 空間部
18 アキュムレータ
19 配管
20 隙間
21 滑材
[0001]
[Industrial applications]
The present invention relates to a lining apparatus for use in a tunnel lining method for propelling and embedding a buried pipe while constructing a lining made of a hardened layer on a tunnel excavation wall surface, wherein the sliding pipe is injected into a gap between the hardened layer and the buried pipe. The present invention relates to a device for maintaining the pressure of a material constant.
[0002]
[Prior art]
In the method of excavating the ground with a shield machine and causing a buried pipe such as a fume pipe to follow the rear end of the shield machine and propelling the buried pipe and the shield excavator by a jack from the start shaft, the buried pipe and the shield excavator are used. The smooth propulsion is carried out while injecting a lubricating material into the gap between the tunnel wall excavated by this method, and this method aims to lengthen the propulsion distance and reduce the size of the propulsion equipment.
[0003]
As shown in FIG. 9, the lubricating material is injected into a gap c caused by a difference between the diameter of the shield machine a and the diameter of the buried pipe b, to the tip of the first buried pipe b following the shield machine a. Injection is performed using the injection port d. At this time, a packing f is provided at the entrance of the starting shaft e, so that there is no possibility that the sliding material leaks into the shaft, but the injected sliding material permeates the ground, or groundwater is buried in the pipe. There is a case where it may enter from the junction of b and b.
[0004]
Therefore, as described in Japanese Patent Publication No. 6-63432, the applicant of the present application injects a curable material into a void portion caused by a difference in outer diameter between the shield machine and the buried pipe according to the excavation of the shield machine, While curing this curable material, the shield machine is excavated and a lubricant is injected into the gap between the injected curable material and the buried pipe to bury a thin lubricant layer directly in contact with the inner peripheral surface of the curable material. A lining method formed on the outer peripheral surface of the pipe was proposed.
[0005]
[Problems to be solved by the invention]
However, since the buried pipe is propelled and stopped integrally with the shield machine, according to the above lining method, the curable material injected into the gap between the buried pipe and the excavated wall surface during the stoppage is used. There deposited curable material integrally with the outer peripheral surface of the buried pipe to cure, at the time of the promotion of buried pipe attachment, curing the curable materials are moved forward together excavated soil collapses, thereon, propulsion resistant Not only does this increase the work efficiency, but also causes problems such as difficulty in forming a good cured layer.
[0006]
Therefore, the present inventors arrange a cylindrical mold at the rear end of the shield machine, inject a curable material into a gap between the mold and the tunnel excavation wall surface, and move the mold back and forth. By forming the curable material into a hardened layer that is integrally fixed to the tunnel excavation wall without adhering to the mold, the buried pipe is propelled while injecting lubricant into the gap between this hardened layer and the buried pipe, When the mold was moved back and forth, the pressure of the lubricating material injected into the gap between the hardened layer communicating with the back side of the mold and the buried pipe was developed before and after the mold. In addition to the fluctuations caused by the pulsation of the lubrication pump, this fluctuation pressure is transmitted to the hardened layer and cracks are generated.As a result, the lubrication escapes into the ground or the groundwater slides. The buried pipe cannot be smoothly propelled by being mixed into the material. The present invention provides a lining apparatus used in a tunnel lining method for the purpose of completely solving such a problem.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a lining device used in a tunnel lining method according to claim 1 of the present invention is provided such that a cylindrical form is externally slidably fitted to a rear end of a shield machine or a temporary pipe. The inner tube is connected integrally and a buried pipe is made to follow the rear end of the inner tube, and the curable material is added to the gap between the cylindrical form and the tunnel excavation wall surface while moving the cylindrical form forward and backward. injected to form a hardened layer, while is coated on the buried pipe the cured layer by promoting subsequent buried pipe, used in tunnel lining method of injecting lubricant into the gap between the buried pipe and the cured layer The lining layer is characterized in that an accumulator as a lubricating material pressure holding device is disposed in a pipe line for injecting the lubricating material .
[0008]
Further, in the lining device used in the tunnel lining method according to the second aspect of the present invention, an inner cylinder in which a cylindrical form is externally slidably fitted to the rear end of the shielding machine or the temporary pipe is slidably integrated. And a buried pipe is made to follow the rear end of this inner cylinder via an adapter, and the curable material is injected into the gap between the mold and the tunnel excavation wall while moving the cylindrical mold back and forth. Lining used in a tunnel lining method in which a hardened layer is formed and the hardened layer is coated on the buried pipe by propulsion of a subsequent buried pipe, while a lubricant is injected into a gap between the buried pipe and the hardened layer. An accumulator, wherein an outer peripheral end surface of the adapter is slidably contacted with an inner peripheral surface of the hardened layer and a rear end portion of the inner cylinder is penetrated into a space between the adapter and a rear end surface of the cylindrical formwork. Are connected to each other.
[0009]
[Action]
When the curable material is injected into the gap between the tunnel excavation wall surface and the cylindrical form and the cylindrical form is moved back and forth, the movement causes the curable material to adhere to the outer peripheral surface of the cylindrical form. And gradually hardens while preventing the formation of a cylindrical hardened layer integrally fixed to the tunnel excavation wall surface. After the hardened layer reaches a certain strength, when the embedded pipe is propelled integrally with the shielding machine or the temporary pipe, the embedded pipe enters the hardened layer. At this time, a lubricant is injected into a gap between the hardened layer and the buried pipe in order to reduce a frictional force with the hardened layer.
[0010]
The injection of the lubricating material reduces the propulsion resistance of the buried pipe and prevents the hardened layer from adhering to the cylindrical formwork and the buried pipe. However, the propulsion distance is increased and the propulsion equipment is reduced. Further, when the mold is moved back and forth as described above, the sliding material injected into the gap between the hardened layer and the buried pipe is compressed or sucked in the gap by the forward and backward movement, and the sliding material pressure will fluctuate. In addition, the fluid tends to fluctuate due to the pulsation of the lubricating material injection pump, but the fluctuating pressure is absorbed by the accumulator through a pipe communicating with the gap into which the lubricating material is injected, and the formwork slides back and forth. In spite of the pulsation of the injection pump, the lubricant pressure is maintained at a constant pressure, thereby preventing the hardened layer from cracking.
[0011]
Further, as described in claim 2, when the front / rear sliding space portion of the mold and the lubricant injection gap are shut off via an adapter, the gap between the rear end face of the mold and the adapter is formed. By keeping the pipeline of the accumulator in communication with the space of, the hydraulic pressure supplied to the space through the pipeline is kept constant by the accumulator despite the fluctuation of the volume of the space due to the back and forth movement of the formwork. The holding is performed to prevent the hardened layer from cracking as described above.
[0012]
【Example】
1 to 5, a short cylinder 2 having the same outer diameter as the outer shell of the shield machine 1 is integrally provided at the rear end of the shield machine 1 for excavating a tunnel. The ribs 2a are fixed at several places on the inner peripheral surface of the short cylinder 2, and the front end of the inner cylinder 3 having a fixed length is integrally fixed to the rear end face of the rib 2a. The front and rear ends of the inner cylinder 3 are formed with thicker circular sliding contact surfaces 3a and 3b toward the outer diameter, and the front and rear ends of the cylindrical form 5 are formed on the circular sliding contact surfaces 3a and 3b via a seal 4. The inner peripheral surface of the portion is slidably contacted closely. The outer peripheral surface of the front end portion of the cylindrical form 5 is slidably and closely contacted with the inner peripheral surface of the ring-shaped end plate 2c provided integrally with the rear end of the short cylindrical body 2.
[0013]
The cylindrical form 5 has a smaller diameter than the outer shell of the shield machine 1 and is formed to have the same length as or slightly longer than the inner cylinder 3 and has a mold release made of a composite coating of ceramic and fluororesin on its outer peripheral surface. The layer 5a is laminated, and the releasability between the cured layer 6a of the curable material 6 described later and the cylindrical mold 5 is further improved by the release layer 5a. Also, jacks 7 are mounted at several places on the inner peripheral surface of the short cylindrical body 2, the rear end of the rod of the jack 7 is integrally connected to the front end surface of the cylindrical form 5, and the rods of the jacks 7 are expanded and contracted. By doing so, the cylindrical mold 5 is configured to slide back and forth on the inner cylinder 3.
[0014]
In addition, a curable material injection hole 10 communicating with a gap 9 between the tunnel excavation wall surface 8 and the cylindrical form 5 from an inner peripheral surface of a part of the short cylinder 2 at an appropriate position of the short cylinder 2. In addition, an injection member 10a formed by drilling is provided integrally, and an injection pipe 11 and a washing water supply pipe 12 having a valve 21 are connected to and communicated with the injection hole 10 from the inside of the short cylindrical body 2. A return pipe 13 having a valve 22 and a quick-setting material supply pipe 14 are sequentially connected to a distal end of the injection pipe 11 in a branched state via a valve 23 provided on the injection pipe 11. The injection hole 10 is provided at an appropriate position at the front end of the cylindrical mold 5 and the outer end opening of the flexible injection short tube is connected to the injection hole 10 to open the inner end of the flexible injection short tube. The injection pipe 11 or the like may be connected to and communicated with the opening of the inner cylinder 3 so as to face the inner peripheral surface of the inner cylinder 3.
[0015]
Reference numeral 15 denotes a buried pipe such as a fume pipe which is propelled and buried while being successively added to the inside of the tunnel excavation wall 8 following the inner cylinder 3 connected to the shield machine 1 and has an outer diameter of the outer diameter of the cylindrical formwork 5. And a tubular adapter 16 is integrally fixed to the front end of the buried pipe 15 at the forefront, and the front end face of the adapter 16 is attached to the rear end face of the inner cylinder 3. They are integrally connected by bolts and nuts.
[0016]
A space 17 is provided between the front end face of the adapter 16 and the rear end face of the mold 5 so that the mold 5 can slide back and forth. A lubricant injection hole 22 for injecting the lubricant 21 is formed in a gap 20 between the hardened layer 6a to be coated, and a check valve 27 and a valve 28 are inserted into the lubricant injection hole 22 from the inside of the buried pipe 15. Are connected and communicated. Further, the front end of the gap 20 communicates with the rear space portion 17 of the formwork 5 through the gap between the outer peripheral surface of the adapter 16 and the hardened layer 6a, and the tip of the lubricant injection pipe 23 maintains the lubricant pressure constant. The pipe 19 of the accumulator 18 for holding is connected and communicated. The shield machine 1 is configured to excavate a tunnel by rotating the cutter plate 1b by a motor 1a and discharge the excavated earth and sand through a buried pipe 15 at the rear, as is well known.
[0017]
Next, a method of lining the hardened layer 6a for covering the buried pipe 15 on the tunnel excavation wall surface 8 using the apparatus configured as described above will be described. First, the buried pipe 15 that is made to follow the shield machine 1 via the inner cylinder 3 is inserted and propelled into the tunnel excavation wall 8 by the propulsion jack 30 in the starting shaft 29, and when one buried pipe 15 is propelled. The next buried pipe 15 is connected and propelled. This propulsive force is transmitted from the buried pipe 15 to the shield machine 1 via the inner cylinder 3, and the shield machine 1 advances toward the reaching shaft (not shown) while excavating the tunnel by the cutter plate 1b.
[0018]
When the shield machine 1 excavates for a certain length in accordance with the propulsion of the buried pipe 15, the outer shell diameter of the shield machine 1 and the cylindrical mold are placed between the tunnel excavation wall surface 8 excavated by the shield machine 1 and the cylindrical formwork 5. A gap 9 having an annular cross section corresponding to the difference from the outer diameter of the frame 5 is formed. While the shield machine 1 is stopped in the gap 9, the curable material 6 is injected from the inside of the tunnel through the injection pipe 11 and the injection hole 10 to fill the gap 9.
[0019]
As the hardening material 6, if a certain period of time elapses after injection in a liquid state at the time of injection, such as a mortar obtained by kneading cement and sand, or a material obtained by adding bentonite to this mortar, or a mixture of water glass and sand. Any material may be used as long as it cures to form a cured layer 6a having a predetermined strength. Immediately before the curable material 6 is injected into the gap 9, a quick-setting material for accelerating the curing of the curable material 6 is supplied to the injection pipe 11 through the supply pipe 14, and mixed with the curable material 6. Inject into 9.
[0020]
After injecting the curable material 6 into the gap 9, the rod of the jack 7 mounted in the rear end short cylinder 2 of the shield machine 1 is expanded and contracted to reciprocate the cylindrical form 5 in the front-rear direction. Then, the curable material 6 fills the cavity 9 with a uniform density as a whole due to the vibration, and the contact surface between the curable material 6 and the cylindrical mold 5 is cut off to form the curable material 6 into a cylindrical shape. Adhering to the outer peripheral surface of the mold 5 is prevented. The prevention of the adhesion of the curable material 6 is more reliably performed by the release layer 5a layered on the outer peripheral surface of the cylindrical mold 5, and the release layer 5a and the release layer 5a are hardened as the curing of the curable material 6 progresses. The inner peripheral surface of the curable material 6 which is in sliding contact is smoothed to be in a completely separated state.
[0021]
On the other hand, the curable material 6 completely adheres to the tunnel excavation wall surface 8, and in this state, the curing of the curable material 6 progresses, and the cylindrical hardened layer 6a integrally fixed to the tunnel excavation wall surface 8 is formed. Formed gradually. After the hardened layer 6a has hardened to a certain strength such that the shape of the hardened layer 6a does not deform in the inner diameter direction, the rear end face of the buried pipe 15 is pressed and propelled by the propulsion jack 30 from the starting shaft 29 side, and the inner cylinder 3 The propulsive force is transmitted to the shield machine 1 through the shield machine 1 to excavate the shield machine 1 by a certain length (a distance equal to or less than the length of the cylindrical form 5), and a new tunnel excavation wall 8 corresponding to the excavation length is formed. Once formed, the curable material 6 is again injected into the gap 9 between the tunnel excavation wall surface 8 and the cylindrical form 5 as described above.
[0022]
In this way, every time a tunnel excavation wall surface 8 of a certain length is excavated and formed, the curable material 6 is injected into the gap 9 between the tunnel excavation wall surface 8 and the cylindrical formwork 5 and the cylindrical mold is formed. The hardening is performed while the frame 5 moves forward and backward to form a hardened layer 6a hardened to a certain strength. After the hardened layer 6a is completely hardened, the sealing machine 1 is moved to the buried pipe 15. The shield machine 1 may be excavated for a certain length by propulsion, and after the hardened layer 6a reaches a certain strength, until it is completely hardened, the shield machine 1 is tuned to the hardening speed in a fixed length, gradually by the propulsion of the buried pipe 15. You may be excavated.
[0023]
Each time the curable material 6 is injected and filled into the gap 9 between the tunnel excavation wall surface 8 and the cylindrical form 5, the valve 26 of the curable material injection pipe 23 is immediately closed, while the valve of the return pipe 13 is closed. With the 25 opened, the washing water flows from the washing water supply pipe 14 through the injection hole 10 at the tip of the injection pipe 23, and returns the curable material 6 filled in the injection hole 10 and the injection pipe 23 to the return pipe. Eliminate through 13 so that it does not interfere with the next infusion. In addition, the curable material 6 is prevented from flowing back into the injection hole 10 at the opening end of the injection hole 10 facing the cavity 9.
[0024]
After the curable material 6 filled and filled into the gap 9 as described above is cured to a certain strength to form the hardened layer 6a, when the shield machine 1 is propelled together with the buried pipe 15, the hardened material 6 is filled in the hardened layer 6a. The buried pipe 15 enters, but since the outer diameter of the buried pipe 15 is formed to be slightly smaller than the cylindrical form 5, the gap between the inner peripheral surface of the hardened layer 6 a and the outer peripheral face of the buried pipe 15 is reduced. , A thin gap 20 is formed. When the lubricating material 21 is injected into the gap 20 from the foremost buried pipe 15 through the injection pipe 22 and filled, the hardened layer 6a in which the outer peripheral surface of the buried pipe 15 is integrated with the excavation wall 8 via the lubricating layer is formed. The sliding resistance comes in contact with the inner peripheral surface of the cylindrical mold 5 and the propulsion resistance is reduced in combination with the prevention of the adhesion of the curable material 6 to the outer peripheral surface of the cylindrical mold 5.
[0025]
On the other hand, since the gap 20 between the inner peripheral surface of the hardened layer 6a and the outer peripheral surface of the buried pipe 15 communicates with the rear space portion 17 of the mold 5, when the mold 5 is moved back and forth as described above. When the mold 5 is moved backward, the sliding material 21 injected into the gap 20 receives a compressing action, and when the mold 5 moves forward, it receives a suction action, so that the sliding material pressure fluctuates to a large or small value. Although it tends to fluctuate due to the pulsation of the injection pump (not shown) of the material 21, the lubricant pressure is transmitted from the hardening material injection pipe 23 to the accumulator 18 through the liquid in the pipe 19, and the lubricant pressure increases. When the pressure fluctuates in the direction, the pressure is absorbed by the accumulator 18, and when the pressure fluctuates in the decreasing direction, the pressure is applied and the pressure of the sliding material 21 filling the gap 20 is maintained at a constant pressure. It is.
[0026]
FIG. 6 shows another embodiment of the present invention. In the above embodiment, the accumulator 18 is disposed in the lubricant injection hole 22 communicating with the gap 20 between the hardened layer 6a and the buried pipe 15. Although the pressure of the sliding material 21 filling the gap 20 is kept constant, in this embodiment, the accumulator 18 is independently provided at another location, and It is configured to absorb pressure fluctuations in the space behind the frame.
[0027]
That is, the front end outer peripheral portion of the adapter 16 interposed and connected between the inner cylinder 2 and the foremost buried pipe 15 is extended in the outer radial direction, and the outer peripheral end surface slides on the inner peripheral surface of the hardened layer 6a. A pipe 20a of the accumulator 18 is formed by penetrating the rear end of the inner cylinder into a space 20a formed between the projecting edge 16a and the rear end face of the formwork 5 so as to be in contact with the projecting edge 16a. It is made to let. Other structures are the same as those in the above-described example shown in FIG. 2, and therefore, the same reference numerals are given and the description of the configuration and operation is omitted.
[0028]
With such a configuration, when the curable material 6 injected into the gap 9 between the cylindrical form 5 and the tunnel excavation wall 8 is cured while moving the form 5 forward and backward, the form 5 Due to the forward and backward movement, the inside of the space portion 20a on the rear side of the mold fluctuates due to the pressurizing and depressurizing actions, and there is a possibility that cracks (cracks) occur in the hardened layer 6a due to the influence of the fluctuating pressure. Since the space 20a is filled with the liquid in the conduit 19a of the accumulator 18 as described above, the liquid is pressurized or decompressed in accordance with the fluctuating pressure in the space 20a generated by the back and forth movement of the mold 5; At the time of pressurization, the liquid pressure is reduced by the accumulator 18, while at the time of pressure reduction, the liquid pressure is increased to maintain the pressure in the space 20a at a constant pressure. In this embodiment, since the space 20a and the gap 20 between the hardened layer 6a and the buried pipe 15 are cut off by the protruding edge 16a of the adapter 16, the above-mentioned fluctuating pressure due to the back and forth movement of the mold 5 is There is no transmission to the gap 20.
[0029]
In each of the above embodiments, the curable material 6 is injected into the gap 9 between the tunnel excavation wall surface 8 and the cylindrical formwork 5 while excavating the tunnel by the shield machine 1. In place of the shield machine 1, as shown in FIG. 8, the buried pipe 15 is passed through the inner pipe 3 in which the cylindrical form 5 is slidably fitted to the already buried temporary pipe 41. Then, while the temporary pipe 41 and the buried pipe 15 are integrally propelled, a hardened layer 6a formed by hardening of the curable material 6 may be applied between the tunnel excavation wall surface 8 and the buried pipe 15 in the same manner as described above.
[0030]
As shown in FIG. 7, the temporary pipe 41 is buried while the tunnel is excavated by the shield machine 1A from the start shaft 29 to the arrival shaft 31 while the temporary pipe 41 is sequentially following the shield machine 1A according to the excavation. After removing the shield machine 1A that has reached the reaching shaft 31 and burying the shield machine 1A between the two shafts 29 and 31 in series in a row, the above-mentioned embodiment is applied to the rear end of the last temporary pipe 41 on the starting shaft 29 side. Similarly, the short tubular body 2 having the same outer diameter as the temporary pipe 41 is connected, and the cylindrical form 5 having an outer diameter smaller than the temporary pipe 41 is slidably fitted on the short tubular body 2. A buried pipe 15 having a diameter slightly smaller than that of the cylindrical form 5 is made to pass through the inner cylinder 3 and the buried pipe 15 is propelled by the propulsion jack 30 as shown in FIG. Curable material 6 is injected between the tunnel excavation wall surface 8 and the buried pipe 15 formed on the rear side of the Is slid back and forth or reciprocated in the circumferential direction by a jack 7 mounted in the short cylindrical body 2 to prevent the curable material 6 from adhering to the outer peripheral surface of the cylindrical form 5 and remove the cured layer 6a. To form.
[0031]
The hardened layer 6a is coated on the buried pipe 15 in accordance with the propulsion of the buried pipe 15, and the lubricating material 21 is injected into a gap between the hardened layer 6a and the buried pipe 15 to enable smooth propulsion. Other structures and operations are the same as those in the above embodiment, so that the description will be omitted. However, the temporary pipe 41 is followed by the buried pipe 15 to form a hardened layer 6a covering the outer circumference of the buried pipe 15 on the tunnel excavation wall 8. According to this method, since the temporary pipe 41 can be pulled from the arrival shaft 31 together with the propulsion of the buried pipe 15, the laying work of the buried pipe 15 can be performed with a small propulsive force. In addition, there is an advantage that the curable material 6 and the sliding material 21 can be supplied from the arrival shaft 31 through the temporary pipe 41.
[0032]
【The invention's effect】
As described above, according to the present invention, an inner cylinder in which a cylindrical form is externally slidably fitted back and forth is integrally connected to the rear end of the shield machine or the temporary pipe, and embedded in the rear end of the inner cylinder. A pipe is made to follow, and a curable material is injected into a gap between the mold and the tunnel excavation wall while moving the cylindrical form forward and backward to form a hardened layer. Since the buried pipe is coated by propulsion, it is possible to form a hardened layer while preventing the curable material from adhering and hardening to the outer peripheral surface of the cylindrical mold by reciprocating movement of the cylindrical mold. Therefore, since the hardened layer is cut off without adhering to the cylindrical form, the propulsion resistance of the buried pipe becomes extremely small, and smooth propulsion becomes possible.
[0033]
Furthermore, since the lubricant is injected into the gap between the buried pipe and the hardened layer, the buried pipe can be smoothly propelled in combination with the prevention of the adhesion of the curable material on the cylindrical formwork, Therefore, not only can the propulsion distance be lengthened and the propulsion equipment can be reduced, but also it can communicate with the space behind the formwork, which is cut off from the lubricating layer by the adapter, or in the pipe line for injecting the lubricating material. Since the accumulator is installed in the pipeline, the fluctuating pressure generated in the lubricating layer by the longitudinal movement of the mold and the pulsation of the lubricating material injection pump, or the fluctuating pressure generated in the space behind the mold by the longitudinal movement of the mold Can be absorbed by the accumulator , so that the inside of the sliding material layer and the space behind the formwork can always be kept at a constant pressure, and the occurrence of cracks in the hardened layer due to the fluctuating pressure can be prevented. thing A.
[Brief description of the drawings]
FIG. 1 is a simplified longitudinal side view showing a construction state,
FIG. 2 is a longitudinal sectional side view of a cylindrical form and a buried pipe portion connected to a shield machine,
FIG. 3 is a sectional view taken along line AA in FIG. 2;
FIG. 4 is a sectional view taken along line BB in FIG. 2;
FIG. 5 is a sectional view taken along line CC in FIG. 2;
FIG. 6 is a longitudinal sectional side view showing another embodiment of the present invention;
FIG. 7 is a simplified longitudinal side view of a state in which lining is being performed while a buried pipe is being made to follow a temporary pipe,
FIG. 8 is a longitudinal sectional side view showing a state where a temporary pipe is buried;
FIG. 9 is a vertical side view showing a conventional example.
[Explanation of symbols]
1 Shielding machine 3 Inner cylinder 5 Cylindrical form 6 Curable material
6a Hardened layer 7 Jack 8 Tunnel excavation wall 9 Void
15 Buried pipe
16 Adapter
17 Space
18 accumulator
19 Piping
20 gap
21 Lubricant

Claims (2)

シールド機又は仮管の後端に、円筒形型枠を前後摺動自在に外嵌させた内筒を一体に連結すると共にこの内筒の後端に埋設管を後続させ、上記円筒形型枠を前後動させながら該型枠とトンネル掘削壁面との間の空隙部に硬化性材料を注入して硬化層を形成し、この硬化層を後続埋設管の推進により該埋設管に被覆させる一方、埋設管と硬化層との間の隙間に滑材を注入するトンネル覆工方法に用いる覆工装置であって、滑材を注入する配管路中に滑材圧保持装置としてのアキュムレータを配設したことを特徴とするトンネル覆工方法に用いる覆工装置。At the rear end of the shield machine or the temporary pipe, an inner cylinder having a cylindrical form fitted externally slidably back and forth is integrally connected and a buried pipe is made to follow the rear end of the inner cylinder to form the cylindrical form. While moving back and forth, a curable material is injected into the gap between the formwork and the tunnel excavation wall to form a hardened layer, and the hardened layer is coated on the buried pipe by propulsion of the subsequent buried pipe, A lining device used for a tunnel lining method for injecting a lubricant into a gap between a buried pipe and a hardened layer, wherein an accumulator as a lubricant pressure holding device is disposed in a piping path for injecting a lubricant . A lining device for use in a tunnel lining method. シールド機又は仮管の後端に、円筒形型枠を前後摺動自在に外嵌させた内筒を一体に連結すると共にこの内筒の後端にアダプターを介して埋設管を後続させ、上記円筒形型枠を前後動させながら該型枠とトンネル掘削壁面との間の空隙部に硬化性材料を注入して硬化層を形成し、この硬化層を後続埋設管の推進により該埋設管に被覆させる一方、埋設管と硬化層との間の隙間に滑材を注入するトンネル覆工方法用いる覆工装置であって、上記アダプターの外周端面を硬化層の内周面に摺接させると共に該アダプターと上記円筒形型枠の後端面との間の空間部に内筒後端部を貫通させてアキュムレータの管路を連通させたことを特徴とするトンネル覆工方法に用いる覆工装置。At the rear end of the shield machine or the temporary pipe, an inner cylinder with a cylindrical form slidably fitted back and forth is connected integrally, and at the rear end of this inner cylinder, a buried pipe is made to follow an adapter via an adapter. A curable material is injected into the gap between the mold and the tunnel excavation wall surface while moving the cylindrical mold back and forth to form a hardened layer, and this hardened layer is formed on the buried pipe by the propulsion of the subsequent buried pipe. A lining device using a tunnel lining method for injecting a lubricant into a gap between a buried pipe and a hardened layer while coating, wherein an outer peripheral end surface of the adapter is slidably contacted with an inner circumferential surface of the hardened layer. A lining device for use in a tunnel lining method, characterized in that a rear end portion of an inner cylinder penetrates a space between an adapter and a rear end surface of the cylindrical form so as to communicate a pipe of an accumulator.
JP04482195A 1995-02-08 1995-02-08 Lining equipment used for tunnel lining method Expired - Fee Related JP3542657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04482195A JP3542657B2 (en) 1995-02-08 1995-02-08 Lining equipment used for tunnel lining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04482195A JP3542657B2 (en) 1995-02-08 1995-02-08 Lining equipment used for tunnel lining method

Publications (2)

Publication Number Publication Date
JPH08218781A JPH08218781A (en) 1996-08-27
JP3542657B2 true JP3542657B2 (en) 2004-07-14

Family

ID=12702122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04482195A Expired - Fee Related JP3542657B2 (en) 1995-02-08 1995-02-08 Lining equipment used for tunnel lining method

Country Status (1)

Country Link
JP (1) JP3542657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210082001A (en) * 2019-12-24 2021-07-02 남윤창 Leading pipe with radial type grouting apparatus and steel pipe pressing method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210082001A (en) * 2019-12-24 2021-07-02 남윤창 Leading pipe with radial type grouting apparatus and steel pipe pressing method using the same
KR102323639B1 (en) * 2019-12-24 2021-11-08 남윤창 Leading pipe with radial type grouting apparatus and steel pipe pressing method using the same

Also Published As

Publication number Publication date
JPH08218781A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
JP3542657B2 (en) Lining equipment used for tunnel lining method
JP3942656B2 (en) Lubricant and tubular body propulsion burying method using the lubricant
JP3507174B2 (en) Tunnel excavation wall lining method and apparatus
JP3542656B2 (en) Structure of backing material inlet in shield machine
JP3765045B2 (en) Shield tunnel construction method
JP4712529B2 (en) Tunnel excavator
KR100679165B1 (en) Segments for shield process and process for establishing tube channel using the same
JP3507173B2 (en) Tunnel excavation wall lining method and apparatus
CN212744003U (en) Hydraulic mould and automatic molding system for traction connection of cement pipeline
JP2770113B2 (en) Injection device with double packer for curved pipes
JP3299904B2 (en) Wife formwork in shielded excavators
JP4234313B2 (en) Construction method of widening tunnel
WO2021151289A1 (en) Underwater tunnel, construction method thereof and water blocking machine for construction
JP4812134B2 (en) Construction method of widening tunnel
JP2652314B2 (en) Sealing method and device in shield machine
JPH1163299A (en) Execution method of multi-conduit pipe and multi-conduit pipe
JP3383048B2 (en) Pipe laying method
JP3299903B2 (en) Tunnel lining structure and tunnel construction method
JPH0232438B2 (en)
JPH041367A (en) Crack impregnation method
CN111637278A (en) Hydraulic mould and automatic molding system for traction connection of cement pipeline
JPH07238780A (en) Execution method of underground piping
JPH0423994Y2 (en)
SU1057659A1 (en) Arrangement for laying monolithic concrete pipelineswithout soil removal
JPH10325299A (en) Shield excavation machine and tunnel-lining method by using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees