JP3541166B2 - Pipe joining method - Google Patents

Pipe joining method Download PDF

Info

Publication number
JP3541166B2
JP3541166B2 JP2000218412A JP2000218412A JP3541166B2 JP 3541166 B2 JP3541166 B2 JP 3541166B2 JP 2000218412 A JP2000218412 A JP 2000218412A JP 2000218412 A JP2000218412 A JP 2000218412A JP 3541166 B2 JP3541166 B2 JP 3541166B2
Authority
JP
Japan
Prior art keywords
welding
peripheral surface
electron beam
surface side
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000218412A
Other languages
Japanese (ja)
Other versions
JP2002035956A (en
Inventor
武人 山川
雅之 犬塚
護 西尾
智章 高士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2000218412A priority Critical patent/JP3541166B2/en
Publication of JP2002035956A publication Critical patent/JP2002035956A/en
Application granted granted Critical
Publication of JP3541166B2 publication Critical patent/JP3541166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、端面が相互に突き合わされた2本の管の突き合わせ部を、接合する管の接合方法に関し、特にパイプライン敷設工事において、好適に実施することができる管の接合方法に関する。
【0002】
【従来の技術】
パイプラインは、敷設現場で複数本の導管を、その端面を相互に突き合わせて敷設し、この各導管の突き合わせ部を各種の溶接方法によって、溶接される。このようなパイプラインでは、ガスなどの流体を大容量で輸送するために、管径の大きい導管が使用され、さらに流体を高圧輸送するために、厚板の導管が使用される。したがって、パイプラインを速く建設するためには、突き合わせ部を高速で接合する必要があり、MAG溶接方法、TIG溶接方法、レーザ溶接方法および電子ビーム溶接方法などの種々の溶接方法の高速溶接化が考案されている。特に、電子ビーム溶接方法は厚板の高速溶接が可能な方法であるため、この電子ビーム溶接方法を、パイプラインの突き合わせ溶接に用いるための装置が開発されている。
【0003】
また、特開昭52−26331号公報には、2台の電子ビーム出射装置からの各電子ビームによって、被溶接材の継目を、被溶接材の厚さの途中まで溶込み、部分溶接する方法が開示されている。
【0004】
また、特開昭55−128384号公報には、まず電子ビーム溶接によって、被溶接材の外面側を溶接し、その後一定時間ずらして、電子ビーム溶接によって、被溶接材の内面側を溶接する方法が開示されている。
【0005】
また、特開昭56−119679号公報には、2つの金属体の突き合わせ面に、両側から同時に電子ビームを照射することによって溶接する方法が開示されている。
【0006】
【発明が解決しようとする課題】
上述したように、電子ビーム溶接方法は、高速溶接が可能な方法であるが、上向きの溶接姿勢、すなわち鉛直上方に向けて電子ビームを照射して溶接するとき、裏波ビードなどと呼ばれる突き合わせ部の外周面側に盛り上がる余盛を形成することが困難である。つまり、上向きの溶接姿勢のとき、裏波ビードを形成するための条件許容度が小さく、突き合わせ部の開先ギャップの僅かな誤差によって、電子ビーム溶接後に、裏波ビードの補修を必要とし、導管敷設の高速施工が阻害される。また、突き合わせ部の内側と外側とを減圧するための機構を必要とし、溶接装置の構成が複雑になってしまう。
【0007】
また、特開昭52−26331号公報、特開昭55−128384号公報および特開昭56−119679号公報に開示される先行技術では、いずれも管の外側を減圧するための機構を必要とする。
【0008】
また、電子ビーム溶接方法で形成されるビード幅は狭くなるので、このビードは、突き合わせ部から導管の内側に向けて、鋭く突出した形状を有している。したがって、このビードが管内の流体の流れ抵抗となって、流体が圧力損失を生じることがある。また、溶接部の超音波試験のとき、ビードの突出部で強い反射波が返ってくるので、正確な検査を阻害することがある。
【0009】
したがって、本発明の目的は、端面が相互に突き合わされた2本の管を、高速度で接合することができる管の接合方法を提供することである。
【0010】
また、本発明の他の目的は、管内の流体の流れ抵抗が可及的に少ないビードを形成することができる管の接合方法を提供することである。
【0011】
【課題を解決するための手段】
請求項1記載の本発明は、端面が相互に突き合わされる2本の管の突き合わせ部を接合する管の接合方法において、
大気圧下で溶接する第1溶接手段によって、前記突き合わせ部の外周面側領域を全周にわたって溶接し、
次に、減圧下で電子ビームを照射して溶接する第2溶接手段によって、管の内側から突き合わせ部の内周面に向けて、電子ビームを照射して、突き合わせ部の内周面側領域を全周にわたって溶接することを特徴とする管の接合方法である。
【0012】
本発明に従えば、まず溶接雰囲気が大気圧下の状態で溶接を行う第1溶接手段によって、突き合わせ部の外周面側領域を全周にわたって溶接する。このように、溶接雰囲気を減圧しない第1溶接手段によって、形成されたビードのビード幅は大きくなるので、突き合わせ部の外周面側領域には、確実に裏波ビードが形成される。また、この第1溶接手段としては、溶接雰囲気を減圧状態にすることなく溶接できる電子ビーム溶接手段以外の溶接手段を採用することができ、たとえばアーク溶接手段、ガス溶接手段またはレーザ溶接手段などが採用できる。
【0013】
次に、減圧下で電子ビームを照射して溶接する第2溶接手段によって、管の内側から突き合わせ部の内周面に向けて、電子ビームを照射して、突き合わせ部の内周面側領域を全周にわたって溶接する。すなわち、第2溶接手段として、電子ビーム溶接手段を採用しているので、突き合わせ部の内周面側領域を高速度で溶接することができる。また第1溶接手段によって、突き合わせ部の外周面側領域を全周にわたって溶接しているので、突き合わせ部の内側と外側とが気密に遮断され、これによって、第2溶接手段で内周面側領域を溶接するとき、突き合わせ部の内側のみを減圧すればよく、外側を減圧する必要がない。
【0014】
請求項2記載の本発明は、請求項1記載の構成において、前記第2溶接手段によって、突き合わせ部の内周面側領域を溶接した後、内周面側に形成されたビードに向けて、前記内周面側領域の溶接時よりも低いエネルギで、電子ビームを照射すること特徴とする管の接合方法である。
【0015】
本発明に従えば、第2溶接手段によって形成された内周面側のビードに、この内周面側領域の溶接時よりも低いエネルギである、たとえば焦点をぼかした電子ビームが照射され、これによってビードの表面が部分的に溶融されて、滑らかになる。したがって、この滑らかなビードでは、管内の流体の流れの抵抗が可及的に少なくなり、圧力損失も少なくなる。さらに、超音波検査などの非破壊検査の障害となることもない。
【0016】
【発明の実施の形態】
図1は、本発明の実施の一形態の管の接合方法を実現する溶接装置1を示す図である。まず図1を参照して、溶接装置1の構成について説明する。溶接装置1は、2本の管2a,2bを固定するクランプ手段4と、2本の管2a,2bの突き合わせ部5の外周面側領域30を溶接する第1溶接手段18と、突き合わせ部5の内周面側領域31を溶接する第2溶接手段19と、突き合わせ部5の外周面側領域31に開先部25を形成する開先形成手段11とによって構成される。
【0017】
クランプ手段4は、2つの円環状のリング部材8a,8bと、これらのリング部材8a,8bに、外周面側(図1の上方)から直径線方向内方(図1の下方)に挿通される真円矯正ボルト9と、2つのリング部材8a,8bにまたがって装着される複数本のクランプボルト10とによって構成される。各リング部材8a,8bに、略水平に敷設される2本の管2a,2bの端部を挿入し、端面12を相互に突き合わせる。その後、真円矯正ボルト9を、管2a,2bの直径線方向内方(図1の下方)にねじ込むことによって、各管2a,2bを真円形状に矯正するとともに、各管2a,2bの管軸13a,13bが同軸となるように、各管2a,2bを固定する。
【0018】
第1溶接手段18はレーザ出力ヘッド7を有し、このレーザ出力ヘッド7は、レーザ出射口14を突き合わせ部5の外周面16に対向させた状態で、突き合わせ部5の外側24に配置され、各管2a,2bに共通な管軸13を中心として、管2a,2bの外周に沿って、移動可能に設けられる。このレーザ出力ヘッド7は、レーザ出射口14から突き合わせ部5の外周面16に向けて、レーザ光20を出射する。このレーザ光20は、YAGレーザなどのパルスレーザまたは炭酸ガスレーザなどの連続発振レーザなどが用いられる。
【0019】
第2溶接手段19は電子ビーム出力ヘッド6を有し、この電子ビーム出力ヘッド6は、ビーム出射口15を突き合わせ部5の内周面17に対向させた状態で、突き合わせ部5の内側23に配置され、管2a,2bに共通な管軸13を中心として、管2a,2bの内周に沿って移動可能に設けられる。この電子ビーム出力ヘッド6は、ビーム出射口15から突き合わせ部5の内周面17に向けて、電子ビーム21を出射する。
【0020】
開先形成手段11は、その開先形成部22を突き合わせ部5の外周面16に対向させた状態で、突き合わせ部5の外側24に配置され、管2a,2bに共通な管軸13を中心として、管2a,2bの外周に沿って移動可能に設けられる。
【0021】
次に図2〜図9を参照して、本発明の管の接合方法について説明する。図2は、本発明の管の接合方法を説明するための図であり、図3は本発明の管の接合方法のフローチャートであり、図4はステップs1を示す図であり、図5はステップs2を示す図であり、図6はステップs3を示す図であり、図7はステップs4を示す図であり、図8はステップs5を示す図であり、図9はステップs6を示す図である。
【0022】
まずステップs1で、図4に示すように、接合すべき2本の管2a,2bを、その各管軸13a,13bを同軸にした状態で略水平に敷設し、各管2a,2bの各端面12を相互に突き合わせて、クランプ手段4で各管2a,2bを固定する。
【0023】
次にステップs2で、図5に示すように、開先形成手段11を各管2a,2bに共通な管軸13を中心として、管2a,2bの外周に沿って移動させながら突き合わせ部5の外周面側領域30(図5の上方)を、全周にわたって削り取る。これによって、突き合わせ部5の外周面側領域30に、開先部25が全周にわたって形成される。
【0024】
次にステップs3で、図2および図6に示すように、レーザ出力ヘッド7を各管2a,2bに共通な管軸13を中心として、管2a,2bの外周に沿って移動させながら、溶接雰囲気が大気圧下の状態で、突き合わせ部5に形成された開先部25に向けてレーザ光21を照射する。これによって、開先部25が全周にわたって、部分溶け込み溶接される。このように、溶接雰囲気が大気圧下の状態で溶接を行う第1溶接工程によって、突き合わせ部5の開先部25が部分溶接されるので、突き合わせ部5の外周面側領域30には、全周にわたって、外周面側に盛り上がる余盛、すなわち裏波ビード26が確実に形成される。なお、この第1溶接工程による外周面側領域30の溶接作業は、各管2a,2bを仮付けする作用も兼ねているので、各管2a,2bが正確に位置決めされる。したがって、次工程の第2溶接工程での突き合わせ部5の内周面側領域31の溶接作業が容易となる。さらに、この突き合わせ部5のギャップ許容度が向上する。
【0025】
次にステップs4で、突き合わせ部5の内側を真空排気して減圧し、図2および図7に示すように、第2溶接手段である電子ビーム出力ヘッド6を各管2a,2bに共通な管軸13を中心として、管2a,2bの内周に沿って移動させながら、溶接雰囲気が減圧下の状態で、突き合わせ部5の内周面17に向けて電子ビーム20を照射する。これによって、突き合わせ部5の内周面側領域31が、全周にわたって溶接される。このように、溶接雰囲気が減圧下の状態、すなわち真空雰囲気で溶接を行う第2溶接工程では、電子ビーム溶接によって、突き合わせ部5の内周面側領域31が溶接されるので、この内周面側領域31は、高速度で溶接される。また、突き合わせ部5の外周面側領域30には裏波ビード26が全周にわたって形成されているので、突き合わせ部5の内側23と外側24とは、この裏波ビード26によって気密に遮断される。したがって、第2溶接工程では、突き合わせ部5の内側23のみを真空排気して減圧すればよく、外側24を真空排気して減圧する必要はない。
【0026】
次にステップs5で、図8に示すように、突き合わせ部5の内側23を減圧状態に保持したまま、電子ビーム出力ヘッド6を管軸13を中心として、内周面17に沿って移動させながら、突き合わせ部5の内周面側領域31のビード27の管の内側23に突出する突出部28に向けて、上記の第2溶接工程時よりもエネルギの低い電子ビーム29、すなわち焦点をぼかした電子ビーム29を照射する。これによって、ビード27の突出部28が部分的に溶融され、滑らかになる。つまり、突き合わせ部5の内周面側が化粧盛溶接される。したがって、この滑らかに加工されたビード27では、管2a,2bの内側23を流れる流体に対する流れ抵抗が可及的に小さくなり、流体の圧力損失も少なくなる。さらに、超音波検査などの非破壊検査の障害となることもない。
【0027】
その後、ステップs6に進み、2本の管2a,2bの接合が完了する。なお、図9に示すように、突き合わせ部5の外周面側の裏波ビード26の厚さT2は、管2の厚さT1の50%以下であることが好ましく、内周面側のビード27の厚さT3は、管2の厚さT1の50%以上であることが好ましい。つまり、第1溶接方法によって、突き合わせ部5を管2厚さT1の50%以下の深さまで溶接し、その後第2溶接方法によって、管2の厚さT1の50%以上の深さを溶接することが好ましい。このように電子ビームを使用する第2溶接方法によって、管厚さの半分以上を溶接することによって、効率よく各管2a,2bを接合することができる。
【0028】
上述した本発明の管の接合方法は、たとえばパイプラインの敷設作業において好適に実施され、さらに大容量のガスなどの流体を輸送するための大径の管および高圧輸送に耐えるための厚板の管を接続するときに、特に好適に実施される。
【0029】
なお、本実施形態の管の接合方法では、第1溶接方法として、レーザ溶接方法を採用したが、レーザ溶接方法に代えて、アーク溶接方法またはガス溶接方法を採用できる。
【0030】
【発明の効果】
請求項1記載の本発明によれば、端面が相互に突き合わされた2本の管の突き合わせ部を、溶接雰囲気が大気圧下の状態で溶接を行う第1溶接手段によって、溶接するので、突き合わせ部の外周面側領域には、確実に裏波ビードを形成することができる。次に、減圧下で電子ビームを照射して溶接する第2溶接手段によって、管の内側から突き合わせ部の内周面に向けて、電子ビームを照射して、溶接するので、突き合わせ部の内周面側領域を高速度で溶接することができる。また、突き合わせ部の外周面側領域には裏波ビードが形成されているので、突き合わせ部の内側と外側とは遮断され、第2溶接手段による溶接作業時には、突き合わせ部の内側のみを減圧すればよく、外側を減圧する必要がない。
【0031】
請求項2記載の本発明よれば、第2溶接手段によって形成された内周面側のビードに、低いエネルギの電子ビームが照射され、これによってビードが部分的に溶融し、滑らかになる。したがって、この滑らかなビードでは、管内の流体の流れの抵抗が可及的に少なくなり、流体の圧力損失も少なくなる。さらに、超音波検査などの非破壊検査の障害となることもない。
【図面の簡単な説明】
【図1】本発明の実施の一形態の管の接合方法を実現する溶接装置1を示す図である。
【図2】本発明の管の接合方法を説明するための図である。
【図3】本発明の管の接合方法のフローチャートである。
【図4】ステップs1を示す図である。
【図5】ステップs2を示す図である。
【図6】ステップs3を示す図である。
【図7】ステップs4を示す図である。
【図8】ステップs5を示す図である。
【図9】ステップs6を示す図である。
【符号の説明】
1 溶接装置
2a,2b 管
4 クランプ手段
5 突き合わせ部
6 電子ビーム出力ヘッド
7 レーザ出力ヘッド
18 第1溶接手段
19 第2溶接手段
20 レーザ光
21 電子ビーム
26 裏波ビード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pipe joining method for joining two butted ends of two pipes whose end faces are joined to each other, and more particularly to a pipe joining method that can be suitably implemented in pipeline laying work.
[0002]
[Prior art]
The pipeline is constructed by laying a plurality of conduits at the laying site with their end faces butting each other, and the butted portions of the respective conduits are welded by various welding methods. In such a pipeline, a pipe having a large diameter is used to transport a fluid such as a gas in a large volume, and a thick pipe is used to transport the fluid at a high pressure. Therefore, in order to construct a pipeline quickly, it is necessary to join the butt portions at high speed, and various welding methods such as a MAG welding method, a TIG welding method, a laser welding method, and an electron beam welding method can be made at high speed. It has been devised. In particular, since the electron beam welding method is a method capable of high-speed welding of thick plates, an apparatus for using this electron beam welding method for butt welding of pipelines has been developed.
[0003]
Japanese Patent Laid-Open No. 52-26331 discloses a method in which a joint of a material to be welded is melted halfway through the thickness of the material to be welded by each electron beam from two electron beam emitting devices. Is disclosed.
[0004]
Japanese Patent Application Laid-Open No. 55-128384 discloses a method of welding the outer surface side of a material to be welded by electron beam welding first, and then shifting the inner surface side of the material to be welded by electron beam welding after shifting for a certain time. Is disclosed.
[0005]
Japanese Patent Application Laid-Open No. Sho 56-119679 discloses a method of welding by irradiating the butt surfaces of two metal bodies simultaneously with electron beams from both sides.
[0006]
[Problems to be solved by the invention]
As described above, the electron beam welding method is a method capable of high-speed welding. However, when welding is performed by irradiating an electron beam upwardly, that is, vertically upward, a butting portion called a backside bead or the like. It is difficult to form an extra bank that swells on the outer peripheral surface side. In other words, in the upward welding position, the condition tolerance for forming the back bead is small, and due to a slight error in the groove gap of the butt portion, the back bead needs to be repaired after electron beam welding, and the conduit High-speed construction of construction is hindered. Moreover, the mechanism for decompressing the inner side and the outer side of the abutting portion is required, and the configuration of the welding apparatus becomes complicated.
[0007]
The prior arts disclosed in JP-A-52-26331, JP-A-55-128384, and JP-A-56-119679 all require a mechanism for decompressing the outside of the tube. To do.
[0008]
In addition, since the bead width formed by the electron beam welding method is narrowed, the bead has a shape projecting sharply from the butt portion toward the inside of the conduit. Therefore, this bead becomes a flow resistance of the fluid in the pipe, and the fluid may cause a pressure loss. Further, during the ultrasonic test of the welded portion, a strong reflected wave is returned at the protruding portion of the bead, which may hinder accurate inspection.
[0009]
Accordingly, an object of the present invention is to provide a method for joining pipes, which can join two pipes whose end faces are butted against each other at a high speed.
[0010]
Another object of the present invention is to provide a method for joining pipes that can form a bead with as little flow resistance as possible in the pipe.
[0011]
[Means for Solving the Problems]
The present invention described in claim 1 is a method for joining pipes, in which the butted portions of two pipes whose end faces are butted against each other are joined.
By the first welding means for welding under atmospheric pressure, the outer peripheral surface side region of the butted portion is welded over the entire circumference,
Next, the second welding means for irradiating and welding an electron beam under reduced pressure irradiates the electron beam from the inner side of the tube toward the inner peripheral surface of the butt portion, and thereby the inner peripheral surface side region of the butt portion is formed. A pipe joining method characterized by welding all around the circumference.
[0012]
According to the present invention, first, the outer peripheral surface side region of the butt portion is welded over the entire circumference by the first welding means that performs welding in a state where the welding atmosphere is under atmospheric pressure. Thus, since the bead width of the formed bead is increased by the first welding means that does not depressurize the welding atmosphere, a back bead is reliably formed in the outer peripheral surface side region of the butt portion. As the first welding means, a welding means other than an electron beam welding means capable of welding without reducing the welding atmosphere can be employed. For example, an arc welding means, a gas welding means, a laser welding means, or the like can be used. Can be adopted.
[0013]
Next, the second welding means for irradiating and welding an electron beam under reduced pressure irradiates the electron beam from the inner side of the tube toward the inner peripheral surface of the butt portion, and thereby the inner peripheral surface side region of the butt portion is formed. Weld all around. That is, since the electron beam welding means is employed as the second welding means, the inner peripheral surface side region of the butt portion can be welded at a high speed. Moreover, since the outer peripheral surface side area | region of the butt | matching part is welded over the perimeter by the 1st welding means, the inner side and the outer side of the butt | matching part are interrupted | blocked airtightly, and, thereby, an inner peripheral surface side area | region by the 2nd welding means , It is only necessary to depressurize only the inside of the butt portion, and there is no need to depressurize the outside.
[0014]
According to a second aspect of the present invention, in the configuration according to the first aspect, after the inner peripheral surface side region of the butt portion is welded by the second welding means, toward the bead formed on the inner peripheral surface side, In this method, the electron beam is irradiated with energy lower than that in the welding of the inner peripheral surface region.
[0015]
According to the present invention, the bead on the inner peripheral surface side formed by the second welding means is irradiated with an electron beam having a lower energy than that during welding of the inner peripheral surface side region, such as a defocused electron beam. The surface of the bead is partially melted and smoothed. Therefore, with this smooth bead, the resistance of the fluid flow in the pipe is reduced as much as possible, and the pressure loss is also reduced. Furthermore, there is no obstacle to nondestructive inspection such as ultrasonic inspection.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing a welding apparatus 1 that realizes a pipe joining method according to an embodiment of the present invention. First, the configuration of the welding apparatus 1 will be described with reference to FIG. The welding apparatus 1 includes a clamp unit 4 that fixes two pipes 2a and 2b, a first welding unit 18 that welds an outer peripheral surface side region 30 of a butted portion 5 of the two tubes 2a and 2b, and a butted portion 5. The second welding means 19 for welding the inner peripheral surface side region 31 and the groove forming means 11 for forming the groove portion 25 in the outer peripheral surface side region 31 of the butt portion 5.
[0017]
The clamping means 4 is inserted into the two annular ring members 8a and 8b and these ring members 8a and 8b from the outer peripheral surface side (upper side in FIG. 1) to the inner side in the diameter line direction (lower side in FIG. 1). And a plurality of clamp bolts 10 mounted across the two ring members 8a and 8b. End portions of two pipes 2a and 2b laid substantially horizontally are inserted into the ring members 8a and 8b, and the end surfaces 12 are abutted against each other. Thereafter, the straight circle straightening bolt 9 is screwed into the inside of the tubes 2a and 2b in the diameter line direction (downward in FIG. 1), thereby correcting the respective tubes 2a and 2b into a perfect circle shape. The tubes 2a and 2b are fixed so that the tube shafts 13a and 13b are coaxial.
[0018]
The first welding means 18 has a laser output head 7, and this laser output head 7 is disposed on the outer side 24 of the abutting portion 5 with the laser emission port 14 facing the outer peripheral surface 16 of the abutting portion 5. Centering on a tube axis 13 common to the tubes 2a and 2b, the tube 2a and 2b are provided so as to be movable along the outer periphery of the tubes 2a and 2b. The laser output head 7 emits a laser beam 20 from the laser emission port 14 toward the outer peripheral surface 16 of the butting portion 5. As the laser beam 20, a pulse laser such as a YAG laser or a continuous wave laser such as a carbon dioxide gas laser is used.
[0019]
The second welding means 19 has an electron beam output head 6, and this electron beam output head 6 is disposed on the inner side 23 of the abutting portion 5 with the beam exit 15 facing the inner peripheral surface 17 of the abutting portion 5. It arrange | positions and it is provided so that a movement along the inner periphery of the pipe | tubes 2a and 2b centering | focusing on the pipe axis 13 common to the pipe | tubes 2a and 2b. The electron beam output head 6 emits an electron beam 21 from the beam emission port 15 toward the inner peripheral surface 17 of the butting portion 5.
[0020]
The groove forming means 11 is disposed on the outer side 24 of the abutting portion 5 with the groove forming portion 22 opposed to the outer peripheral surface 16 of the abutting portion 5, and is centered on the tube shaft 13 common to the tubes 2 a and 2 b. As described above, the pipes 2a and 2b are provided so as to be movable along the outer circumference.
[0021]
Next, with reference to FIG. 2 to FIG. 9, a method for joining pipes according to the present invention will be described. FIG. 2 is a diagram for explaining the pipe joining method of the present invention, FIG. 3 is a flowchart of the pipe joining method of the present invention, FIG. 4 is a diagram showing step s1, and FIG. FIG. 6 is a diagram showing step s3, FIG. 7 is a diagram showing step s4, FIG. 8 is a diagram showing step s5, and FIG. 9 is a diagram showing step s6. .
[0022]
First, in step s1, as shown in FIG. 4, the two pipes 2a and 2b to be joined are laid substantially horizontally with their pipe shafts 13a and 13b being coaxial, and the pipes 2a and 2b are respectively laid horizontally. The end faces 12 are butted against each other, and the pipes 2 a and 2 b are fixed by the clamping means 4.
[0023]
Next, in step s2, as shown in FIG. 5, the groove forming means 11 is moved along the outer periphery of the tubes 2a and 2b around the tube axis 13 common to the tubes 2a and 2b. The outer peripheral surface side region 30 (upper side in FIG. 5) is scraped over the entire circumference. Thereby, the groove part 25 is formed in the outer peripheral surface side area | region 30 of the butt | matching part 5 over the perimeter.
[0024]
Next, in step s3, as shown in FIGS. 2 and 6, welding is performed while moving the laser output head 7 around the tube axis 13 common to the tubes 2a and 2b along the outer periphery of the tubes 2a and 2b. In a state where the atmosphere is under atmospheric pressure, the laser beam 21 is irradiated toward the groove portion 25 formed in the butt portion 5. As a result, the groove portion 25 is partially melt welded over the entire circumference. Thus, since the groove part 25 of the butt | matching part 5 is partially welded by the 1st welding process which welds in the state where welding atmosphere is under atmospheric pressure, in the outer peripheral surface side area | region 30 of the butt | matching part 5, Over the circumference, the surging that rises to the outer peripheral surface side, that is, the back bead 26 is reliably formed. In addition, since the welding operation of the outer peripheral surface side region 30 in the first welding process also serves to temporarily attach the tubes 2a and 2b, the tubes 2a and 2b are accurately positioned. Therefore, the welding operation of the inner peripheral surface side region 31 of the butt portion 5 in the second welding process of the next process becomes easy. Furthermore, the gap tolerance of the butting portion 5 is improved.
[0025]
Next, in step s4, the inside of the abutting portion 5 is evacuated and depressurized, and as shown in FIGS. 2 and 7, the electron beam output head 6 as the second welding means is connected to the tubes 2a and 2b. The electron beam 20 is radiated toward the inner peripheral surface 17 of the butt portion 5 in a state where the welding atmosphere is under reduced pressure while moving along the inner periphery of the tubes 2a and 2b around the shaft 13. Thereby, the inner peripheral surface side region 31 of the butted portion 5 is welded over the entire circumference. In this way, in the second welding process in which the welding atmosphere is in a reduced pressure state, that is, in a vacuum atmosphere, the inner peripheral surface side region 31 of the butt portion 5 is welded by electron beam welding. The side region 31 is welded at high speed. Further, since the backside bead 26 is formed over the entire circumference in the outer peripheral surface side region 30 of the abutting portion 5, the inner side 23 and the outer side 24 of the abutting portion 5 are hermetically blocked by the backside bead 26. . Therefore, in the second welding process, only the inner side 23 of the butt portion 5 may be evacuated and depressurized, and the outer side 24 need not be evacuated and depressurized.
[0026]
Next, in step s5, as shown in FIG. 8, the electron beam output head 6 is moved along the inner peripheral surface 17 about the tube axis 13 while the inner side 23 of the abutting portion 5 is maintained in a reduced pressure state. The electron beam 29 having a lower energy than that in the second welding step, that is, the focus is blurred toward the projecting portion 28 projecting to the inner side 23 of the tube of the bead 27 in the inner peripheral surface side region 31 of the butting portion 5. An electron beam 29 is irradiated. As a result, the protruding portion 28 of the bead 27 is partially melted and smoothed. That is, the inner peripheral surface side of the butting portion 5 is subjected to decorative welding. Therefore, in this smoothly processed bead 27, the flow resistance with respect to the fluid flowing through the inner side 23 of the pipes 2a and 2b is reduced as much as possible, and the pressure loss of the fluid is also reduced. Furthermore, there is no obstacle to nondestructive inspection such as ultrasonic inspection.
[0027]
Then, it progresses to step s6 and joining of the two pipe | tubes 2a and 2b is completed. As shown in FIG. 9, the thickness T2 of the backside bead 26 on the outer peripheral surface side of the butt portion 5 is preferably 50% or less of the thickness T1 of the tube 2, and the bead 27 on the inner peripheral surface side. The thickness T3 of the tube 2 is preferably 50% or more of the thickness T1 of the tube 2. That is, the butted portion 5 is welded to a depth of 50% or less of the tube 2 thickness T1 by the first welding method, and then a depth of 50% or more of the thickness T1 of the tube 2 is welded by the second welding method. It is preferable. Thus, the pipes 2a and 2b can be efficiently joined by welding more than half of the pipe thickness by the second welding method using an electron beam.
[0028]
The above-described method for joining pipes of the present invention is preferably implemented in, for example, pipeline laying work, and further includes a large-diameter pipe for transporting a fluid such as a large-capacity gas and a thick plate for withstanding high-pressure transport. This is particularly preferred when connecting the tubes.
[0029]
In the pipe joining method of the present embodiment, the laser welding method is adopted as the first welding method, but an arc welding method or a gas welding method can be adopted instead of the laser welding method.
[0030]
【The invention's effect】
According to the first aspect of the present invention, the butted portions of the two pipes whose end faces are butted against each other are welded by the first welding means that performs welding in a state where the welding atmosphere is under atmospheric pressure. A back bead can be reliably formed in the outer peripheral surface side region of the portion. Next, the second welding means for irradiating and welding an electron beam under reduced pressure irradiates and welds the electron beam from the inside of the tube toward the inner peripheral surface of the butt portion. The surface side region can be welded at high speed. Moreover, since the back bead is formed in the outer peripheral surface side region of the butt portion, the inner side and the outer side of the butt portion are blocked, and only the inner side of the butt portion is decompressed during the welding operation by the second welding means. Well, there is no need to depressurize the outside.
[0031]
According to the second aspect of the present invention, the bead on the inner peripheral surface side formed by the second welding means is irradiated with the low energy electron beam, whereby the bead is partially melted and smoothed. Therefore, this smooth bead reduces the resistance of the fluid flow in the pipe as much as possible, and also reduces the fluid pressure loss. Furthermore, there is no obstacle to nondestructive inspection such as ultrasonic inspection.
[Brief description of the drawings]
FIG. 1 is a diagram showing a welding apparatus 1 that realizes a pipe joining method according to an embodiment of the present invention.
FIG. 2 is a view for explaining a method of joining pipes according to the present invention.
FIG. 3 is a flowchart of the pipe joining method of the present invention.
FIG. 4 is a diagram showing step s1.
FIG. 5 is a diagram showing step s2.
FIG. 6 is a diagram showing step s3.
FIG. 7 is a diagram showing step s4.
FIG. 8 is a diagram showing step s5.
FIG. 9 is a diagram showing step s6.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Welding apparatus 2a, 2b Tube 4 Clamp means 5 Butt part 6 Electron beam output head 7 Laser output head 18 1st welding means 19 2nd welding means 20 Laser beam 21 Electron beam 26 Back wave bead

Claims (2)

端面が相互に突き合わされる2本の管の突き合わせ部を接合する管の接合方法において、
大気圧下で溶接する第1溶接手段によって、前記突き合わせ部の外周面側領域を全周にわたって溶接し、
次に、減圧下で電子ビームを照射して溶接する第2溶接手段によって、管の内側から突き合わせ部の内周面に向けて、電子ビームを照射して、突き合わせ部の内周面側領域を全周にわたって溶接することを特徴とする管の接合方法。
In the joining method of the pipe | tube which joins the butt | matching part of two pipes by which an end surface is faced | matched mutually,
By the first welding means for welding under atmospheric pressure, the outer peripheral surface side region of the butt portion is welded over the entire circumference,
Next, the second welding means for irradiating and welding an electron beam under reduced pressure irradiates the electron beam from the inner side of the tube toward the inner peripheral surface of the butt portion, and thereby the inner peripheral surface side region of the butt portion is formed. A method for joining pipes, characterized by welding the entire circumference.
前記第2溶接手段によって、突き合わせ部の内周面側領域を溶接した後、内周面側に形成されたビードに向けて、前記内周面側領域の溶接時よりも低いエネルギで、電子ビームを照射すること特徴とする請求項1記載の管の接合方法。After the inner peripheral surface side region of the butt portion is welded by the second welding means, the electron beam is directed toward the bead formed on the inner peripheral surface side with lower energy than when welding the inner peripheral surface region. The tube joining method according to claim 1, wherein:
JP2000218412A 2000-07-19 2000-07-19 Pipe joining method Expired - Fee Related JP3541166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000218412A JP3541166B2 (en) 2000-07-19 2000-07-19 Pipe joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000218412A JP3541166B2 (en) 2000-07-19 2000-07-19 Pipe joining method

Publications (2)

Publication Number Publication Date
JP2002035956A JP2002035956A (en) 2002-02-05
JP3541166B2 true JP3541166B2 (en) 2004-07-07

Family

ID=18713364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000218412A Expired - Fee Related JP3541166B2 (en) 2000-07-19 2000-07-19 Pipe joining method

Country Status (1)

Country Link
JP (1) JP3541166B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974330B2 (en) * 2006-02-28 2012-07-11 株式会社日立製作所 Control device
JP5187876B2 (en) * 2006-10-26 2013-04-24 株式会社ソディック Electron beam irradiation surface modification equipment
GB0921078D0 (en) * 2009-12-01 2010-01-13 Saipem Spa Pipeline welding method and apparatus
WO2011068201A1 (en) 2009-12-04 2011-06-09 新日本製鐵株式会社 Butt weld joint and method for manufacturing same
JP5901940B2 (en) * 2011-11-08 2016-04-13 Ntn株式会社 Welding method for outer joint member of constant velocity universal joint
CN103537788B (en) * 2013-09-24 2015-11-18 四川泛华航空仪表电器有限公司 The welding method of seal casinghousing assembly inner sleeve magnet thin-wall barrel
JP6269747B1 (en) * 2016-08-10 2018-01-31 Smk株式会社 Electrical connector and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002035956A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
JP2004306084A (en) Composite welding method of laser welding and arc welding
JP3541166B2 (en) Pipe joining method
JP2009241116A (en) Welding method of metallic material and joined body of metallic material
US20220090711A1 (en) System and method for manufacturing pipes
JPH10272586A (en) Method and device for laser butt welding of metallic tube
JPH0747231B2 (en) Clad pipe joining method
JPS59189092A (en) Laser welding method of pipe and flange
JP3583558B2 (en) Pipe frame structure joining method
JP3398128B2 (en) Laser welding method
JPH0140714B2 (en)
JPH1034373A (en) Welding method for double tube structure
JPS59500856A (en) How to weld two parts
JP2004283883A (en) Groove profile and its welding method
JPH07124769A (en) Method and equipment for butt laser welding of tube
CN117300469A (en) Automatic welding equipment of circular pipe circumferential weld robot
JP4292059B2 (en) Pipeline laying method
JPH07124770A (en) Method and equipment for butt laser beam welding of tube
JPH03207575A (en) Circumferential welding method for double pipes
JPS6192795A (en) Production of thin-walled pipe
JPH07185804A (en) Welding method of stainless steel tube and welding joint
RU2139780C1 (en) Laser complex for main pipeline laying
JP3231961B2 (en) Automatic welding method for pipe and tubular parts
JPH0760476A (en) Welded joints and welding method
JPH01233069A (en) Method for welding double pipe
Martikainen Plasma arc keyhole welding of high-strength structural steels

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees