JP3539138B2 - Drive circuit for drive device using electromechanical transducer - Google Patents

Drive circuit for drive device using electromechanical transducer Download PDF

Info

Publication number
JP3539138B2
JP3539138B2 JP18188197A JP18188197A JP3539138B2 JP 3539138 B2 JP3539138 B2 JP 3539138B2 JP 18188197 A JP18188197 A JP 18188197A JP 18188197 A JP18188197 A JP 18188197A JP 3539138 B2 JP3539138 B2 JP 3539138B2
Authority
JP
Japan
Prior art keywords
circuit
current
electromechanical transducer
charging
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18188197A
Other languages
Japanese (ja)
Other versions
JPH1118458A (en
Inventor
吉弘 田坂
浩太郎 川邉
Original Assignee
ミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミノルタ株式会社 filed Critical ミノルタ株式会社
Priority to JP18188197A priority Critical patent/JP3539138B2/en
Publication of JPH1118458A publication Critical patent/JPH1118458A/en
Application granted granted Critical
Publication of JP3539138B2 publication Critical patent/JP3539138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電気機械変換素子を使用した駆動装置に関し、特に電気機械変換素子の温度の変化によつても、一定の駆動速度が得られる電気機械変換素子を使用した駆動装置の駆動回路に関する。
【0002】
【従来の技術】
電気機械変換素子に駆動部材を結合し、電気機械変換素子に鋸歯状波駆動パルスを印加して駆動部材を軸方向に往復変位させ、この駆動部材に摩擦結合させた移動部材を軸方向に移動させるアクチエ−タ(以下、インパクト型アクチエ−タと呼ぶ)が知られている。
【0003】
この種のインパクト型アクチエ−タは、およそ次のように動作する。まず、電気機械変換素子に印加する鋸歯状波駆動パルスの緩やかな立上り部分では電気機械変換素子が緩やかに厚み方向に伸び変位し、電気機械変換素子に結合する駆動部材も正方向に緩やかに変位する。このとき、移動部材は摩擦結合力により駆動部材と結合しており、駆動部材と共に正方向に移動する。
【0004】
次に、電気機械変換素子に印加する鋸歯状波駆動パルスの急速な立下り部分では、電気機械変換素子が急速に厚み方向に縮み変位し、電気機械変換素子に結合する駆動部材も負方向に急速に変位する。このとき、駆動部材に摩擦結合した移動部材は慣性力により摩擦結合力に打ち勝つてその位置に留まり、移動しない。電気機械変換素子に鋸歯状波駆動パルスを連続的に印加することにより、移動部材を連続的に所定方向に移動させることができる。
【0005】
移動部材を先と反対方向に移動させるには、電気機械変換素子に印加する鋸歯状波駆動パルスの波形を変え、急速な立上り部分と緩やかな立下り部分からなる鋸歯状波駆動パルスを印加すれば達成することができる。
【0006】
上記した駆動部材とこれに摩擦結合した移動部材の動きは、実際には更に複雑であつて、駆動部材の正方向変位においても、また負方向変位においても摩擦結合面において滑りが発生し、駆動部材と移動部材とは滑りながら往復移動しつつ全体として駆動部材の緩やかな変位方向に移動するものと考えられている。
【0007】
【発明が解決しようとする課題】
一般に圧電素子などの電気機械変換素子は、電気機械変換素子の温度が高い場合は静電容量が増加し、温度が低い場合は静電容量が減少するという特性を備えている。
【0008】
この特性のため、電気機械変換素子を駆動するために一定電流で充電する場合において、電気機械変換素子の温度が高いほど静電容量が増加して駆動パルスの鋸歯状波形の緩やかな立ち上がり部の傾斜角θが小さくなる。一方、電気機械変換素子の温度が低いほど、静電容量が減少して駆動パルスの鋸歯状波形の緩やかな立ち上がり部の傾斜角θが大きくなる。
【0009】
即ち、温度が基準温度(例えば25℃)から大きく外れると、最適な駆動波形(例えば25℃の時を基準にし、最適な傾斜角θとなるように設定された駆動波形)を得ることができなくなり、駆動効率が低下する。
【0010】
このように、従来の電気機械変換素子を使用した駆動装置では、電気機械変換素子の温度特性に基づいて駆動速度が変動するから、駆動装置を使用する環境の温度によつては、十分な駆動速度を得ることができないという不都合があつた。この発明は上記課題を解決することを目的とするものである。
【0011】
【課題を解決するための手段】
この発明は上記課題を解決するもので、請求項1の発明は、電気機械変換素子に駆動電力を供給し、電気機械変換素子に伸縮変位を発生させることにより駆動部材を駆動し、該駆動部材に摩擦結合した被駆動部材を所定方向に移動させる電気機械変換素子を使用した駆動装置の駆動回路において、前記電気機械変換素子に一定電流で充電する充電回路と、前記電気機械変換素子の電荷を放電する放電回路と、前記電気機械変換素子と前記充電回路及び前記放電回路との接続を所定のタイミングで切り換えて電気機械変換素子に伸縮変位を発生させる制御回路と、環境温度の変化に応じて前記充電回路から電気機械変換素子に供給する一定電流の電流量を調整する前記充電回路に付設された電流補償回路とを備え、環境温度の変化に拘らず常に一定の変位速度が得られるように電気機械変換素子への充放電電流を制御することを特徴とする。
【0012】
そして、前記電流補償回路は、環境温度変化による電気機械変換素子の静電容量の変化に基づく充電電流の変動を補償する電流補償回路であり、具体的には、前記電流補償回路は、環境温度の変化に応じて抵抗値が変化して充電電流の変動を補償する抵抗体を備える。
【0013】
請求項4の発明は、電気機械変換素子に駆動電力を供給し、電気機械変換素子に伸縮変位を発生させることにより駆動部材を駆動し、該駆動部材に摩擦結合した被駆動部材を所定方向に移動させる電気機械変換素子を使用した駆動装置の駆動回路において、環境温度の変化に応じて変動する電気機械変換素子の静電容量の変動に基づく充電電流の変動を補償する電流補償回路を備え、環境温度の変化が補償された一定電流で電気機械変換素子に充電する第1の充電回路と、前記電気機械変換素子の電荷を放電する第1の放電回路と、前記電気機械変換素子を充電する第2の充電回路と、環境温度の変化に応じて変動する電気機械変換素子の静電容量の変動に基づく放電電流の変動を補償する電流補償回路を備え、環境温度の変化が補償された一定電流で電気機械変換素子の電荷を放電する第2の放電回路と、駆動装置の駆動方向に応じて前記第1の充電回路と第1の放電回路を電気機械変換素子に対して所定のタイミングで切り換え接続し、或いは前記第2の充電回路と第2の放電回路を電気機械変換素子に対して所定のタイミングで切り換え接続する制御回路とを備え、環境温度の変化に拘らず常に一定の変位速度が得られるように電気機械変換素子への充放電電流を制御することを特徴とするものである。
【0014】
【発明の実施の形態】
以下、この発明の実施の形態について説明する。以下説明するこの発明の実施の形態は、この発明の電気機械変換素子を使用した駆動装置をカメラの撮影レンズ駆動機構に適用した例で、電気機械変換素子として圧電素子を使用している。
【0015】
図1はこの発明を適用するに適したカメラの撮影レンズ駆動機構の構成を示す断面図である。図1において、11はレンズ鏡筒で、その左端には第1レンズL1 の保持枠12が固定的に取り付けられ、その右端11aは第3レンズL3 の保持枠を形成している。レンズ鏡筒11の内部には、第2レンズL2 のレンズ保持枠13が、光軸方向に移動可能に配置されている。14はレンズ保持枠13を光軸方向に駆動する駆動軸で、駆動軸14は、レンズ鏡筒11の第1のフランジ部11bとレンズ保持枠12のフランジ部12bとにより光軸方向に移動自在に支持され、その一端は圧電素子15の1つの面に接着固定されている。
【0016】
圧電素子15は厚み方向に変位して駆動軸14を軸方向に変位させるもので、その一端面は駆動軸14に接着固定され、他の端面はレンズ鏡筒11の第2のフランジ部11cに接着固定されている。
【0017】
第2レンズL2 を保持するレンズ保持枠13は、その上方に延びた移動部材であるスライダブロツク13bを備えている。スライダブロツク13bには横方向に駆動軸14が貫通している。スライダブロツク13bの駆動軸14が貫通している上部には開口部13cが形成され、駆動軸14の上半分が露出している。また、この開口部13cには駆動軸14の上半分に当接するパツド16が嵌挿され、パツド16には上部に突起16aが設けられており、パツド16の突起16aが板ばね17により押し下げられ、パツド16には駆動軸14に当接する下向きの付勢力Fが与えられている。図2は駆動軸14とスライダブロツク13b及びパツド16との摩擦結合部分の構成を示す断面図である。
【0018】
なお、18はレンズ保持枠13の揺動を防止し、光軸に沿つて移動するように案内する案内軸、37はレンズL2 の位置を検出するレンズ位置検出センサで、レンズ保持枠13の位置を検出してレンズ位置を知ることができる。
【0019】
次にその制御動作を説明する。レンズL2 の矢印a方向への移動を必要としているときは、図3に示すような緩やかな立ち上がり部とこれに続く急速な立ち下がり部からなる鋸歯状波形の駆動パルスを圧電素子15に供給する。
【0020】
駆動パルスの緩やかな立ち上がり部では、圧電素子15は緩やかに厚み方向の伸び変位を生じ、駆動軸14は軸方向に矢印a方向へ変位する。このため、駆動軸14に板ばね17により付勢されて摩擦結合しているスライダブロツク13b及びパツド16も矢印a方向へ移動するので、レンズ保持枠13を矢印a方向へ移動させることができる。
【0021】
駆動パルスの急速な立ち下がり部では、圧電素子15が急速に厚み方向の縮み変位を生じ、駆動軸14も軸方向に矢印aと反対方向へ変位する。このとき、駆動軸14に板ばね17により付勢されて圧接しているスライダブロツク13b、パツド16及びレンズ保持枠13は、その慣性力により駆動軸14との間の摩擦結合力に打ち勝つて実質的にその位置に留まるので、レンズ保持枠13は移動しない。
【0022】
なお、ここでいう実質的とは、矢印a方向と、これと反対方向のいずれにおいてもスライダブロツク13b及びパツド16と駆動軸14との間の摩擦結合面に滑りを生じつつ追動し、駆動時間の差によつて全体として矢印a方向に移動するものも含むことを意味している。
【0023】
上記波形の駆動パルスを連続して圧電素子15に印加することにより、レンズ保持枠13を矢印aで示す方向へ連続して移動させることができる。
【0024】
レンズ保持枠13を矢印aと反対方向へ移動させるときは、急速な立ち上がり部とこれに続く緩やかな立ち下がり部からなる波形の駆動パルスを圧電素子15に印加することで達成することができる。
【0025】
図4は圧電素子の駆動回路のブロツク図である。駆動回路30は圧電素子15を電流値の異なる2種類の電流1と電流2(電流1>電流2)で充電、放電して駆動するもので、電流値の異なる2種類の電流で駆動することにより、圧電素子15を異なる速度で伸縮させることができる。
【0026】
駆動回路30は、制御回路31、レンズL2 を移動させるときの目標位置を入力する入力装置32、電流1充電回路33、電流1放電回路34、電流2充電回路35、電流2放電回路36、及びレンズL2 の位置、即ちレンズ保持枠13の現在位置を検出するレンズ位置検出センサ37から構成される。
【0027】
入力装置32は、例えばズ−ムレンズにおいてレンズL1 をズ−ム操作により移動させる場合であれば、ズ−ム操作環の回転角検出器などがこれに相当する。また、レンズ位置検出センサ37はレンズ保持枠13の位置を検出するもので、例えば駆動軸14に平行して配置された着磁ロツドと、着磁ロツドに接近してレンズ保持枠13に設けられ、着磁ロツドの磁気を検出する磁気抵抗素子から構成される公知の位置検出器などが利用できる。なお、着磁ロツドはレンズ保持枠13を案内する案内軸18と兼用することができる。
【0028】
制御回路31は、入力装置32及びレンズ位置検出センサ37から入力された信号に基づいてレンズの移動方向及び移動距離を算出して使用する充電回路及び放電回路を決定し、電流1充電回路33、電流1放電回路34、電流2充電回路35、及び電流2放電回路36を作動させ或いは不作動に設定するPWM信号(パルス幅変調信号)PWM1、PWM2、PWM3、PWM4を出力する。
【0029】
図5は、電流1充電回路33、電流1放電回路34、電流2充電回路35、電流2放電回路36の回路構成を示す図である。
【0030】
電流1充電回路33は大電流で急速に圧電素子15に電荷を充電する回路で、電流1充電回路33が作動すると圧電素子15は急速に伸び変位を生ずる。電流1放電回路34は大電流で急速に圧電素子15の電荷を放電するもので、電流1放電回路34が作動すると圧電素子15は急速に縮み変位を生ずる。
【0031】
電流2充電回路35は電流1充電回路33よりも少ない電流の定電流充電回路で、圧電素子15に緩やかに電荷を充電するものであるから、電流2充電回路35が作動すると圧電素子15は緩やかに伸び変位を生ずる。電流2放電回路36は電流1放電回路34よりも少ない電流の定電流放電回路で、圧電素子15の電荷を緩やかに放電するものであるから、電流2放電回路36が作動すると圧電素子15は緩やかに縮み変位を生ずる。
【0032】
電流2充電回路35を定電流充電回路、電流2放電回路36を定電流放電回路としたのは、駆動原理から明らかなように、圧電素子15を緩やかに伸び変位或いは縮み変位させるとき、可能な限り等速度で変位させたほうが移動部材を速く移動させることができるからである。
【0033】
電流2充電回路35には圧電素子の温度特性を補償する温度補償用のサ−ミスタTH1 が挿入され、環境温度の変動により生ずる圧電素子15の静電容量の変動によつても、トランジスタTR1を経て圧電素子15に対して一定の電流で充電されるときの充電電流の変動を補償するように構成されている。温度補償用のサ−ミスタTH1 は定電流値を決定する抵抗R1 に並列に接続されているが、抵抗R1 に直列に接続することもできる。
【0034】
電流2放電回路36にも圧電素子の温度特性を補償する温度補償サ−ミスタTH2 が挿入され、環境温度の変動により生ずる圧電素子15の静電容量の変動によつても、トランジスタTR3を経て圧電素子15の充電電荷が一定の電流で放電されるときの放電電流の変動を補償するように構成されている。
【0035】
図6は、レンズL2 を矢印a方向に移動させる繰出し動作における充放電回路の動作タイミングを説明するタイミングチヤ−ト、図7は、レンズL2 を矢印aと反対方向に移動させる繰込み動作における充放電回路の動作タイミングを説明するタイミングチヤ−トである。以下、駆動回路30による駆動動作を、図1、図5、図6及び図7のタイミングチヤ−トを参照しつつ説明する。
【0036】
まず、レンズL2 を矢印a方向(図1参照)へ移動させる繰出し動作の場合を説明する。
【0037】
この場合は、制御回路31は、前記したように入力装置32及びレンズ位置検出センサ37から入力された信号に基づいてレンズの移動方向及び移動距離を算出して使用する充電回路及び放電回路を決定し、電流2充電回路35に図6の(a)に示すようなPWM1信号を出力し、電流1放電回路34に図6の(b)に示すようなPWM2信号を出力する。また、電流1充電回路33及び電流2放電回路36に対しては、図6の(c)(d)に示すようなPWM3信号のオフ、PWM4信号のオフが出力され、不作動に設定される。
【0038】
電流2充電回路35ではPWM1信号が“H”レベルになるとトランジスタTR5がオンとなり、TR2、TR1が動作を開始し、抵抗R1 及びサ−ミスタTH1 、TR1を経て圧電素子15に充電電流が流れ、圧電素子15に電荷が充電される。TR1を流れる電流はTR2のベ−ス・エミツタ間の電圧Vbeと、抵抗R1 及びサ−ミスタTH1 の合成抵抗Rで決定され、圧電素子15を充電する充電電流値iは以下の式(1)で表される値となる。
【0039】
i=Vbe/R・・・・・・・・・・・・・・・・・・・・・(1)
但し、Vbe=0.6V、 R=(R1 ・TH1 )/(R1 +TH1 )
PWM1信号が“L”レベルになると電流2充電回路35による充電は停止され、同時にPWM2信号が“H”レベルになり、電流1放電回路34の電界効果型トランジスタFET2 がオンとなる。FET2 にはMOS−FETを使用しているのでオンの場合の内部抵抗は小さく略短絡状態になるので、圧電素子に充電された電荷はFET2 を経て急速に放電する。
【0040】
なお、電流2充電回路35のコンデンサC1 はTR5がオン/オフするスイツチングの変化時間を早める機能を有し、これによりPWM1信号とPWM2信号のオン/オフの切り替え時にオフ区間を実質的に設ける必要がないから、制御回路31におけるPWM信号のタイミングの設定が容易となる。電流1充電回路33のコンデンサC2 もこれと全く同じで、TR6がオン/オフするスイツチングの変化時間を早める機能のものである。
【0041】
以上の動作により、圧電素子15には図6の(e)に示すような緩やかな立上がり部と急速な立ち下り部を持つ駆動パルスが印加され、圧電素子15には矢印a方向の緩やかな伸び変位と、矢印aと反対方向の急速な縮み変位を生じ、駆動軸14とスライダブロツク13bを介してレンズL2 を矢印a方向(図1参照)へ移動させる繰出し動作を行うことができる。
【0042】
次に、レンズL1 を矢印aと反対方向(図1参照)へ移動させる繰込み動作の場合を説明する。
【0043】
この場合は、制御回路31は、電流1充電回路33に図7の(c)に示すようなPWM3信号を出力し、電流2放電回路36に図7の(d)に示すようなPWM4信号を出力する。また、電流2充電回路35及び電流1放電回路34に対しては、図7の(a)(b)に示すようなPWM1信号のオフ、PWM2信号のオフが出力され、不作動に設定される。
【0044】
電流1充電回路33ではPWM3信号が“H”レベルになるとトランジスタTR6がオンとなり、FET1がオンとなる。FET1の内部抵抗は小さいので圧電素子15はFET1 を経て電源に接続されるから、急速に充電される。
【0045】
PWM3信号が“L”レベルになるとトランジスタTR6がオフ、FET1もオフとなり、電流1充電回路33による充電は停止される。同時にPWM4信号が“H”レベルになり、電流2放電回路36のトランジスタTR3がオンとなり、圧電素子15に充電された電荷は抵抗R3 及びサ−ミスタTH2 を経て緩やかに放電する。
【0046】
以上の動作により、圧電素子15には図7の(e)に示すような急速な立上がり部と緩やかな立ち下り部を持つ駆動パルスが印加され、圧電素子15には矢印aと反対方向の緩やかな縮み変位と、矢印a方向の急速な伸び変位を生じ、駆動軸14とスライダブロツク13bを介してレンズL2 を矢印aと反対方向(図1参照)へ移動させる繰込み動作を行うことができる。
【0047】
図8は圧電素子の静電容量の温度特性を示す図である。この図から明かなように、圧電素子の静電容量は温度の上昇に比例して増大することがわかる。
【0048】
図10は圧電素子の充電時間と温度との関係を示す図、図11は圧電素子を充電する駆動波形の傾斜角と温度との関係を示す図で、いずれも図9に示すように圧電素子へ30Vまで充電する時間T1 と温度との関係、及び駆動波形の傾斜角θと温度との関係についてのデ−タを示している。
【0049】
圧電素子の充電時間と温度との関係を示す図10において、線(a)はサ−ミスタによる温度補償を行わない場合を示しており、圧電素子へ30Vまで充電する時間T1 は温度が高い程静電容量が増大するので、充電時間が長くなることを示している。また、線(b)はサ−ミスタによる温度補償を行つた場合を示しており、充電時間は温度に影響されず、ほぼ一定時間で充電されることを示している。
【0050】
圧電素子を充電する駆動波形の傾斜角と温度との関係を示す図11において、線(a)はサ−ミスタによる温度補償を行わない場合を示しており、温度が高い程充電時間が長くなるので傾斜角θは小さくなり、所定の電圧までの充電が困難になり、駆動力が減少し駆動速度が低下することを示している。また、温度が低い程充電時間が短くなつて傾斜角θは大きくなり、駆動パルスの緩やかな立ち上がり波形が次第に急速な立ち上がり波形に変化し、圧電素子の伸縮速度の差が小さくなるので、駆動力が減少し駆動速度が低下することを示している。
【0051】
図11の線(b)はサ−ミスタによる温度補償を行つた場合を示しており、駆動波形の傾斜角θは温度に影響されずにほぼ一定を保ち、温度の変化による駆動速度の低下がないことを示している。
【0052】
【発明の効果】
以上説明したとおり、この発明の電気機械変換素子を使用した駆動装置の駆動回路は、電気機械変換素子の温度特性に基づく駆動速度の変動を補償することができるから、駆動装置を使用する環境温度が変動しても、常に十分な駆動速度を得ることができ、駆動装置の適用範囲を拡大することができる。
【図面の簡単な説明】
【図1】カメラの撮影レンズ駆動機構の構成を示す断面図。
【図2】図1に示すレンズ駆動機構の駆動軸とスライダブロツク及びパツドとの摩擦結合部分の構成を示す断面図。
【図3】駆動パルスの波形を説明する図。
【図4】駆動回路のブロツク図。
【図5】電流1充電回路、電流1放電回路、電流2充電回路、電流2放電回路の回路構成を示す図。
【図6】充放電回路の動作タイミングを説明するタイミングチヤ−ト(その1)。
【図7】充放電回路の動作タイミングを説明するタイミングチヤ−ト(その2)。
【図8】圧電素子の静電容量の温度特性を示す図。
【図9】圧電素子の充電時間及び駆動波形の傾斜角を説明する図。
【図10】圧電素子の充電時間と温度との関係を示す図。
【図11】圧電素子を充電する駆動波形の傾斜角と温度との関係を示す図。
【符号の説明】
11 レンズ鏡筒
13 第2レンズレンズ保持枠
13b スライダブロツク
14 駆動軸
15 圧電素子
30 駆動回路
31 制御回路
32 入力装置
33 電流1充電回路
34 電流1放電回路
35 電流2充電回路
36 電流2放電回路
37 レンズ位置検出センサ
FET1 、FET2 電界効果型トランジスタ
TR1 、TR2 、TR3 、TR4 、TR5 、TR6 トランジスタ
TH1 、TH2 サ−ミスタ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drive device using an electromechanical transducer, and more particularly, to a drive circuit of a drive device using an electromechanical transducer capable of obtaining a constant drive speed even when the temperature of the electromechanical transducer changes.
[0002]
[Prior art]
A driving member is coupled to the electromechanical transducer, and a sawtooth wave driving pulse is applied to the electromechanical transducer to reciprocate the driving member in the axial direction, and move the moving member frictionally coupled to the driving member in the axial direction. An actuating actuator (hereinafter referred to as an impact type actuator) is known.
[0003]
This type of impact-type actuator operates roughly as follows. First, at the gently rising portion of the sawtooth wave driving pulse applied to the electromechanical transducer, the electromechanical transducer is gently extended in the thickness direction and displaced, and the driving member coupled to the electromechanical transducer is also gently displaced in the positive direction. I do. At this time, the moving member is connected to the driving member by a frictional coupling force, and moves in the forward direction together with the driving member.
[0004]
Next, in the rapid falling portion of the sawtooth wave driving pulse applied to the electromechanical transducer, the electromechanical transducer rapidly shrinks and displaces in the thickness direction, and the driving member coupled to the electromechanical transducer also moves in the negative direction. Displaces rapidly. At this time, the moving member frictionally coupled to the driving member stays at that position by overcoming the frictional coupling force due to the inertial force and does not move. By continuously applying the sawtooth wave drive pulse to the electromechanical transducer, the moving member can be continuously moved in a predetermined direction.
[0005]
To move the moving member in the opposite direction, the waveform of the sawtooth drive pulse applied to the electromechanical transducer is changed, and a sawtooth drive pulse consisting of a rapid rising portion and a gentle falling portion is applied. Can be achieved.
[0006]
The movement of the driving member and the moving member frictionally coupled to the driving member is actually more complicated, and slippage occurs on the friction coupling surface both in the positive displacement and in the negative displacement of the driving member, and the driving is performed. It is considered that the member and the moving member move in the gentle displacement direction of the driving member as a whole while reciprocating while sliding.
[0007]
[Problems to be solved by the invention]
Generally, an electromechanical transducer such as a piezoelectric element has a characteristic that the capacitance increases when the temperature of the electromechanical transducer is high, and the capacitance decreases when the temperature is low.
[0008]
Due to this characteristic, when charging with a constant current in order to drive the electromechanical transducer, the higher the temperature of the electromechanical transducer, the higher the capacitance and the gentle rise of the sawtooth waveform of the drive pulse. The inclination angle θ becomes smaller. On the other hand, as the temperature of the electromechanical transducer is lower, the capacitance decreases and the inclination angle θ of the gentle rising portion of the sawtooth waveform of the drive pulse increases.
[0009]
That is, when the temperature greatly deviates from the reference temperature (for example, 25 ° C.), it is possible to obtain an optimal drive waveform (for example, a drive waveform set so as to have an optimal inclination angle θ based on the time at 25 ° C.). And the driving efficiency is reduced.
[0010]
As described above, in the drive device using the conventional electromechanical transducer, the drive speed fluctuates based on the temperature characteristics of the electromechanical transducer. Therefore, depending on the temperature of the environment in which the drive device is used, sufficient drive is required. There was an inconvenience that speed could not be obtained. An object of the present invention is to solve the above problems.
[0011]
[Means for Solving the Problems]
The present invention solves the above-mentioned problem, and the invention of claim 1 drives a driving member by supplying driving power to an electromechanical conversion element and causing the electromechanical conversion element to expand and contract. A driving circuit using an electromechanical transducer that moves a driven member frictionally coupled to the electromechanical transducer in a predetermined direction; a charging circuit that charges the electromechanical transducer with a constant current; A discharge circuit for discharging, a control circuit for switching the connection between the electromechanical transducer and the charging circuit and the discharge circuit at a predetermined timing to generate expansion and contraction displacement in the electromechanical transducer, and according to a change in environmental temperature. A current compensating circuit attached to the charging circuit for adjusting the amount of constant current supplied from the charging circuit to the electromechanical conversion element, regardless of changes in environmental temperature. And controlling the charging and discharging current to the electromechanical transducer as the displacement speed of the constant is obtained.
[0012]
The current compensation circuit is a current compensation circuit that compensates for a change in charging current based on a change in the capacitance of the electromechanical transducer due to a change in environmental temperature. And a resistor for changing the resistance value in accordance with the change of the charge current to compensate for the fluctuation of the charging current.
[0013]
According to a fourth aspect of the present invention, a driving member is driven by supplying driving power to the electromechanical conversion element and causing the electromechanical conversion element to expand and contract to move the driven member frictionally coupled to the driving member in a predetermined direction. In a drive circuit of a drive device using the electromechanical transducer to be moved, the drive circuit includes a current compensation circuit that compensates for a change in charging current based on a change in capacitance of the electromechanical transducer that fluctuates according to a change in environmental temperature, A first charging circuit that charges the electromechanical transducer with a constant current in which a change in environmental temperature is compensated, a first discharge circuit that discharges electric charge of the electromechanical transducer, and charges the electromechanical transducer A second charging circuit; and a current compensating circuit for compensating for a change in discharge current based on a change in capacitance of the electromechanical transducer that fluctuates in accordance with a change in environmental temperature. The change in environmental temperature is compensated. A second discharge circuit for discharging the electric charge of the electromechanical transducer with a constant current; and a predetermined timing for the first charge circuit and the first discharge circuit with respect to the electromechanical transducer according to the driving direction of the driving device. Or a control circuit for switching and connecting the second charging circuit and the second discharging circuit to the electromechanical transducer at a predetermined timing, so that a constant displacement is maintained regardless of a change in environmental temperature. The present invention is characterized in that the charging / discharging current to the electromechanical transducer is controlled so as to obtain a speed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. An embodiment of the present invention described below is an example in which a driving device using the electromechanical transducer of the present invention is applied to a photographing lens driving mechanism of a camera, and a piezoelectric element is used as the electromechanical transducer.
[0015]
FIG. 1 is a sectional view showing a configuration of a photographing lens driving mechanism of a camera suitable for applying the present invention. In FIG. 1, reference numeral 11 denotes a lens barrel, and a holding frame 12 for the first lens L1 is fixedly attached to the left end thereof, and a right end 11a thereof forms a holding frame for the third lens L3. Inside the lens barrel 11, a lens holding frame 13 of the second lens L2 is disposed so as to be movable in the optical axis direction. A drive shaft 14 drives the lens holding frame 13 in the optical axis direction. The drive shaft 14 is movable in the optical axis direction by the first flange portion 11b of the lens barrel 11 and the flange portion 12b of the lens holding frame 12. , One end of which is bonded and fixed to one surface of the piezoelectric element 15.
[0016]
The piezoelectric element 15 is displaced in the thickness direction to displace the drive shaft 14 in the axial direction. One end surface of the piezoelectric element 15 is adhered and fixed to the drive shaft 14, and the other end surface is attached to the second flange portion 11 c of the lens barrel 11. Adhesively fixed.
[0017]
The lens holding frame 13 for holding the second lens L2 has a slider block 13b which is a moving member extending upward. A drive shaft 14 extends through the slider block 13b in the lateral direction. An opening 13c is formed in an upper portion of the slider block 13b through which the drive shaft 14 passes, and an upper half of the drive shaft 14 is exposed. A pad 16 which is in contact with the upper half of the drive shaft 14 is fitted into the opening 13c, and a projection 16a is provided on the upper portion of the pad 16. The projection 16a of the pad 16 is pushed down by a leaf spring 17. The pad 16 is provided with a downward biasing force F which comes into contact with the drive shaft 14. FIG. 2 is a cross-sectional view showing a configuration of a frictional coupling portion between the drive shaft 14, the slider block 13b, and the pad 16.
[0018]
Reference numeral 18 denotes a guide shaft that prevents the lens holding frame 13 from swinging and guides the lens holding frame 13 to move along the optical axis. Reference numeral 37 denotes a lens position detection sensor that detects the position of the lens L2. Can be detected to determine the lens position.
[0019]
Next, the control operation will be described. When the movement of the lens L2 in the direction of the arrow a is required, a driving pulse having a sawtooth waveform composed of a gentle rising portion as shown in FIG. .
[0020]
At the gentle rising portion of the drive pulse, the piezoelectric element 15 gradually expands in the thickness direction, and the drive shaft 14 is axially displaced in the direction of arrow a. Therefore, the slider block 13b and the pad 16, which are urged by the leaf spring 17 and are frictionally coupled to the drive shaft 14, also move in the direction of arrow a, so that the lens holding frame 13 can be moved in the direction of arrow a.
[0021]
At the rapid falling portion of the drive pulse, the piezoelectric element 15 rapidly contracts in the thickness direction, and the drive shaft 14 is also displaced in the axial direction in the direction opposite to the arrow a. At this time, the slider block 13b, the pad 16 and the lens holding frame 13, which are urged against the drive shaft 14 by the leaf spring 17 and pressed against it, substantially overcome the frictional coupling force between the drive shaft 14 and the drive shaft 14 due to its inertia. Lens holding frame 13 does not move.
[0022]
The term “substantially” as used herein means that the slider block 13 b and the friction coupling surface between the pad 16 and the drive shaft 14 follow and slide in both directions of the arrow a and the opposite direction. This means that the movement in the direction of the arrow a as a whole due to the time difference is also included.
[0023]
By continuously applying the drive pulse having the above-described waveform to the piezoelectric element 15, the lens holding frame 13 can be continuously moved in the direction indicated by the arrow a.
[0024]
The movement of the lens holding frame 13 in the direction opposite to the arrow a can be achieved by applying to the piezoelectric element 15 a drive pulse having a waveform consisting of a rapid rising portion followed by a gentle falling portion.
[0025]
FIG. 4 is a block diagram of a driving circuit of the piezoelectric element. The drive circuit 30 drives the piezoelectric element 15 by charging and discharging with two kinds of currents 1 and 2 (current 1> current 2) having different current values. The driving circuit 30 drives the piezoelectric element 15 with two kinds of currents having different current values. Thereby, the piezoelectric element 15 can be expanded and contracted at different speeds.
[0026]
The driving circuit 30 includes a control circuit 31, an input device 32 for inputting a target position when the lens L2 is moved, a current 1 charging circuit 33, a current 1 discharging circuit 34, a current 2 charging circuit 35, a current 2 discharging circuit 36, and It comprises a lens position detection sensor 37 for detecting the position of the lens L2, that is, the current position of the lens holding frame 13.
[0027]
The input device 32 corresponds to, for example, a rotation angle detector of a zoom operation ring when the lens L1 is moved by a zoom operation in a zoom lens. The lens position detection sensor 37 detects the position of the lens holding frame 13, and is provided on the lens holding frame 13 such as a magnetized rod arranged parallel to the drive shaft 14 and a magnetized rod. A known position detector including a magnetoresistive element for detecting the magnetism of the magnetized rod can be used. The magnetizing rod can also be used as a guide shaft 18 for guiding the lens holding frame 13.
[0028]
The control circuit 31 calculates the moving direction and the moving distance of the lens based on the signals input from the input device 32 and the lens position detection sensor 37, determines the charging circuit and the discharging circuit to be used, and determines the current 1 charging circuit 33, It outputs PWM signals (pulse width modulation signals) PWM1, PWM2, PWM3, and PWM4 for setting the current 1 discharge circuit 34, the current 2 charge circuit 35, and the current 2 discharge circuit 36 to be activated or deactivated.
[0029]
FIG. 5 is a diagram showing a circuit configuration of the current 1 charging circuit 33, the current 1 discharging circuit 34, the current 2 charging circuit 35, and the current 2 discharging circuit 36.
[0030]
The current 1 charging circuit 33 is a circuit for rapidly charging the piezoelectric element 15 with a large current. When the current 1 charging circuit 33 operates, the piezoelectric element 15 rapidly expands and displaces. The current 1 discharge circuit 34 rapidly discharges the electric charge of the piezoelectric element 15 with a large current. When the current 1 discharge circuit 34 operates, the piezoelectric element 15 is rapidly contracted and displaced.
[0031]
The current 2 charging circuit 35 is a constant current charging circuit having a smaller current than the current 1 charging circuit 33, and charges the piezoelectric element 15 gradually. Therefore, when the current 2 charging circuit 35 is activated, the piezoelectric element 15 is gradually discharged. Causes an elongation displacement. The current 2 discharge circuit 36 is a constant current discharge circuit having a smaller current than the current 1 discharge circuit 34 and gradually discharges the electric charge of the piezoelectric element 15. Therefore, when the current 2 discharge circuit 36 operates, the piezoelectric element 15 is gradually discharged. Causes contraction displacement.
[0032]
The current 2 charging circuit 35 is a constant current charging circuit, and the current 2 discharging circuit 36 is a constant current discharging circuit, as is clear from the driving principle, when the piezoelectric element 15 is gradually extended or contracted. This is because the moving member can be moved faster if the moving member is displaced at a constant speed.
[0033]
A current compensating thermistor TH1 for compensating for the temperature characteristic of the piezoelectric element is inserted into the current 2 charging circuit 35, and the transistor TR1 is also activated by the fluctuation of the capacitance of the piezoelectric element 15 caused by the fluctuation of the environmental temperature. It is configured to compensate for fluctuations in charging current when the piezoelectric element 15 is charged with a constant current through the same. The thermistor TH1 for temperature compensation is connected in parallel to the resistor R1 for determining the constant current value, but may be connected in series to the resistor R1.
[0034]
A temperature compensating thermistor TH2 for compensating for the temperature characteristics of the piezoelectric element is also inserted in the current 2 discharging circuit 36, and the piezoelectric element 15 is also supplied with a voltage via the transistor TR3 due to a change in capacitance of the piezoelectric element 15 caused by a change in environmental temperature. It is configured to compensate for a variation in the discharge current when the charge of the element 15 is discharged with a constant current.
[0035]
FIG. 6 is a timing chart for explaining the operation timing of the charging / discharging circuit in the feeding operation for moving the lens L2 in the direction of the arrow a. FIG. 5 is a timing chart for explaining the operation timing of the discharge circuit. Hereinafter, the driving operation of the driving circuit 30 will be described with reference to the timing charts of FIGS. 1, 5, 6, and 7.
[0036]
First, a description will be given of the case of the extending operation in which the lens L2 is moved in the direction of arrow a (see FIG. 1).
[0037]
In this case, the control circuit 31 calculates the moving direction and the moving distance of the lens based on the signals input from the input device 32 and the lens position detection sensor 37 as described above, and determines the charging circuit and the discharging circuit to be used. Then, a PWM1 signal as shown in FIG. 6A is output to the current 2 charging circuit 35, and a PWM2 signal as shown in FIG. 6B is output to the current 1 discharging circuit 34. In addition, as shown in FIGS. 6C and 6D, the PWM3 signal is turned off and the PWM4 signal is turned off as shown in FIGS. 6C and 6D, and the current 1 charging circuit 33 and the current 2 discharging circuit 36 are set to be inactive. .
[0038]
In the current 2 charging circuit 35, when the PWM1 signal goes to "H" level, the transistor TR5 is turned on, TR2 and TR1 start operating, and a charging current flows to the piezoelectric element 15 via the resistor R1 and the thermistors TH1 and TR1. The electric charge is charged in the piezoelectric element 15. The current flowing through TR1 is determined by the base-emitter voltage Vbe of TR2 and the combined resistance R of the resistor R1 and the thermistor TH1, and the charging current value i for charging the piezoelectric element 15 is given by the following equation (1). Is the value represented by
[0039]
i = Vbe / R (1)
However, Vbe = 0.6V, R = (R1.TH1) / (R1 + TH1)
When the PWM1 signal goes to "L" level, charging by the current 2 charging circuit 35 is stopped, and at the same time, the PWM2 signal goes to "H" level, and the field effect transistor FET2 of the current 1 discharging circuit 34 turns on. Since a MOS-FET is used for the FET2, the internal resistance when it is on is small and substantially short-circuited, so that the electric charge charged in the piezoelectric element is rapidly discharged through the FET2.
[0040]
Note that the capacitor C1 of the current 2 charging circuit 35 has a function of accelerating the change time of the switching when the transistor TR5 is turned on / off, so that it is necessary to substantially provide an off section when switching the PWM1 signal and the PWM2 signal on / off. Therefore, the setting of the timing of the PWM signal in the control circuit 31 becomes easy. The capacitor C2 of the current 1 charging circuit 33 is exactly the same, and has a function of accelerating the change time of switching when the transistor TR6 is turned on / off.
[0041]
By the above operation, a drive pulse having a gentle rising portion and a rapid falling portion as shown in FIG. 6E is applied to the piezoelectric element 15, and the piezoelectric element 15 gradually expands in the direction of arrow a. Displacement and a rapid contraction displacement in the direction opposite to the arrow a occur, and a feeding operation of moving the lens L2 in the direction of the arrow a (see FIG. 1) via the drive shaft 14 and the slider block 13b can be performed.
[0042]
Next, a description will be given of the case of a retraction operation for moving the lens L1 in the direction opposite to the arrow a (see FIG. 1).
[0043]
In this case, the control circuit 31 outputs a PWM3 signal as shown in FIG. 7C to the current 1 charging circuit 33 and a PWM4 signal as shown in FIG. 7D to the current 2 discharging circuit 36. Output. In addition, as shown in FIGS. 7A and 7B, the PWM1 signal is turned off and the PWM2 signal is turned off as shown in FIGS. 7A and 7B, and the current 2 charging circuit 35 and the current 1 discharging circuit 34 are set to be inactive. .
[0044]
In the current 1 charging circuit 33, when the PWM3 signal becomes "H" level, the transistor TR6 is turned on, and the FET1 is turned on. Since the internal resistance of the FET 1 is small, the piezoelectric element 15 is connected to the power supply via the FET 1 and is charged rapidly.
[0045]
When the PWM3 signal becomes "L" level, the transistor TR6 is turned off, the FET1 is also turned off, and charging by the current 1 charging circuit 33 is stopped. At the same time, the PWM4 signal becomes "H" level, the transistor TR3 of the current 2 discharging circuit 36 is turned on, and the electric charge charged in the piezoelectric element 15 is gradually discharged through the resistor R3 and the thermistor TH2.
[0046]
By the above operation, a drive pulse having a rapid rising portion and a gentle falling portion as shown in FIG. 7E is applied to the piezoelectric element 15, and the piezoelectric element 15 has a gentle driving direction opposite to the arrow a. A slight contraction displacement and a rapid extension displacement in the direction of arrow a occur, and a retraction operation of moving lens L2 in the direction opposite to arrow a (see FIG. 1) via drive shaft 14 and slider block 13b can be performed. .
[0047]
FIG. 8 is a diagram showing the temperature characteristics of the capacitance of the piezoelectric element. As is clear from this figure, the capacitance of the piezoelectric element increases in proportion to the rise in temperature.
[0048]
FIG. 10 is a diagram showing the relationship between the charging time and the temperature of the piezoelectric element, and FIG. 11 is a diagram showing the relationship between the inclination angle of the drive waveform for charging the piezoelectric element and the temperature. As shown in FIG. 2 shows data on the relationship between the time T1 for charging up to 30 V and the temperature and the relationship between the inclination angle .theta. Of the drive waveform and the temperature.
[0049]
In FIG. 10, which shows the relationship between the charging time and the temperature of the piezoelectric element, the line (a) shows the case where the temperature compensation by the thermistor is not performed. This indicates that the charging time becomes longer because the capacitance increases. Line (b) shows the case where temperature compensation is performed by a thermistor, and the charging time is not affected by the temperature, and charging is performed in a substantially constant time.
[0050]
In FIG. 11 showing the relationship between the inclination angle of the driving waveform for charging the piezoelectric element and the temperature, the line (a) shows the case where the temperature compensation by the thermistor is not performed, and the charging time becomes longer as the temperature is higher. Therefore, the inclination angle θ becomes small, and it becomes difficult to charge the battery to a predetermined voltage, which indicates that the driving force decreases and the driving speed decreases. In addition, the lower the temperature, the shorter the charging time, the greater the inclination angle θ, the gentler rising waveform of the drive pulse gradually changes to a faster rising waveform, and the difference in the expansion / contraction speed of the piezoelectric element becomes smaller. Indicates that the driving speed decreases.
[0051]
The line (b) in FIG. 11 shows the case where the temperature compensation is performed by the thermistor. The inclination angle θ of the drive waveform is kept almost constant without being affected by the temperature, and the drive speed is reduced by the temperature change. It is not shown.
[0052]
【The invention's effect】
As described above, since the drive circuit of the drive device using the electromechanical transducer of the present invention can compensate for the fluctuation of the drive speed based on the temperature characteristics of the electromechanical transducer, the environmental temperature at which the drive device is used can be compensated. , The driving speed can always be obtained sufficiently, and the applicable range of the driving device can be expanded.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a configuration of a photographing lens driving mechanism of a camera.
FIG. 2 is a sectional view showing a configuration of a frictional coupling portion between a drive shaft of the lens drive mechanism shown in FIG. 1, a slider block and a pad.
FIG. 3 illustrates a waveform of a driving pulse.
FIG. 4 is a block diagram of a driving circuit.
FIG. 5 is a diagram showing a circuit configuration of a current 1 charging circuit, a current 1 discharging circuit, a current 2 charging circuit, and a current 2 discharging circuit.
FIG. 6 is a timing chart (part 1) for explaining the operation timing of the charge / discharge circuit.
FIG. 7 is a timing chart for explaining the operation timing of the charge / discharge circuit (part 2).
FIG. 8 is a diagram illustrating temperature characteristics of capacitance of a piezoelectric element.
FIG. 9 is a diagram illustrating a charging time of a piezoelectric element and an inclination angle of a driving waveform.
FIG. 10 is a diagram showing a relationship between charging time and temperature of a piezoelectric element.
FIG. 11 is a diagram showing a relationship between a tilt angle of a driving waveform for charging a piezoelectric element and temperature.
[Explanation of symbols]
Reference Signs List 11 lens barrel 13 second lens lens holding frame 13b slider block 14 drive shaft 15 piezoelectric element 30 drive circuit 31 control circuit 32 input device 33 current 1 charge circuit 34 current 1 discharge circuit 35 current 2 charge circuit 36 current 2 discharge circuit 37 Lens position detecting sensors FET1, FET2 Field effect transistors TR1, TR2, TR3, TR4, TR5, TR6 Transistors TH1, TH2 Thermistor

Claims (4)

電気機械変換素子に駆動電力を供給し、電気機械変換素子に伸縮変位を発生させることにより駆動部材を駆動し、該駆動部材に摩擦結合した被駆動部材を所定方向に移動させる電気機械変換素子を使用した駆動装置の駆動回路において、
前記電気機械変換素子に一定電流で充電する充電回路と、
前記電気機械変換素子の電荷を放電する放電回路と、
前記電気機械変換素子と前記充電回路及び前記放電回路との接続を所定のタイミングで切り換えて電気機械変換素子に伸縮変位を発生させる制御回路と、
環境温度の変化に応じて前記充電回路から電気機械変換素子に供給する一定電流の電流量を調整する前記充電回路に付設された電流補償回路と
を備え、環境温度の変化に拘らず常に一定の変位速度が得られるように電気機械変換素子への充放電電流を制御することを特徴とする電気機械変換素子を使用した駆動装置の駆動回路。
An electromechanical conversion element that supplies driving power to the electromechanical conversion element, drives a driving member by generating expansion and contraction displacement in the electromechanical conversion element, and moves a driven member frictionally coupled to the driving member in a predetermined direction. In the drive circuit of the drive device used,
A charging circuit that charges the electromechanical transducer with a constant current;
A discharge circuit that discharges the charge of the electromechanical conversion element,
A control circuit that switches the connection between the electromechanical transducer and the charging circuit and the discharge circuit at a predetermined timing to generate expansion and contraction displacement in the electromechanical transducer,
A current compensating circuit attached to the charging circuit that adjusts the amount of a constant current supplied from the charging circuit to the electromechanical transducer in accordance with a change in the environmental temperature; A drive circuit of a drive device using an electromechanical transducer, wherein the drive circuit controls a charge / discharge current to the electromechanical transducer so as to obtain a displacement speed.
前記電流補償回路は、環境温度変化による電気機械変換素子の静電容量の変化に基づく充電電流の変動を補償する電流補償回路であることを特徴とする請求項1記載の電気機械変換素子を使用した駆動装置の駆動回路。2. The electromechanical transducer according to claim 1, wherein the current compensating circuit is a current compensating circuit that compensates for a change in charging current based on a change in capacitance of the electromechanical transducer due to a change in environmental temperature. Drive circuit of the driving device. 前記電流補償回路は、環境温度の変化に応じて抵抗値が変化して充電電流の変動を補償する抵抗体を備えることを特徴とする請求項2記載の電気機械変換素子を使用した駆動装置の駆動回路。The driving device using the electromechanical transducer according to claim 2, wherein the current compensation circuit includes a resistor whose resistance value changes in accordance with a change in environmental temperature to compensate for a change in charging current. Drive circuit. 電気機械変換素子に駆動電力を供給し、電気機械変換素子に伸縮変位を発生させることにより駆動部材を駆動し、該駆動部材に摩擦結合した被駆動部材を所定方向に移動させる電気機械変換素子を使用した駆動装置の駆動回路において、
環境温度の変化に応じて変動する電気機械変換素子の静電容量の変動に基づく充電電流の変動を補償する電流補償回路を備え、環境温度の変化が補償された一定電流で電気機械変換素子に充電する第1の充電回路と、
前記電気機械変換素子の電荷を放電する第1の放電回路と、
前記電気機械変換素子を充電する第2の充電回路と、
環境温度の変化に応じて変動する電気機械変換素子の静電容量の変動に基づく放電電流の変動を補償する電流補償回路を備え、環境温度の変化が補償された一定電流で電気機械変換素子の電荷を放電する第2の放電回路と、
駆動装置の駆動方向に応じて前記第1の充電回路と第1の放電回路を電気機械変換素子に対して所定のタイミングで切り換え接続し、或いは前記第2の充電回路と第2の放電回路を電気機械変換素子に対して所定のタイミングで切り換え接続する制御回路と
を備え、環境温度の変化に拘らず常に一定の変位速度が得られるように電気機械変換素子への充放電電流を制御することを特徴とする電気機械変換素子を使用した駆動装置の駆動回路。
An electromechanical conversion element that supplies driving power to the electromechanical conversion element, drives a driving member by generating expansion and contraction displacement in the electromechanical conversion element, and moves a driven member frictionally coupled to the driving member in a predetermined direction. In the drive circuit of the drive device used,
Equipped with a current compensation circuit that compensates for fluctuations in charging current based on fluctuations in the capacitance of the electromechanical transducer that fluctuate in response to changes in environmental temperature. A first charging circuit for charging;
A first discharge circuit that discharges the charge of the electromechanical conversion element;
A second charging circuit that charges the electromechanical conversion element;
A current compensation circuit that compensates for a change in discharge current based on a change in the capacitance of the electromechanical transducer that fluctuates in accordance with a change in environmental temperature is provided. A second discharging circuit for discharging the electric charge,
The first charging circuit and the first discharging circuit are switched and connected to the electromechanical transducer at a predetermined timing according to the driving direction of the driving device, or the second charging circuit and the second discharging circuit are connected to each other. A control circuit that switches and connects to the electromechanical transducer at a predetermined timing, and controls a charging / discharging current to the electromechanical transducer so that a constant displacement speed is always obtained regardless of a change in environmental temperature. A drive circuit of a drive device using an electromechanical transducer, characterized in that:
JP18188197A 1997-06-24 1997-06-24 Drive circuit for drive device using electromechanical transducer Expired - Fee Related JP3539138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18188197A JP3539138B2 (en) 1997-06-24 1997-06-24 Drive circuit for drive device using electromechanical transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18188197A JP3539138B2 (en) 1997-06-24 1997-06-24 Drive circuit for drive device using electromechanical transducer

Publications (2)

Publication Number Publication Date
JPH1118458A JPH1118458A (en) 1999-01-22
JP3539138B2 true JP3539138B2 (en) 2004-07-07

Family

ID=16108511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18188197A Expired - Fee Related JP3539138B2 (en) 1997-06-24 1997-06-24 Drive circuit for drive device using electromechanical transducer

Country Status (1)

Country Link
JP (1) JP3539138B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104925B2 (en) * 2010-08-25 2012-12-19 コニカミノルタホールディングス株式会社 Drive device
JP6098736B2 (en) 2014-01-22 2017-03-22 株式会社村田製作所 Piezoelectric generator module and remote controller
EP3432372A1 (en) * 2017-07-20 2019-01-23 Koninklijke Philips N.V. Actuator structure and actuation method thereof

Also Published As

Publication number Publication date
JPH1118458A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
EP1981096B1 (en) Drive unit
US7567012B2 (en) Drive unit
US6727635B2 (en) Driving device
US5917267A (en) Linear drive mechanism using electromechanical conversion element
US7075210B2 (en) Discharging circuit for a piezoelectric device
US20040013420A1 (en) Driving device, position controller provided with driving device, and camera provided with position controller
US7911114B2 (en) Impact drive actuator
US8395855B2 (en) Shape memory alloy actuation apparatus
JP5233922B2 (en) Vibration actuator driving device, lens barrel, and optical device
JP4277384B2 (en) Piezoelectric actuator
US6566790B1 (en) Driving apparatus and driving method of piezoelectric actuator
JPH10290589A (en) Driver using electromechanical transducer
JP3539138B2 (en) Drive circuit for drive device using electromechanical transducer
JPH11356070A (en) Drive unit using electromechanical transducing element and driving circuit therefor
EP2110940A1 (en) Driver
US20060049716A1 (en) Drive unit
JP2004056914A (en) Driver, lens unit equipped therewith, and photographing equipment
JPH11356071A (en) Drive unit using electromechanical transducing element and driving circuit therefor
US11264926B2 (en) Driving circuit and method for stepping motor
JPH11341840A (en) Driver using electromechanical sensing element
US7986477B2 (en) Driving device and optical apparatus
JP2013090495A (en) Control device for vibrator comprising electromechanical energy conversion element detecting temperature of vibrator, dust removal device having control device, and vibration type actuator
JPH11154018A (en) Method for keeping fixed feedback cycle and drive controller and optical device controlled by the method
JPH10337056A (en) Control method for driver
JPH10256881A (en) Pulse generator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees