JP3539521B2 - Method for producing platinum group electrode membrane assembly for electrolysis - Google Patents

Method for producing platinum group electrode membrane assembly for electrolysis Download PDF

Info

Publication number
JP3539521B2
JP3539521B2 JP32464295A JP32464295A JP3539521B2 JP 3539521 B2 JP3539521 B2 JP 3539521B2 JP 32464295 A JP32464295 A JP 32464295A JP 32464295 A JP32464295 A JP 32464295A JP 3539521 B2 JP3539521 B2 JP 3539521B2
Authority
JP
Japan
Prior art keywords
platinum
membrane
electrolysis
ion
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32464295A
Other languages
Japanese (ja)
Other versions
JPH09165690A (en
Inventor
榮一 鳥養
範明 原
英作 牛久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP32464295A priority Critical patent/JP3539521B2/en
Publication of JPH09165690A publication Critical patent/JPH09165690A/en
Application granted granted Critical
Publication of JP3539521B2 publication Critical patent/JP3539521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解装置に用いられる電解用電極膜接合体の製造方法に関するものであり、特に固体高分子電解質膜に白金をコーティングしてなる電解用電極膜接合体の製造方法に関する。
【0002】
【従来の技術】
電解用電極膜接合体としては、固体高分子電解質等のカチオン交換樹脂膜と電極となるべき金属とを接合させたものが広く用いられている。
【0003】
従来電解用電極膜接合体の製造方法としては、例えば特公昭58−47471号公報に記載されているように、カチオン交換樹脂膜に白金族の金属イオンをイオン交換で吸着させてから水素化硼素塩水溶液で処理して膜の表面に金属層を析出させ、更にこの膜を金属塩とジアルキルアミンボランとを含有するアルカリ性水溶液と接触させて膜表面の金属層を成長させることが知られている。そして同公報には、金属イオンはアンミン錯イオンの形態でカチオン交換樹脂に吸着させるのが好ましい事及び金属イオンの供給源としては該金属の塩を含有するアルカリ性水溶液を用いるのが好ましい旨記載されている。
【0004】
そこで現在、金属イオン供給源としての金属塩としては、ヘキサアンミン白金テトラクロライドやテトラアンミン白金ジクロライドが一般的に用いられている。しかしながら、これら金属塩はいずれも構造中に塩素を主成分として含んでいるため、イオン交換の過程で塩素イオンがプロトンと結びつき塩酸を多量に生成してしまう。この間の反応は、次式で示される。(式中、カチオン交換膜をR−SO3 Hで表し、金属塩としてヘキサアンミン白金ジクロライドを用いた場合を例にとる。)
【0005】
【化1】

Figure 0003539521
【0006】
この反応は可逆であるため、右向きの反応が進行するにつれ塩酸濃度が上昇し、ついには逆向きの反応が支配的になる結果、所望のカチオン交換反応が起きにくくなってしまうという問題点が有る。
【0007】
【発明が解決しようとする課題】
本発明は、これらの問題を解消できる電解用電極膜接合体の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本出願における発明は、カチオン交換樹脂膜に白金イオンをイオン交換吸着させ、次いで還元剤を用いて該膜表面に白金金属層を析出させて電解用電極膜接合体を製造する方法において、白金イオン吸着の工程中、白金イオンの供給源となる白金アンミン錯塩水溶液を吸引してアニオン交換樹脂と接触、脱塩素イオンを行ってから元の槽に戻す操作を継続して行う事を特徴とするものである。
白金イオンの供給源としてはテトラアンミン白金ジクロライド[Pt(NH3 4 ]Cl2 またはヘキサアンミンPtテトラクロライド[Pt(NH3 6 ]Cl4 が好適である。
カチオン交換樹脂膜としてはスルホン酸基またはカルボン酸基を有する過フッ化炭化水素樹脂膜、例えばナフィオン膜(米国デュポン社の商品名)が用いられる。
アニオン交換樹脂としてはアミン、又は第4級アンモニウム基を持つアニオン交換樹脂、例えばアンバーライトIRAシリーズ(東京有機化学社の商品名)や、ダイヤイオンPA(三菱化成社の商品名)等が用いられる。
還元剤としては、水素化硼素塩、例えばナトリウムボロハイドライドもしくはカリウムボロハイドライド等が好ましく用いられる。
カチオン交換樹脂膜に白金イオンをイオン交換吸着させ、次いで還元剤を用いて該膜表面に白金金属層を析出させた後、膜上に白金もしくは別の白金族金属からなる金属層を成長させても良い。この目的に用いる別の白金族金属としてはイリジウムが代表的である。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0010】
カチオン交換樹脂膜、例えばナフィオン膜を用意し、2N−HCl中での煮沸と水での煮沸を行ってナフィオン膜をナトリウム型からプロトン型に変換する。ついで、この膜を白金イオン供給源の白金錯塩溶液に浸漬する。本発明の白金錯塩を構成するカチオンはテトラアンミン白金イオンもしくはヘキサアンミン白金イオン等のアンミン錯イオンが代表的であり、カウンターアニオンは塩素イオンが代表的である。本発明では、白金イオンをカチオン交換樹脂膜に吸着させる過程で該錯塩水溶液を、OH型のアニオン交換樹脂を好ましくはカラムに充填した状態でメッキ浴槽中、或いは槽外に設置した層を通過循環させることにより、白金イオンがカチオン交換樹脂膜に吸着した際に生じる塩素イオンをアニオン交換樹脂により吸着除去することを特徴としている。そのため、白金イオンをカチオン交換樹脂に吸着させる工程で塩酸を生成することがないか、もしくは塩酸を生成した場合であっても白金のイオン交換に支障をきたすほどに塩酸濃度が上昇することがない。従って、イオン交換による白金イオンの吸着を継続的に進行させることが可能となり、白金吸着量を常に一定に保つことができる。
一方塩素イオンを交換吸着した樹脂は、水酸化ナトリウム或いは水酸化カリウム水溶液を用いて再びOH型に再生して使用することが可能である。
吸着によって消費された白金イオンを補充するため、必要量の上記白金錯塩を適時供給することが望ましい。イオン交換反応過程で、液中の白金濃度は0.0001〜0.1mol/lとする事が望ましい。また、反応温度は室温〜90℃の範囲で行う事が望ましい。室温以下では交換反応の進行が遅く、90℃以上ではアンモニア等の蒸発が起こりやすくなり、液濃度が変化しやすいからである。
【0011】
こうして所望量の白金イオンを吸着させたカチオン交換樹脂膜を、水素化硼素塩水溶液をはじめとする還元剤含有液に浸漬処理すると、樹脂膜表面付近で白金金属の析出が起こり、電解用白金電極膜接合体が形成出来る。
【0012】
必要に応じて、上記の電極接合体上に白金もしくはイリジウム等の白金族金属層を成長させても良い。金属層の成長には常法の膜形成方法を用いることが出来、例えばイリジウムのハロゲン化物及びヒドラジンを含有するメッキ浴を用いた無電解メッキによってイリジウム膜を成長させる方法を取ればよい。
【0013】
【実施例】
次に、実施例をあげて本発明を具体的に説明する。
【0014】
【実施例1】
カチオン交換樹脂膜ナフィオン 117(米国デュポン社の商品名)の膜を2N−HClで30分煮沸し、ついで水洗後さらに水で30分煮沸してからテトラアンミン白金ジクロライド水溶液(白金濃度0.05mol/l )を満たした吸着槽に浸漬し、30℃で60分間保持した。この間吸着浴槽は、外部にイオン交換樹脂カラムを付設した循環方式を用い、樹脂にはOH型にしたアンバーライトIRA 900を充填した。メッキ処理の間、メッキ液は本槽と吸着カラム間を循環させ、浴液の攪拌を兼ねた。白金吸着を終えたナフィオン膜は、ついで水素化硼素ナトリウム水溶液に含浸し、90℃で10分間保持した。表面に白金が析出したナフィオン膜を水洗し、乾燥後重量測定から換算したところ白金膜の厚さは 0.6μmであった。さらにこの膜をヘキサクロロイリジウム酸カリウムとヒドラジンを含有するメッキ浴中に浸漬し、pH6〜7、75℃3時間の条件でイリジウム無電解メッキを行い、約
0.5μmのイリジウムメッキを成長させた。この後、液中の白金濃度を分析し、濃度が0.05mol/l となるようにテトラアンミン白金ジクロライドを補充し、同様の操作を繰り返した。
【0015】
(評価)上記の操作で、テトラアンミン白金ジクロライド塩の累積補充量が初期の塩濃度に相当する量に達した時点を1ターンとして、ターン数を増やしたときの白金錯体交換率を調べたところ、実施例1の場合、5ターンを過ぎても交換率 100%を維持した。
【0016】
【従来例】白金イオン吸着槽からの水溶液吸引及びアニオン交換樹脂等への供給を行わなかったほかは実施例1と同様にして白金電極膜接合体を作成し、評価を行った。
【0017】
(評価)実施例1と同様の評価を行ったところ、1ターン目から交換率が低下し始めイオン交換膜としての実用性を失っていき、5ターン目では交換率が50%程度にまで至って塩破壊を起こした。なお、この間塩酸濃度の急激な上昇が観測され、浴液の更新が必要であった。
【0018】
【発明の効果】
以上詳述した通り、 本発明による電解用電極膜接合体の製造方法によれば、カチオン交換樹脂膜に白金をイオン交換吸着させる工程中、白金イオン供給源としてのアンミン白金錯塩水溶液をOH型のアニオン交換樹脂等に循環供給することにより塩素イオンを除去し、副生成物としての塩酸発生を抑制するため安定的に交換反応を進行させる事が出来る。その結果、白金イオン供給源として、塩素イオン含有錯塩を使用した場合においてもイオン交換反応過程での塩酸の副生、蓄積による白金のイオン交換のばらつきを防ぎ、白金−膜接合体の品質を常に一定に保持し得る利点を持つ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an electrode membrane assembly for electrolysis used in an electrolysis apparatus, and more particularly to a method for manufacturing an electrode membrane assembly for electrolysis in which a solid polymer electrolyte membrane is coated with platinum.
[0002]
[Prior art]
As an electrode membrane assembly for electrolysis, a cation exchange resin membrane such as a solid polymer electrolyte and a metal to be an electrode are widely used.
[0003]
As a conventional method for producing an electrode membrane assembly for electrolysis, for example, as described in JP-B-58-47471, platinum group metal ions are adsorbed on a cation exchange resin membrane by ion exchange and then boron hydride is used. It is known that a metal layer is deposited on the surface of a film by treating with a salt aqueous solution, and further, the film is brought into contact with an alkaline aqueous solution containing a metal salt and dialkylamine borane to grow a metal layer on the film surface. . The publication states that metal ions are preferably adsorbed to the cation exchange resin in the form of ammine complex ions, and that it is preferable to use an alkaline aqueous solution containing a salt of the metal as a source of the metal ions. ing.
[0004]
Therefore, at present, hexaammineplatinum tetrachloride or tetraammineplatinum dichloride is generally used as a metal salt as a metal ion supply source. However, since all of these metal salts contain chlorine as a main component in the structure, chloride ions are combined with protons in the process of ion exchange to generate a large amount of hydrochloric acid. The reaction during this time is shown by the following equation. (In the formula, the case where the cation exchange membrane is represented by R-SO 3 H and hexaammineplatinum dichloride is used as the metal salt is taken as an example.)
[0005]
Embedded image
Figure 0003539521
[0006]
Since this reaction is reversible, there is a problem that the concentration of hydrochloric acid increases as the rightward reaction progresses, and eventually the reverse reaction becomes dominant, so that the desired cation exchange reaction hardly occurs. .
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method of manufacturing an electrode membrane assembly for electrolysis that can solve these problems.
[0008]
[Means for Solving the Problems]
The invention in the present application is a method for producing an electrode membrane assembly for electrolysis by ion-adsorbing platinum ions on a cation exchange resin membrane and then depositing a platinum metal layer on the membrane surface using a reducing agent. During the adsorption process, a continuous operation is performed in which the platinum ammine complex salt aqueous solution serving as a supply source of platinum ions is suctioned to come into contact with the anion exchange resin, dechlorinated ions are returned, and then returned to the original tank. It is.
As a source of platinum ions, tetraammineplatinum dichloride [Pt (NH 3 ) 4 ] Cl 2 or hexaammine Pt tetrachloride [Pt (NH 3 ) 6 ] Cl 4 is preferable.
As the cation exchange resin membrane, a fluorocarbon resin membrane having a sulfonic acid group or a carboxylic acid group, for example, a Nafion membrane (trade name of DuPont, USA) is used.
As the anion exchange resin, an anion exchange resin having an amine or a quaternary ammonium group, for example, Amberlite IRA series (trade name of Tokyo Organic Chemical Co., Ltd.), Diaion PA (trade name of Mitsubishi Kasei Co., Ltd.) and the like are used. .
As the reducing agent, a borohydride salt such as sodium borohydride or potassium borohydride is preferably used.
After ion-adsorbing platinum ions to the cation exchange resin membrane and then depositing a platinum metal layer on the membrane surface using a reducing agent, a metal layer made of platinum or another platinum group metal is grown on the membrane. Is also good. Iridium is a typical platinum group metal used for this purpose.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0010]
A cation exchange resin membrane, for example, a Nafion membrane is prepared, and the Nafion membrane is converted from sodium type to proton type by boiling in 2N-HCl and boiling in water. Next, the membrane is immersed in a platinum complex salt solution of a platinum ion supply source. The cation constituting the platinum complex salt of the present invention is typically an ammine complex ion such as a tetraammine platinum ion or a hexaammine platinum ion, and the counter anion is typically a chloride ion. In the present invention, in the process of adsorbing platinum ions to the cation exchange resin membrane, the aqueous solution of the complex salt is circulated through a plating bath or a layer provided outside the bath in a state where the OH type anion exchange resin is preferably packed in a column. By doing so, chlorine ions generated when platinum ions are adsorbed on the cation exchange resin membrane are adsorbed and removed by the anion exchange resin. For this reason, hydrochloric acid is not generated in the step of adsorbing platinum ions to the cation exchange resin, or even when hydrochloric acid is generated, the hydrochloric acid concentration does not increase enough to hinder the ion exchange of platinum. . Accordingly, it becomes possible to continuously advance the adsorption of platinum ions by ion exchange, and the amount of platinum adsorbed can always be kept constant.
On the other hand, the resin to which chlorine ions have been exchanged and adsorbed can be regenerated into an OH type using an aqueous solution of sodium hydroxide or potassium hydroxide and used.
In order to replenish the platinum ions consumed by the adsorption, it is desirable to supply a required amount of the platinum complex salt in a timely manner. In the ion exchange reaction process, the concentration of platinum in the liquid is desirably 0.0001 to 0.1 mol / l. The reaction temperature is preferably in the range of room temperature to 90 ° C. At room temperature or lower, the progress of the exchange reaction is slow, and at 90 ° C. or higher, the evaporation of ammonia and the like is likely to occur, and the liquid concentration is likely to change.
[0011]
When the cation exchange resin membrane adsorbing the desired amount of platinum ions is immersed in a reducing agent-containing solution such as an aqueous borohydride solution, platinum metal is deposited near the surface of the resin membrane, and the platinum electrode for electrolysis is formed. A membrane assembly can be formed.
[0012]
If necessary, a platinum group metal layer such as platinum or iridium may be grown on the above electrode assembly. For the growth of the metal layer, a conventional film forming method can be used. For example, a method of growing an iridium film by electroless plating using a plating bath containing a halide of iridium and hydrazine may be employed.
[0013]
【Example】
Next, the present invention will be described specifically with reference to examples.
[0014]
Embodiment 1
Cation exchange resin membrane Nafion 117 (trade name of DuPont, USA) is boiled with 2N-HCl for 30 minutes, then washed with water and further boiled with water for 30 minutes, and then aqueous tetraammineplatinum dichloride (platinum concentration 0.05 mol / l). The sample was immersed in an adsorption tank filled with and kept at 30 ° C. for 60 minutes. During this time, the adsorption bath used a circulation system having an ion-exchange resin column attached to the outside, and the resin was filled with OH type Amberlite IRA 900. During the plating process, the plating solution was circulated between the main tank and the adsorption column, and also served to stir the bath solution. The Nafion membrane after the platinum adsorption was then impregnated with an aqueous sodium borohydride solution and kept at 90 ° C. for 10 minutes. The Nafion film having platinum deposited on the surface was washed with water, dried and converted from weight measurement to find that the thickness of the platinum film was 0.6 μm. Further, this film is immersed in a plating bath containing potassium hexachloroiridate and hydrazine, and subjected to iridium electroless plating under the conditions of pH 6 to 7 and 75 ° C. for 3 hours.
A 0.5 μm iridium plating was grown. Thereafter, the concentration of platinum in the solution was analyzed, and tetraammineplatinum dichloride was supplemented so that the concentration became 0.05 mol / l, and the same operation was repeated.
[0015]
(Evaluation) When the cumulative replenishment amount of the tetraammineplatinum dichloride salt reached an amount corresponding to the initial salt concentration as one turn, the platinum complex exchange rate when the number of turns was increased was examined. In the case of Example 1, the exchange rate was maintained at 100% even after 5 turns.
[0016]
Conventional Example A platinum electrode membrane assembly was prepared and evaluated in the same manner as in Example 1, except that suction of the aqueous solution from the platinum ion adsorption tank and supply to the anion exchange resin and the like were not performed.
[0017]
(Evaluation) When the same evaluation as in Example 1 was performed, the exchange rate began to decrease from the first turn and lost its practicality as an ion exchange membrane, and the exchange rate reached about 50% at the fifth turn. Caused salt destruction. During this period, a sharp increase in the hydrochloric acid concentration was observed, and the bath solution had to be renewed.
[0018]
【The invention's effect】
As described above in detail, according to the method for producing an electrode membrane assembly for electrolysis according to the present invention, during the step of ion-exchange adsorption of platinum on the cation exchange resin membrane, an aqueous ammine platinum complex salt as a platinum ion source is converted into an OH type aqueous solution. By circulating and supplying to an anion exchange resin or the like, chloride ions are removed, and generation of hydrochloric acid as a by-product is suppressed, so that the exchange reaction can proceed stably. As a result, even when a chloride ion-containing complex salt is used as a source of platinum ions, variations in platinum ion exchange due to by-products and accumulation of hydrochloric acid in the ion exchange reaction process are prevented, and the quality of the platinum-membrane assembly is constantly improved. It has the advantage that it can be kept constant.

Claims (4)

カチオン交換樹脂膜に白金イオンをイオン交換吸着させ、次いで還元剤を用いて該膜表面に白金金属層を析出させて電解用電極膜接合体を製造する方法において、白金イオン吸着の工程中、白金イオンの供給源となる白金アンミン錯塩水溶液を吸引してアニオン交換樹脂に接触させて、脱塩素イオンを行ってから元の槽に戻す操作を継続して行う事を特徴とする電解用電極膜接合体の製造方法。In a method of manufacturing a electrode membrane assembly for electrolysis by ion-exchange adsorption of platinum ions on a cation exchange resin membrane and then depositing a platinum metal layer on the membrane surface using a reducing agent, platinum Electrolyte electrode membrane bonding characterized in that a platinum ammine complex aqueous solution serving as an ion supply source is sucked and brought into contact with an anion exchange resin to perform dechlorination ion and then return to an original tank. How to make the body. 白金イオンの供給源が、テトラアンミン白金ジクロライド
[Pt(NH3 4 ] Cl2 またはヘキサアンミンPtテトラクロライド
[Pt(NH3 6 ] Cl4 である請求項1に記載の電解用電極膜接合体の製造方法。
A source of platinum ions, tetraammineplatinum dichloride [Pt (NH 3) 4] Cl 2 or hexaammine Pt tetrachloride [Pt (NH 3) 6] electrolysis electrode membrane assembly according to claim 1 is Cl 4 Manufacturing method.
カチオン交換樹脂膜が、スルホン酸基またはカルボン酸基を有する過フッ化炭化水素樹脂膜である請求項1また請求項2に記載の電解用電極膜接合体の製造方法。The method for producing an electrode membrane assembly for electrolysis according to claim 1 or 2, wherein the cation exchange resin membrane is a fluorocarbon resin membrane having a sulfonic acid group or a carboxylic acid group. カチオン交換樹脂膜に白金イオンをイオン交換吸着させ、次いで還元剤を用いて該膜表面に白金金属層を析出させた後、膜上に白金もしくは別の白金族金属からなる金属層を成長させる請求項1乃至請求項3に記載の電解用電極膜接合体の製造方法。Claims: Platinum ions are ion-exchanged and adsorbed on a cation exchange resin membrane, and then a platinum metal layer is deposited on the membrane surface using a reducing agent, and then a metal layer made of platinum or another platinum group metal is grown on the membrane. The method for producing an electrode membrane assembly for electrolysis according to any one of claims 1 to 3.
JP32464295A 1995-12-13 1995-12-13 Method for producing platinum group electrode membrane assembly for electrolysis Expired - Lifetime JP3539521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32464295A JP3539521B2 (en) 1995-12-13 1995-12-13 Method for producing platinum group electrode membrane assembly for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32464295A JP3539521B2 (en) 1995-12-13 1995-12-13 Method for producing platinum group electrode membrane assembly for electrolysis

Publications (2)

Publication Number Publication Date
JPH09165690A JPH09165690A (en) 1997-06-24
JP3539521B2 true JP3539521B2 (en) 2004-07-07

Family

ID=18168114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32464295A Expired - Lifetime JP3539521B2 (en) 1995-12-13 1995-12-13 Method for producing platinum group electrode membrane assembly for electrolysis

Country Status (1)

Country Link
JP (1) JP3539521B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701338A (en) * 2020-12-31 2021-04-23 上谷氢科(深圳)科技有限公司 Healthy and environment-friendly non-toxic residual membrane electrode production equipment and production process thereof
KR102642597B1 (en) * 2021-12-29 2024-03-04 한국에너지기술연구원 Method of manufacturing membrane electrode assembly for PEM electrolysis capable of improving the electrical conductivity of the electrode layer

Also Published As

Publication number Publication date
JPH09165690A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
US4364803A (en) Deposition of catalytic electrodes on ion-exchange membranes
KR950011405B1 (en) Cathode for electrolysis and process for producing the same
JP3455709B2 (en) Plating method and plating solution precursor used for it
WO2010061766A1 (en) Method for producing active cathode for electrolysis
TW201402875A (en) Method and regeneration apparatus for regenerating a plating composition
TWI385275B (en) Method of electrolytically dissolving nickel into electroless nickel plating solutions
US7846316B2 (en) Method for supplying a plating composition with deposition metal ion during a plating operation
JP3080971B2 (en) Electrode structure for ozone production and method for producing the same
JP3539521B2 (en) Method for producing platinum group electrode membrane assembly for electrolysis
JP3539520B2 (en) Method for producing electrode membrane assembly for electrolysis
US5227030A (en) Electrocatalytic cathodes and methods of preparation
JP3148882B2 (en) Method for producing zinc oxide film
JP7388500B2 (en) Method for manufacturing hydrogen generation electrode and electrolysis method using hydrogen generation electrode
US4067783A (en) Gold electroplating process
WO2001092604A2 (en) Electrolysis cell for restoring the concentration of metal ions in processes of electroplating
JPH08100282A (en) Production of nickel hypophosphite
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JP2686597B2 (en) Iridium electroless plating bath and method for producing joined body for electrolysis
JP2692736B2 (en) Method for producing gold-ion exchange membrane assembly
JPH10330979A (en) Joined body of electrode film and its production
JPS5934784B2 (en) Ruthenium electroless plating bath
US20230407507A1 (en) Electroplating solutions
JPH01208489A (en) Catalytic electrode and production thereof
CN107768020B (en) The preparation method of formula of taking root fexible film electrode
JPS59193288A (en) Electrolytic preparation of quaternary ammonium hydroxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term