JPH1118458A - Driving circuit of drive device using electrical mechanical sensing element - Google Patents

Driving circuit of drive device using electrical mechanical sensing element

Info

Publication number
JPH1118458A
JPH1118458A JP9181881A JP18188197A JPH1118458A JP H1118458 A JPH1118458 A JP H1118458A JP 9181881 A JP9181881 A JP 9181881A JP 18188197 A JP18188197 A JP 18188197A JP H1118458 A JPH1118458 A JP H1118458A
Authority
JP
Japan
Prior art keywords
circuit
current
charging
change
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9181881A
Other languages
Japanese (ja)
Other versions
JP3539138B2 (en
Inventor
Yoshihiro Tasaka
吉弘 田坂
Kotaro Kawabe
浩太郎 川邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP18188197A priority Critical patent/JP3539138B2/en
Publication of JPH1118458A publication Critical patent/JPH1118458A/en
Application granted granted Critical
Publication of JP3539138B2 publication Critical patent/JP3539138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a driving circuit which can compensate changes in driving speed, based on the temperature characteristics of an electrical mechanical sensing element, and attain sufficient driving speed at all times. SOLUTION: This driving circuit is provided with a current 1 charging circuit 33 for charging a piezoelectric element 15 rapidly with a heavy current, a current 1 discharging circuit 34 for discharging rapidly with heavy current, a current 2 charging circuit 35 for charging with constant current, and a current 2 discharging circuit 36 for discharging with constant current, and as a result of charging and discharging rapidly with constant current, a moving member frictionally combined with a driving member is moved in a prescribed direction by generating extending displacement smoothly and rapidly-contracting displacement in a piezoelectric element, and generating reciprocating vibration whose speed is different at the driving members fixed to the piezoelectric element. By inserting the temperature compensating thermistors TH1, TH2 in the constant current charging circuit 35 and the constant current discharging circuit 36, it is possible to compensate for the changes in a constant current charging current and a constant current discharging current, based on a change in the electrostatic capacity of the piezoelectric element 15 generated by the change in the environmental temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電気機械変換素
子を使用した駆動装置に関し、特に電気機械変換素子の
温度の変化によつても、一定の駆動速度が得られる電気
機械変換素子を使用した駆動装置の駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving device using an electromechanical transducer, and more particularly to an electromechanical transducer capable of obtaining a constant driving speed even when the temperature of the electromechanical transducer changes. The present invention relates to a driving circuit of a driving device.

【0002】[0002]

【従来の技術】電気機械変換素子に駆動部材を結合し、
電気機械変換素子に鋸歯状波駆動パルスを印加して駆動
部材を軸方向に往復変位させ、この駆動部材に摩擦結合
させた移動部材を軸方向に移動させるアクチエ−タ(以
下、インパクト型アクチエ−タと呼ぶ)が知られてい
る。
2. Description of the Related Art A driving member is connected to an electromechanical transducer,
An actuator (hereinafter referred to as an impact type actuator) for applying a sawtooth drive pulse to the electromechanical transducer to reciprocate the drive member in the axial direction and moving the moving member frictionally coupled to the drive member in the axial direction. Is called).

【0003】この種のインパクト型アクチエ−タは、お
よそ次のように動作する。まず、電気機械変換素子に印
加する鋸歯状波駆動パルスの緩やかな立上り部分では電
気機械変換素子が緩やかに厚み方向に伸び変位し、電気
機械変換素子に結合する駆動部材も正方向に緩やかに変
位する。このとき、移動部材は摩擦結合力により駆動部
材と結合しており、駆動部材と共に正方向に移動する。
[0003] This type of impact type actuator generally operates as follows. First, at the gentle rising portion of the sawtooth wave driving pulse applied to the electromechanical transducer, the electromechanical transducer is gently extended in the thickness direction and displaced, and the driving member coupled to the electromechanical transducer is also gently displaced in the positive direction. I do. At this time, the moving member is connected to the driving member by a frictional coupling force, and moves in the forward direction together with the driving member.

【0004】次に、電気機械変換素子に印加する鋸歯状
波駆動パルスの急速な立下り部分では、電気機械変換素
子が急速に厚み方向に縮み変位し、電気機械変換素子に
結合する駆動部材も負方向に急速に変位する。このと
き、駆動部材に摩擦結合した移動部材は慣性力により摩
擦結合力に打ち勝つてその位置に留まり、移動しない。
電気機械変換素子に鋸歯状波駆動パルスを連続的に印加
することにより、移動部材を連続的に所定方向に移動さ
せることができる。
[0004] Next, at the rapid falling portion of the sawtooth wave driving pulse applied to the electromechanical transducer, the electromechanical transducer rapidly shrinks and displaces in the thickness direction, and the driving member coupled to the electromechanical transducer is also required. Displaces rapidly in the negative direction. At this time, the moving member frictionally coupled to the driving member stays at that position by overcoming the frictional coupling force due to the inertial force and does not move.
By continuously applying the sawtooth wave driving pulse to the electromechanical transducer, the moving member can be continuously moved in a predetermined direction.

【0005】移動部材を先と反対方向に移動させるに
は、電気機械変換素子に印加する鋸歯状波駆動パルスの
波形を変え、急速な立上り部分と緩やかな立下り部分か
らなる鋸歯状波駆動パルスを印加すれば達成することが
できる。
In order to move the moving member in the opposite direction, the waveform of the sawtooth wave driving pulse applied to the electromechanical transducer is changed to form a sawtooth wave driving pulse having a rapid rising portion and a gentle falling portion. Can be achieved by applying

【0006】上記した駆動部材とこれに摩擦結合した移
動部材の動きは、実際には更に複雑であつて、駆動部材
の正方向変位においても、また負方向変位においても摩
擦結合面において滑りが発生し、駆動部材と移動部材と
は滑りながら往復移動しつつ全体として駆動部材の緩や
かな変位方向に移動するものと考えられている。
[0006] The movement of the driving member and the moving member frictionally connected to the driving member is actually more complicated, and slippage occurs on the friction coupling surface both in the positive displacement and in the negative displacement of the driving member. However, it is considered that the driving member and the moving member move in the gentle displacement direction of the driving member as a whole while reciprocating while sliding.

【0007】[0007]

【発明が解決しようとする課題】一般に圧電素子などの
電気機械変換素子は、電気機械変換素子の温度が高い場
合は静電容量が増加し、温度が低い場合は静電容量が減
少するという特性を備えている。
Generally, an electromechanical transducer such as a piezoelectric element has a characteristic that the capacitance increases when the temperature of the electromechanical transducer is high and decreases when the temperature is low. It has.

【0008】この特性のため、電気機械変換素子を駆動
するために一定電流で充電する場合において、電気機械
変換素子の温度が高いほど静電容量が増加して駆動パル
スの鋸歯状波形の緩やかな立ち上がり部の傾斜角θが小
さくなる。一方、電気機械変換素子の温度が低いほど、
静電容量が減少して駆動パルスの鋸歯状波形の緩やかな
立ち上がり部の傾斜角θが大きくなる。
Due to this characteristic, when the electromechanical transducer is charged with a constant current to drive it, the higher the temperature of the electromechanical transducer, the greater the capacitance and the gentler the sawtooth waveform of the drive pulse. The inclination angle θ of the rising portion becomes small. On the other hand, the lower the temperature of the electromechanical transducer,
The capacitance decreases, and the inclination angle θ of the gentle rising portion of the sawtooth waveform of the drive pulse increases.

【0009】即ち、温度が基準温度(例えば25℃)か
ら大きく外れると、最適な駆動波形(例えば25℃の時
を基準にし、最適な傾斜角θとなるように設定された駆
動波形)を得ることができなくなり、駆動効率が低下す
る。
That is, when the temperature greatly deviates from the reference temperature (for example, 25 ° C.), an optimum drive waveform (for example, a drive waveform set so as to have an optimum inclination angle θ based on the time of 25 ° C.) is obtained. And the driving efficiency is reduced.

【0010】このように、従来の電気機械変換素子を使
用した駆動装置では、電気機械変換素子の温度特性に基
づいて駆動速度が変動するから、駆動装置を使用する環
境の温度によつては、十分な駆動速度を得ることができ
ないという不都合があつた。この発明は上記課題を解決
することを目的とするものである。
As described above, in a driving device using a conventional electromechanical transducer, the driving speed fluctuates based on the temperature characteristics of the electromechanical transducer. Therefore, depending on the temperature of the environment in which the driving device is used, There is a disadvantage that a sufficient driving speed cannot be obtained. An object of the present invention is to solve the above problems.

【0011】[0011]

【課題を解決するための手段】この発明は上記課題を解
決するもので、請求項1の発明は、電気機械変換素子に
駆動電力を供給し、電気機械変換素子に伸縮変位を発生
させることにより駆動部材を駆動し、該駆動部材に摩擦
結合した被駆動部材を所定方向に移動させる電気機械変
換素子を使用した駆動装置の駆動回路において、前記電
気機械変換素子に一定電流で充電する充電回路と、前記
電気機械変換素子の電荷を放電する放電回路と、前記電
気機械変換素子と前記充電回路及び前記放電回路との接
続を所定のタイミングで切り換えて電気機械変換素子に
伸縮変位を発生させる制御回路と、環境温度の変化に応
じて前記充電回路から電気機械変換素子に供給する一定
電流の電流量を調整する前記充電回路に付設された電流
補償回路とを備え、環境温度の変化に拘らず常に一定の
変位速度が得られるように電気機械変換素子への充放電
電流を制御することを特徴とする。
Means for Solving the Problems The present invention solves the above-mentioned problems, and the invention of claim 1 is to supply a driving power to an electromechanical transducer to generate a telescopic displacement in the electromechanical transducer. A driving circuit for driving the driving member, the driving circuit using an electromechanical conversion element for moving a driven member frictionally coupled to the driving member in a predetermined direction, a charging circuit for charging the electromechanical conversion element with a constant current; A discharge circuit for discharging electric charges of the electromechanical transducer, and a control circuit for switching connection between the electromechanical transducer, the charging circuit, and the discharge circuit at a predetermined timing to generate expansion and contraction displacement in the electromechanical transducer. And a current compensation circuit attached to the charging circuit that adjusts a constant current amount supplied from the charging circuit to the electromechanical transducer in accordance with a change in environmental temperature. Always regardless of the change of the environmental temperature and controls the charging and discharging current to the electromechanical transducer so that a constant displacement rate.

【0012】そして、前記電流補償回路は、環境温度変
化による電気機械変換素子の静電容量の変化に基づく充
電電流の変動を補償する電流補償回路であり、具体的に
は、前記電流補償回路は、環境温度の変化に応じて抵抗
値が変化して充電電流の変動を補償する抵抗体を備え
る。
The current compensating circuit is a current compensating circuit for compensating a change in charging current based on a change in capacitance of the electromechanical transducer due to a change in environmental temperature. Specifically, the current compensating circuit is A resistor for changing a resistance value in accordance with a change in environmental temperature to compensate for a change in charging current.

【0013】請求項4の発明は、電気機械変換素子に駆
動電力を供給し、電気機械変換素子に伸縮変位を発生さ
せることにより駆動部材を駆動し、該駆動部材に摩擦結
合した被駆動部材を所定方向に移動させる電気機械変換
素子を使用した駆動装置の駆動回路において、環境温度
の変化に応じて変動する電気機械変換素子の静電容量の
変動に基づく充電電流の変動を補償する電流補償回路を
備え、環境温度の変化が補償された一定電流で電気機械
変換素子に充電する第1の充電回路と、前記電気機械変
換素子の電荷を放電する第1の放電回路と、前記電気機
械変換素子を充電する第2の充電回路と、環境温度の変
化に応じて変動する電気機械変換素子の静電容量の変動
に基づく放電電流の変動を補償する電流補償回路を備
え、環境温度の変化が補償された一定電流で電気機械変
換素子の電荷を放電する第2の放電回路と、駆動装置の
駆動方向に応じて前記第1の充電回路と第1の放電回路
を電気機械変換素子に対して所定のタイミングで切り換
え接続し、或いは前記第2の充電回路と第2の放電回路
を電気機械変換素子に対して所定のタイミングで切り換
え接続する制御回路とを備え、環境温度の変化に拘らず
常に一定の変位速度が得られるように電気機械変換素子
への充放電電流を制御することを特徴とするものであ
る。
According to a fourth aspect of the present invention, a driving member is driven by supplying driving power to the electromechanical transducer and causing the electromechanical transducer to expand and contract. In a drive circuit of a drive device using an electromechanical transducer that moves in a predetermined direction, a current compensation circuit that compensates for a change in charging current based on a change in capacitance of the electromechanical transducer that changes in accordance with a change in environmental temperature A first charging circuit that charges the electromechanical transducer with a constant current in which a change in environmental temperature is compensated, a first discharge circuit that discharges electric charges of the electromechanical transducer, and the electromechanical transducer And a current compensation circuit for compensating for a change in discharge current based on a change in capacitance of the electromechanical transducer that fluctuates in accordance with a change in environmental temperature. A second discharging circuit for discharging the electric charge of the electromechanical transducer with the compensated constant current, and the first charging circuit and the first discharging circuit for the electromechanical transducer according to the driving direction of the driving device. A control circuit for switching connection at a predetermined timing, or a control circuit for switching and connecting the second charging circuit and the second discharging circuit to the electromechanical conversion element at a predetermined timing, regardless of a change in environmental temperature. The present invention is characterized in that the charging / discharging current to the electromechanical transducer is controlled so as to obtain a constant displacement speed.

【0014】[0014]

【発明の実施の形態】以下、この発明の実施の形態につ
いて説明する。以下説明するこの発明の実施の形態は、
この発明の電気機械変換素子を使用した駆動装置をカメ
ラの撮影レンズ駆動機構に適用した例で、電気機械変換
素子として圧電素子を使用している。
Embodiments of the present invention will be described below. Embodiments of the present invention described below are:
In this example, a driving device using the electromechanical transducer of the present invention is applied to a photographic lens driving mechanism of a camera, and a piezoelectric element is used as the electromechanical transducer.

【0015】図1はこの発明を適用するに適したカメラ
の撮影レンズ駆動機構の構成を示す断面図である。図1
において、11はレンズ鏡筒で、その左端には第1レン
ズL1 の保持枠12が固定的に取り付けられ、その右端
11aは第3レンズL3 の保持枠を形成している。レン
ズ鏡筒11の内部には、第2レンズL2 のレンズ保持枠
13が、光軸方向に移動可能に配置されている。14は
レンズ保持枠13を光軸方向に駆動する駆動軸で、駆動
軸14は、レンズ鏡筒11の第1のフランジ部11bと
レンズ保持枠12のフランジ部12bとにより光軸方向
に移動自在に支持され、その一端は圧電素子15の1つ
の面に接着固定されている。
FIG. 1 is a sectional view showing a configuration of a photographing lens driving mechanism of a camera suitable for applying the present invention. FIG.
In the figure, reference numeral 11 denotes a lens barrel, on the left end of which a fixed frame 12 for the first lens L1 is fixedly attached, and the right end 11a thereof forms a frame for holding the third lens L3. Inside the lens barrel 11, a lens holding frame 13 of the second lens L2 is disposed so as to be movable in the optical axis direction. Reference numeral 14 denotes a drive shaft for driving the lens holding frame 13 in the optical axis direction. The drive shaft 14 is movable in the optical axis direction by the first flange 11b of the lens barrel 11 and the flange 12b of the lens holding frame 12. , One end of which is bonded and fixed to one surface of the piezoelectric element 15.

【0016】圧電素子15は厚み方向に変位して駆動軸
14を軸方向に変位させるもので、その一端面は駆動軸
14に接着固定され、他の端面はレンズ鏡筒11の第2
のフランジ部11cに接着固定されている。
The piezoelectric element 15 is displaced in the thickness direction to displace the drive shaft 14 in the axial direction. One end surface of the piezoelectric element 15 is bonded and fixed to the drive shaft 14, and the other end surface is the second end of the lens barrel 11.
Is adhesively fixed to the flange portion 11c.

【0017】第2レンズL2 を保持するレンズ保持枠1
3は、その上方に延びた移動部材であるスライダブロツ
ク13bを備えている。スライダブロツク13bには横
方向に駆動軸14が貫通している。スライダブロツク1
3bの駆動軸14が貫通している上部には開口部13c
が形成され、駆動軸14の上半分が露出している。ま
た、この開口部13cには駆動軸14の上半分に当接す
るパツド16が嵌挿され、パツド16には上部に突起1
6aが設けられており、パツド16の突起16aが板ば
ね17により押し下げられ、パツド16には駆動軸14
に当接する下向きの付勢力Fが与えられている。図2は
駆動軸14とスライダブロツク13b及びパツド16と
の摩擦結合部分の構成を示す断面図である。
A lens holding frame 1 for holding the second lens L2
Reference numeral 3 denotes a slider block 13b which is a moving member extending upward. A drive shaft 14 extends through the slider block 13b in the lateral direction. Slider block 1
An opening 13c is provided in the upper part through which the drive shaft 14 of FIG.
Are formed, and the upper half of the drive shaft 14 is exposed. A pad 16 which is in contact with the upper half of the drive shaft 14 is fitted into the opening 13c.
6a, the projection 16a of the pad 16 is pushed down by the leaf spring 17, and the pad 16
Downward urging force F is applied. FIG. 2 is a cross-sectional view showing a configuration of a frictional coupling portion between the drive shaft 14, the slider block 13b, and the pad 16.

【0018】なお、18はレンズ保持枠13の揺動を防
止し、光軸に沿つて移動するように案内する案内軸、3
7はレンズL2 の位置を検出するレンズ位置検出センサ
で、レンズ保持枠13の位置を検出してレンズ位置を知
ることができる。
Reference numeral 18 denotes a guide shaft for preventing the lens holding frame 13 from swinging and guiding the lens holding frame 13 to move along the optical axis.
Reference numeral 7 denotes a lens position detecting sensor for detecting the position of the lens L2, which can detect the position of the lens holding frame 13 to know the lens position.

【0019】次にその制御動作を説明する。レンズL2
の矢印a方向への移動を必要としているときは、図3に
示すような緩やかな立ち上がり部とこれに続く急速な立
ち下がり部からなる鋸歯状波形の駆動パルスを圧電素子
15に供給する。
Next, the control operation will be described. Lens L2
When the movement in the direction of arrow a is required, a driving pulse having a sawtooth waveform composed of a gently rising portion as shown in FIG.

【0020】駆動パルスの緩やかな立ち上がり部では、
圧電素子15は緩やかに厚み方向の伸び変位を生じ、駆
動軸14は軸方向に矢印a方向へ変位する。このため、
駆動軸14に板ばね17により付勢されて摩擦結合して
いるスライダブロツク13b及びパツド16も矢印a方
向へ移動するので、レンズ保持枠13を矢印a方向へ移
動させることができる。
In the gentle rising portion of the driving pulse,
The piezoelectric element 15 gradually expands in the thickness direction, and the drive shaft 14 is axially displaced in the direction of arrow a. For this reason,
The slider block 13b and the pad 16, which are urged by the leaf spring 17 and are frictionally coupled to the drive shaft 14, also move in the direction of the arrow a, so that the lens holding frame 13 can be moved in the direction of the arrow a.

【0021】駆動パルスの急速な立ち下がり部では、圧
電素子15が急速に厚み方向の縮み変位を生じ、駆動軸
14も軸方向に矢印aと反対方向へ変位する。このと
き、駆動軸14に板ばね17により付勢されて圧接して
いるスライダブロツク13b、パツド16及びレンズ保
持枠13は、その慣性力により駆動軸14との間の摩擦
結合力に打ち勝つて実質的にその位置に留まるので、レ
ンズ保持枠13は移動しない。
At the rapid falling portion of the drive pulse, the piezoelectric element 15 rapidly contracts in the thickness direction, and the drive shaft 14 is also displaced in the axial direction in the direction opposite to the arrow a. At this time, the slider block 13b, the pad 16 and the lens holding frame 13, which are urged against the drive shaft 14 by the leaf spring 17 and pressed against it, substantially overcome the frictional coupling force with the drive shaft 14 due to its inertia force. Lens holding frame 13 does not move.

【0022】なお、ここでいう実質的とは、矢印a方向
と、これと反対方向のいずれにおいてもスライダブロツ
ク13b及びパツド16と駆動軸14との間の摩擦結合
面に滑りを生じつつ追動し、駆動時間の差によつて全体
として矢印a方向に移動するものも含むことを意味して
いる。
The term "substantially" as used herein means that the slider block 13b and the frictional coupling surface between the pad 16 and the drive shaft 14 slide in the direction of the arrow a and in the direction opposite thereto while sliding. However, this also includes the movement in the direction of arrow a as a whole due to the difference in driving time.

【0023】上記波形の駆動パルスを連続して圧電素子
15に印加することにより、レンズ保持枠13を矢印a
で示す方向へ連続して移動させることができる。
By continuously applying the driving pulse having the above-mentioned waveform to the piezoelectric element 15, the lens holding frame 13
Can be continuously moved in the direction indicated by.

【0024】レンズ保持枠13を矢印aと反対方向へ移
動させるときは、急速な立ち上がり部とこれに続く緩や
かな立ち下がり部からなる波形の駆動パルスを圧電素子
15に印加することで達成することができる。
The movement of the lens holding frame 13 in the direction opposite to the arrow a is achieved by applying a drive pulse having a waveform consisting of a rapid rising portion followed by a gentle falling portion to the piezoelectric element 15. Can be.

【0025】図4は圧電素子の駆動回路のブロツク図で
ある。駆動回路30は圧電素子15を電流値の異なる2
種類の電流1と電流2(電流1>電流2)で充電、放電
して駆動するもので、電流値の異なる2種類の電流で駆
動することにより、圧電素子15を異なる速度で伸縮さ
せることができる。
FIG. 4 is a block diagram of a driving circuit of the piezoelectric element. The drive circuit 30 connects the piezoelectric element 15 to two different current values.
It is driven by charging and discharging with two kinds of currents 1 and 2 (current 1> current 2). By driving with two kinds of currents having different current values, the piezoelectric element 15 can expand and contract at different speeds. it can.

【0026】駆動回路30は、制御回路31、レンズL
2 を移動させるときの目標位置を入力する入力装置3
2、電流1充電回路33、電流1放電回路34、電流2
充電回路35、電流2放電回路36、及びレンズL2 の
位置、即ちレンズ保持枠13の現在位置を検出するレン
ズ位置検出センサ37から構成される。
The drive circuit 30 includes a control circuit 31, a lens L
Input device 3 for inputting the target position when moving 2
2, current 1 charging circuit 33, current 1 discharging circuit 34, current 2
It comprises a charging circuit 35, a current 2 discharging circuit 36, and a lens position detecting sensor 37 for detecting the position of the lens L2, that is, the current position of the lens holding frame 13.

【0027】入力装置32は、例えばズ−ムレンズにお
いてレンズL1 をズ−ム操作により移動させる場合であ
れば、ズ−ム操作環の回転角検出器などがこれに相当す
る。また、レンズ位置検出センサ37はレンズ保持枠1
3の位置を検出するもので、例えば駆動軸14に平行し
て配置された着磁ロツドと、着磁ロツドに接近してレン
ズ保持枠13に設けられ、着磁ロツドの磁気を検出する
磁気抵抗素子から構成される公知の位置検出器などが利
用できる。なお、着磁ロツドはレンズ保持枠13を案内
する案内軸18と兼用することができる。
The input device 32 corresponds to, for example, a rotation angle detector of a zoom operation ring when the lens L1 is moved by a zoom operation in a zoom lens. The lens position detection sensor 37 is connected to the lens holding frame 1.
For example, a magnetized rod arranged in parallel with the drive shaft 14 and a magnetoresistive element provided on the lens holding frame 13 close to the magnetized rod and detecting the magnetized rod. A known position detector composed of elements can be used. The magnetizing rod can also be used as a guide shaft 18 for guiding the lens holding frame 13.

【0028】制御回路31は、入力装置32及びレンズ
位置検出センサ37から入力された信号に基づいてレン
ズの移動方向及び移動距離を算出して使用する充電回路
及び放電回路を決定し、電流1充電回路33、電流1放
電回路34、電流2充電回路35、及び電流2放電回路
36を作動させ或いは不作動に設定するPWM信号(パ
ルス幅変調信号)PWM1、PWM2、PWM3、PW
M4を出力する。
The control circuit 31 calculates the moving direction and the moving distance of the lens based on the signals inputted from the input device 32 and the lens position detecting sensor 37, determines the charging circuit and the discharging circuit to be used, and determines the current 1 charge. PWM signals (pulse width modulation signals) PWM1, PWM2, PWM3, PWM for setting the circuit 33, the current 1 discharging circuit 34, the current 2 charging circuit 35, and the current 2 discharging circuit 36 to be activated or deactivated.
M4 is output.

【0029】図5は、電流1充電回路33、電流1放電
回路34、電流2充電回路35、電流2放電回路36の
回路構成を示す図である。
FIG. 5 is a diagram showing a circuit configuration of the current 1 charging circuit 33, the current 1 discharging circuit 34, the current 2 charging circuit 35, and the current 2 discharging circuit 36.

【0030】電流1充電回路33は大電流で急速に圧電
素子15に電荷を充電する回路で、電流1充電回路33
が作動すると圧電素子15は急速に伸び変位を生ずる。
電流1放電回路34は大電流で急速に圧電素子15の電
荷を放電するもので、電流1放電回路34が作動すると
圧電素子15は急速に縮み変位を生ずる。
The current 1 charging circuit 33 is a circuit for rapidly charging the piezoelectric element 15 with a large current.
Operates, the piezoelectric element 15 is rapidly extended and displaced.
The current 1 discharge circuit 34 rapidly discharges the electric charge of the piezoelectric element 15 with a large current. When the current 1 discharge circuit 34 operates, the piezoelectric element 15 is rapidly contracted and displaced.

【0031】電流2充電回路35は電流1充電回路33
よりも少ない電流の定電流充電回路で、圧電素子15に
緩やかに電荷を充電するものであるから、電流2充電回
路35が作動すると圧電素子15は緩やかに伸び変位を
生ずる。電流2放電回路36は電流1放電回路34より
も少ない電流の定電流放電回路で、圧電素子15の電荷
を緩やかに放電するものであるから、電流2放電回路3
6が作動すると圧電素子15は緩やかに縮み変位を生ず
る。
The current 2 charging circuit 35 includes a current 1 charging circuit 33
Since the electric charge is gradually charged in the piezoelectric element 15 with a constant current charging circuit having a smaller current, the piezoelectric element 15 is gradually expanded and displaced when the current 2 charging circuit 35 operates. The current 2 discharge circuit 36 is a constant current discharge circuit having a smaller current than the current 1 discharge circuit 34 and slowly discharges the electric charge of the piezoelectric element 15.
When the element 6 operates, the piezoelectric element 15 contracts gently to cause displacement.

【0032】電流2充電回路35を定電流充電回路、電
流2放電回路36を定電流放電回路としたのは、駆動原
理から明らかなように、圧電素子15を緩やかに伸び変
位或いは縮み変位させるとき、可能な限り等速度で変位
させたほうが移動部材を速く移動させることができるか
らである。
The reason why the current 2 charging circuit 35 is a constant current charging circuit and the current 2 discharging circuit 36 is a constant current discharging circuit is that the piezoelectric element 15 is gradually extended or contracted, as is apparent from the driving principle. This is because the moving member can be moved faster by displacing it at the same speed as possible.

【0033】電流2充電回路35には圧電素子の温度特
性を補償する温度補償用のサ−ミスタTH1 が挿入さ
れ、環境温度の変動により生ずる圧電素子15の静電容
量の変動によつても、トランジスタTR1を経て圧電素
子15に対して一定の電流で充電されるときの充電電流
の変動を補償するように構成されている。温度補償用の
サ−ミスタTH1 は定電流値を決定する抵抗R1 に並列
に接続されているが、抵抗R1 に直列に接続することも
できる。
A current compensating thermistor TH1 for compensating the temperature characteristic of the piezoelectric element is inserted in the current 2 charging circuit 35, so that the capacitance of the piezoelectric element 15 caused by the fluctuation of the ambient temperature can be changed. It is configured to compensate for a change in charging current when the piezoelectric element 15 is charged with a constant current via the transistor TR1. The thermistor TH1 for temperature compensation is connected in parallel to the resistor R1 for determining the constant current value, but may be connected in series to the resistor R1.

【0034】電流2放電回路36にも圧電素子の温度特
性を補償する温度補償サ−ミスタTH2 が挿入され、環
境温度の変動により生ずる圧電素子15の静電容量の変
動によつても、トランジスタTR3を経て圧電素子15
の充電電荷が一定の電流で放電されるときの放電電流の
変動を補償するように構成されている。
A temperature compensating thermistor TH2 for compensating for the temperature characteristic of the piezoelectric element is also inserted in the current 2 discharging circuit 36, and the transistor TR3 is also operated by the fluctuation of the capacitance of the piezoelectric element 15 caused by the fluctuation of the environmental temperature. Through the piezoelectric element 15
Is configured to compensate for fluctuations in the discharge current when the charge is discharged with a constant current.

【0035】図6は、レンズL2 を矢印a方向に移動さ
せる繰出し動作における充放電回路の動作タイミングを
説明するタイミングチヤ−ト、図7は、レンズL2 を矢
印aと反対方向に移動させる繰込み動作における充放電
回路の動作タイミングを説明するタイミングチヤ−トで
ある。以下、駆動回路30による駆動動作を、図1、図
5、図6及び図7のタイミングチヤ−トを参照しつつ説
明する。
FIG. 6 is a timing chart for explaining the operation timing of the charging / discharging circuit in the feeding operation for moving the lens L2 in the direction of arrow a. FIG. 7 is a timing chart for moving the lens L2 in the direction opposite to the arrow a. 4 is a timing chart for explaining the operation timing of the charge / discharge circuit in operation. Hereinafter, the driving operation of the driving circuit 30 will be described with reference to the timing charts of FIGS. 1, 5, 6, and 7.

【0036】まず、レンズL2 を矢印a方向(図1参
照)へ移動させる繰出し動作の場合を説明する。
First, a description will be given of the case of the extending operation for moving the lens L2 in the direction of the arrow a (see FIG. 1).

【0037】この場合は、制御回路31は、前記したよ
うに入力装置32及びレンズ位置検出センサ37から入
力された信号に基づいてレンズの移動方向及び移動距離
を算出して使用する充電回路及び放電回路を決定し、電
流2充電回路35に図6の(a)に示すようなPWM1
信号を出力し、電流1放電回路34に図6の(b)に示
すようなPWM2信号を出力する。また、電流1充電回
路33及び電流2放電回路36に対しては、図6の
(c)(d)に示すようなPWM3信号のオフ、PWM
4信号のオフが出力され、不作動に設定される。
In this case, the control circuit 31 calculates the moving direction and the moving distance of the lens based on the signals input from the input device 32 and the lens position detecting sensor 37 as described above, and uses the charging circuit and the discharging circuit. The circuit is determined, and the PWM1 as shown in FIG.
A signal is output, and a PWM2 signal as shown in FIG. Further, for the current 1 charging circuit 33 and the current 2 discharging circuit 36, the PWM3 signal is turned off and the PWM is turned off as shown in FIGS.
The output of four signals is output and set to inoperative.

【0038】電流2充電回路35ではPWM1信号が
“H”レベルになるとトランジスタTR5がオンとな
り、TR2、TR1が動作を開始し、抵抗R1 及びサ−
ミスタTH1 、TR1を経て圧電素子15に充電電流が
流れ、圧電素子15に電荷が充電される。TR1を流れ
る電流はTR2のベ−ス・エミツタ間の電圧Vbeと、抵
抗R1 及びサ−ミスタTH1 の合成抵抗Rで決定され、
圧電素子15を充電する充電電流値iは以下の式(1)
で表される値となる。
In the current 2 charging circuit 35, when the PWM1 signal goes to "H" level, the transistor TR5 is turned on, TR2 and TR1 start operating, and the resistor R1 and the resistor R1 are turned on.
A charging current flows to the piezoelectric element 15 via the miscellaneous elements TH1 and TR1, and the piezoelectric element 15 is charged. The current flowing through TR1 is determined by the voltage Vbe between the base and the emitter of TR2 and the combined resistance R of the resistor R1 and the thermistor TH1.
The charging current value i for charging the piezoelectric element 15 is given by the following equation (1).
It becomes the value represented by.

【0039】 i=Vbe/R・・・・・・・・・・・・・・・・・・・・・(1) 但し、Vbe=0.6V、 R=(R1 ・TH1 )/(R
1 +TH1 ) PWM1信号が“L”レベルになると電流2充電回路3
5による充電は停止され、同時にPWM2信号が“H”
レベルになり、電流1放電回路34の電界効果型トラン
ジスタFET2 がオンとなる。FET2 にはMOS−F
ETを使用しているのでオンの場合の内部抵抗は小さく
略短絡状態になるので、圧電素子に充電された電荷はF
ET2 を経て急速に放電する。
I = Vbe / R (1) where, Vbe = 0.6 V, R = (R 1 · TH 1) / (R
1 + TH1) When the PWM1 signal becomes "L" level, the current 2 charging circuit 3
5 is stopped, and at the same time, the PWM2 signal becomes “H”.
Level, and the field effect transistor FET2 of the current 1 discharge circuit 34 is turned on. FET2 has MOS-F
Since the ET is used, the internal resistance when ON is small and substantially short-circuited.
Discharges rapidly through ET2.

【0040】なお、電流2充電回路35のコンデンサC
1 はTR5がオン/オフするスイツチングの変化時間を
早める機能を有し、これによりPWM1信号とPWM2
信号のオン/オフの切り替え時にオフ区間を実質的に設
ける必要がないから、制御回路31におけるPWM信号
のタイミングの設定が容易となる。電流1充電回路33
のコンデンサC2 もこれと全く同じで、TR6がオン/
オフするスイツチングの変化時間を早める機能のもので
ある。
The capacitor C of the current 2 charging circuit 35
1 has a function of accelerating the change time of the switching at which the TR5 is turned on / off, whereby the PWM1 signal and the PWM2
Since it is not necessary to substantially provide an OFF section when switching the signal on / off, the control circuit 31 can easily set the timing of the PWM signal. Current 1 charging circuit 33
Is exactly the same as above, with TR6 on /
This function hastens the change time of the switching to be turned off.

【0041】以上の動作により、圧電素子15には図6
の(e)に示すような緩やかな立上がり部と急速な立ち
下り部を持つ駆動パルスが印加され、圧電素子15には
矢印a方向の緩やかな伸び変位と、矢印aと反対方向の
急速な縮み変位を生じ、駆動軸14とスライダブロツク
13bを介してレンズL2 を矢印a方向(図1参照)へ
移動させる繰出し動作を行うことができる。
With the above operation, the piezoelectric element 15
(E), a drive pulse having a gentle rising portion and a rapid falling portion as shown in (e) is applied, and the piezoelectric element 15 has a gentle extension displacement in the direction of arrow a and a rapid contraction in the direction opposite to arrow a. A displacing operation can be performed to cause the lens L2 to move in the direction of the arrow a (see FIG. 1) via the drive shaft 14 and the slider block 13b.

【0042】次に、レンズL1 を矢印aと反対方向(図
1参照)へ移動させる繰込み動作の場合を説明する。
Next, a description will be given of the case of a retraction operation for moving the lens L1 in the direction opposite to the arrow a (see FIG. 1).

【0043】この場合は、制御回路31は、電流1充電
回路33に図7の(c)に示すようなPWM3信号を出
力し、電流2放電回路36に図7の(d)に示すような
PWM4信号を出力する。また、電流2充電回路35及
び電流1放電回路34に対しては、図7の(a)(b)
に示すようなPWM1信号のオフ、PWM2信号のオフ
が出力され、不作動に設定される。
In this case, the control circuit 31 outputs a PWM3 signal as shown in FIG. 7 (c) to the current 1 charging circuit 33, and outputs a PWM3 signal as shown in FIG. 7 (d) to the current 2 discharging circuit 36. It outputs a PWM4 signal. 7A and 7B for the current 2 charging circuit 35 and the current 1 discharging circuit 34.
As shown in (1), the OFF of the PWM1 signal and the OFF of the PWM2 signal are output and set to inoperative.

【0044】電流1充電回路33ではPWM3信号が
“H”レベルになるとトランジスタTR6がオンとな
り、FET1がオンとなる。FET1の内部抵抗は小さ
いので圧電素子15はFET1 を経て電源に接続される
から、急速に充電される。
In the current 1 charging circuit 33, when the PWM3 signal becomes "H" level, the transistor TR6 is turned on and the FET1 is turned on. Since the internal resistance of the FET 1 is small, the piezoelectric element 15 is connected to the power supply via the FET 1 and is charged rapidly.

【0045】PWM3信号が“L”レベルになるとトラ
ンジスタTR6がオフ、FET1もオフとなり、電流1
充電回路33による充電は停止される。同時にPWM4
信号が“H”レベルになり、電流2放電回路36のトラ
ンジスタTR3がオンとなり、圧電素子15に充電され
た電荷は抵抗R3 及びサ−ミスタTH2 を経て緩やかに
放電する。
When the PWM3 signal goes to "L" level, the transistor TR6 is turned off, the FET1 is also turned off, and the current 1
The charging by the charging circuit 33 is stopped. At the same time PWM4
The signal becomes "H" level, the transistor TR3 of the current 2 discharge circuit 36 is turned on, and the electric charge charged in the piezoelectric element 15 is discharged slowly through the resistor R3 and the thermistor TH2.

【0046】以上の動作により、圧電素子15には図7
の(e)に示すような急速な立上がり部と緩やかな立ち
下り部を持つ駆動パルスが印加され、圧電素子15には
矢印aと反対方向の緩やかな縮み変位と、矢印a方向の
急速な伸び変位を生じ、駆動軸14とスライダブロツク
13bを介してレンズL2 を矢印aと反対方向(図1参
照)へ移動させる繰込み動作を行うことができる。
With the above operation, the piezoelectric element 15
(E), a drive pulse having a rapid rising portion and a gentle falling portion is applied, and the piezoelectric element 15 has a gentle contraction displacement in the direction opposite to the arrow a and a rapid expansion in the direction of the arrow a. A displacement operation occurs, and a retraction operation of moving the lens L2 in the direction opposite to the arrow a (see FIG. 1) through the drive shaft 14 and the slider block 13b can be performed.

【0047】図8は圧電素子の静電容量の温度特性を示
す図である。この図から明かなように、圧電素子の静電
容量は温度の上昇に比例して増大することがわかる。
FIG. 8 is a diagram showing the temperature characteristics of the capacitance of the piezoelectric element. As is clear from this figure, the capacitance of the piezoelectric element increases in proportion to the rise in temperature.

【0048】図10は圧電素子の充電時間と温度との関
係を示す図、図11は圧電素子を充電する駆動波形の傾
斜角と温度との関係を示す図で、いずれも図9に示すよ
うに圧電素子へ30Vまで充電する時間T1 と温度との
関係、及び駆動波形の傾斜角θと温度との関係について
のデ−タを示している。
FIG. 10 is a diagram showing the relationship between the charging time and the temperature of the piezoelectric element, and FIG. 11 is a diagram showing the relationship between the inclination angle of the driving waveform for charging the piezoelectric element and the temperature, all of which are shown in FIG. 9 shows data on the relationship between the time T1 during which the piezoelectric element is charged up to 30 V and the temperature, and the relationship between the inclination angle .theta. Of the drive waveform and the temperature.

【0049】圧電素子の充電時間と温度との関係を示す
図10において、線(a)はサ−ミスタによる温度補償
を行わない場合を示しており、圧電素子へ30Vまで充
電する時間T1 は温度が高い程静電容量が増大するの
で、充電時間が長くなることを示している。また、線
(b)はサ−ミスタによる温度補償を行つた場合を示し
ており、充電時間は温度に影響されず、ほぼ一定時間で
充電されることを示している。
In FIG. 10 showing the relationship between the charging time and the temperature of the piezoelectric element, the line (a) shows the case where the temperature compensation by the thermistor is not performed, and the time T1 for charging the piezoelectric element to 30 V is the temperature. The higher the value, the larger the capacitance, indicating that the charging time becomes longer. The line (b) shows a case where the temperature compensation is performed by the thermistor, and the charging time is not affected by the temperature, and the charging is performed in a substantially constant time.

【0050】圧電素子を充電する駆動波形の傾斜角と温
度との関係を示す図11において、線(a)はサ−ミス
タによる温度補償を行わない場合を示しており、温度が
高い程充電時間が長くなるので傾斜角θは小さくなり、
所定の電圧までの充電が困難になり、駆動力が減少し駆
動速度が低下することを示している。また、温度が低い
程充電時間が短くなつて傾斜角θは大きくなり、駆動パ
ルスの緩やかな立ち上がり波形が次第に急速な立ち上が
り波形に変化し、圧電素子の伸縮速度の差が小さくなる
ので、駆動力が減少し駆動速度が低下することを示して
いる。
In FIG. 11, which shows the relationship between the inclination angle of the driving waveform for charging the piezoelectric element and the temperature, the line (a) shows the case where temperature compensation by the thermistor is not performed. Becomes longer, the inclination angle θ becomes smaller,
This indicates that charging to a predetermined voltage becomes difficult, the driving force decreases, and the driving speed decreases. In addition, the lower the temperature, the shorter the charging time, the greater the inclination angle θ, the gentler rising waveform of the drive pulse gradually changes to a faster rising waveform, and the difference in the expansion and contraction speed of the piezoelectric element becomes smaller. Indicates that the driving speed decreases.

【0051】図11の線(b)はサ−ミスタによる温度
補償を行つた場合を示しており、駆動波形の傾斜角θは
温度に影響されずにほぼ一定を保ち、温度の変化による
駆動速度の低下がないことを示している。
The line (b) in FIG. 11 shows the case where the temperature compensation is performed by the thermistor. The inclination angle θ of the driving waveform is kept almost constant without being affected by the temperature, and the driving speed due to the temperature change is changed. It shows that there is no decrease.

【0052】[0052]

【発明の効果】以上説明したとおり、この発明の電気機
械変換素子を使用した駆動装置の駆動回路は、電気機械
変換素子の温度特性に基づく駆動速度の変動を補償する
ことができるから、駆動装置を使用する環境温度が変動
しても、常に十分な駆動速度を得ることができ、駆動装
置の適用範囲を拡大することができる。
As described above, the driving circuit of the driving device using the electromechanical transducer of the present invention can compensate for the fluctuation of the driving speed based on the temperature characteristics of the electromechanical transducer. Even when the ambient temperature at which the device is used fluctuates, a sufficient drive speed can always be obtained, and the applicable range of the drive device can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】カメラの撮影レンズ駆動機構の構成を示す断面
図。
FIG. 1 is a cross-sectional view illustrating a configuration of a photographing lens driving mechanism of a camera.

【図2】図1に示すレンズ駆動機構の駆動軸とスライダ
ブロツク及びパツドとの摩擦結合部分の構成を示す断面
図。
FIG. 2 is a cross-sectional view showing a configuration of a frictional coupling portion between a driving shaft of the lens driving mechanism shown in FIG. 1, a slider block, and a pad.

【図3】駆動パルスの波形を説明する図。FIG. 3 is a diagram illustrating a waveform of a driving pulse.

【図4】駆動回路のブロツク図。FIG. 4 is a block diagram of a driving circuit.

【図5】電流1充電回路、電流1放電回路、電流2充電
回路、電流2放電回路の回路構成を示す図。
FIG. 5 is a diagram showing a circuit configuration of a current 1 charging circuit, a current 1 discharging circuit, a current 2 charging circuit, and a current 2 discharging circuit.

【図6】充放電回路の動作タイミングを説明するタイミ
ングチヤ−ト(その1)。
FIG. 6 is a timing chart for explaining the operation timing of the charge / discharge circuit (part 1).

【図7】充放電回路の動作タイミングを説明するタイミ
ングチヤ−ト(その2)。
FIG. 7 is a timing chart for explaining the operation timing of the charge / discharge circuit (part 2).

【図8】圧電素子の静電容量の温度特性を示す図。FIG. 8 is a diagram illustrating temperature characteristics of capacitance of a piezoelectric element.

【図9】圧電素子の充電時間及び駆動波形の傾斜角を説
明する図。
FIG. 9 is a diagram illustrating a charging time of a piezoelectric element and an inclination angle of a driving waveform.

【図10】圧電素子の充電時間と温度との関係を示す
図。
FIG. 10 is a diagram showing a relationship between charging time and temperature of a piezoelectric element.

【図11】圧電素子を充電する駆動波形の傾斜角と温度
との関係を示す図。
FIG. 11 is a diagram illustrating a relationship between a tilt angle of a driving waveform for charging a piezoelectric element and temperature.

【符号の説明】[Explanation of symbols]

11 レンズ鏡筒 13 第2レンズレンズ保持枠 13b スライダブロツク 14 駆動軸 15 圧電素子 30 駆動回路 31 制御回路 32 入力装置 33 電流1充電回路 34 電流1放電回路 35 電流2充電回路 36 電流2放電回路 37 レンズ位置検出センサ FET1 、FET2 電界効果型トランジスタ TR1 、TR2 、TR3 、TR4 、TR5 、TR6 ト
ランジスタ TH1 、TH2 サ−ミスタ
Reference Signs List 11 lens barrel 13 second lens lens holding frame 13b slider block 14 drive shaft 15 piezoelectric element 30 drive circuit 31 control circuit 32 input device 33 current 1 charge circuit 34 current 1 discharge circuit 35 current 2 charge circuit 36 current 2 discharge circuit 37 Lens position detection sensors FET1, FET2 Field effect transistors TR1, TR2, TR3, TR4, TR5, TR6 Transistors TH1, TH2 Thermistor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気機械変換素子に駆動電力を供給し、
電気機械変換素子に伸縮変位を発生させることにより駆
動部材を駆動し、該駆動部材に摩擦結合した被駆動部材
を所定方向に移動させる電気機械変換素子を使用した駆
動装置の駆動回路において、 前記電気機械変換素子に一定電流で充電する充電回路
と、 前記電気機械変換素子の電荷を放電する放電回路と、 前記電気機械変換素子と前記充電回路及び前記放電回路
との接続を所定のタイミングで切り換えて電気機械変換
素子に伸縮変位を発生させる制御回路と、 環境温度の変化に応じて前記充電回路から電気機械変換
素子に供給する一定電流の電流量を調整する前記充電回
路に付設された電流補償回路とを備え、環境温度の変化
に拘らず常に一定の変位速度が得られるように電気機械
変換素子への充放電電流を制御することを特徴とする電
気機械変換素子を使用した駆動装置の駆動回路。
1. A driving power is supplied to an electromechanical transducer,
In a drive circuit of a driving device using an electromechanical conversion element that drives a driving member by generating expansion and contraction displacement in the electromechanical conversion element and moves a driven member frictionally coupled to the driving member in a predetermined direction, A charging circuit for charging the mechanical conversion element with a constant current, a discharging circuit for discharging the electric mechanical conversion element, and switching the connection between the electromechanical conversion element, the charging circuit and the discharging circuit at a predetermined timing. A control circuit for causing the electromechanical transducer to expand and contract; and a current compensation circuit attached to the charging circuit for adjusting the amount of a constant current supplied from the charging circuit to the electromechanical transducer according to a change in environmental temperature. And controlling the charging / discharging current to the electromechanical conversion element so as to always obtain a constant displacement speed irrespective of a change in environmental temperature. A drive circuit of a drive device using a gas-mechanical conversion element.
【請求項2】 前記電流補償回路は、環境温度変化によ
る電気機械変換素子の静電容量の変化に基づく充電電流
の変動を補償する電流補償回路であることを特徴とする
請求項1記載の電気機械変換素子を使用した駆動装置の
駆動回路。
2. The electric current compensation circuit according to claim 1, wherein the current compensation circuit is a current compensation circuit for compensating a change in charging current based on a change in capacitance of the electromechanical transducer due to a change in environmental temperature. A drive circuit of a drive device using a mechanical conversion element.
【請求項3】 前記電流補償回路は、環境温度の変化に
応じて抵抗値が変化して充電電流の変動を補償する抵抗
体を備えることを特徴とする請求項2記載の電気機械変
換素子を使用した駆動装置の駆動回路。
3. The electromechanical transducer according to claim 2, wherein the current compensating circuit includes a resistor that changes a resistance value according to a change in environmental temperature to compensate for a change in charging current. The drive circuit of the drive used.
【請求項4】 電気機械変換素子に駆動電力を供給し、
電気機械変換素子に伸縮変位を発生させることにより駆
動部材を駆動し、該駆動部材に摩擦結合した被駆動部材
を所定方向に移動させる電気機械変換素子を使用した駆
動装置の駆動回路において、 環境温度の変化に応じて変動する電気機械変換素子の静
電容量の変動に基づく充電電流の変動を補償する電流補
償回路を備え、環境温度の変化が補償された一定電流で
電気機械変換素子に充電する第1の充電回路と、 前記電気機械変換素子の電荷を放電する第1の放電回路
と、 前記電気機械変換素子を充電する第2の充電回路と、 環境温度の変化に応じて変動する電気機械変換素子の静
電容量の変動に基づく放電電流の変動を補償する電流補
償回路を備え、環境温度の変化が補償された一定電流で
電気機械変換素子の電荷を放電する第2の放電回路と、 駆動装置の駆動方向に応じて前記第1の充電回路と第1
の放電回路を電気機械変換素子に対して所定のタイミン
グで切り換え接続し、或いは前記第2の充電回路と第2
の放電回路を電気機械変換素子に対して所定のタイミン
グで切り換え接続する制御回路とを備え、環境温度の変
化に拘らず常に一定の変位速度が得られるように電気機
械変換素子への充放電電流を制御することを特徴とする
電気機械変換素子を使用した駆動装置の駆動回路。
4. A driving power is supplied to the electromechanical transducer,
In a drive circuit of a drive device using an electromechanical transducer, which drives a driving member by causing expansion and contraction displacement in the electromechanical transducer, and moves a driven member frictionally coupled to the drive member in a predetermined direction, an environmental temperature A current compensation circuit that compensates for a change in charging current based on a change in the capacitance of the electromechanical transducer that fluctuates in accordance with a change in the ambient temperature. A first charging circuit, a first discharging circuit for discharging the electric-mechanical conversion element, a second charging circuit for charging the electro-mechanical conversion element, and an electric machine that fluctuates according to a change in environmental temperature A second current discharge circuit that includes a current compensation circuit that compensates for a change in a discharge current based on a change in capacitance of the conversion element, and that discharges the charge of the electromechanical conversion element with a constant current in which a change in environmental temperature is compensated. A first charging circuit and a first charging circuit according to a driving direction of a driving device.
Switching connection with a predetermined timing to the electromechanical conversion element, or the second charging circuit and the second charging circuit
And a control circuit for switching and connecting the discharge circuit to the electromechanical transducer at a predetermined timing, so as to always obtain a constant displacement speed regardless of a change in environmental temperature. A driving circuit of a driving device using an electromechanical transducer, wherein
JP18188197A 1997-06-24 1997-06-24 Drive circuit for drive device using electromechanical transducer Expired - Fee Related JP3539138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18188197A JP3539138B2 (en) 1997-06-24 1997-06-24 Drive circuit for drive device using electromechanical transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18188197A JP3539138B2 (en) 1997-06-24 1997-06-24 Drive circuit for drive device using electromechanical transducer

Publications (2)

Publication Number Publication Date
JPH1118458A true JPH1118458A (en) 1999-01-22
JP3539138B2 JP3539138B2 (en) 2004-07-07

Family

ID=16108511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18188197A Expired - Fee Related JP3539138B2 (en) 1997-06-24 1997-06-24 Drive circuit for drive device using electromechanical transducer

Country Status (1)

Country Link
JP (1) JP3539138B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260054A (en) * 2010-08-25 2010-11-18 Konica Minolta Holdings Inc Driving device
CN105849925A (en) * 2014-01-22 2016-08-10 株式会社村田制作所 Piezoelectric power generation module and remote controller
EP3432372A1 (en) * 2017-07-20 2019-01-23 Koninklijke Philips N.V. Actuator structure and actuation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260054A (en) * 2010-08-25 2010-11-18 Konica Minolta Holdings Inc Driving device
CN105849925A (en) * 2014-01-22 2016-08-10 株式会社村田制作所 Piezoelectric power generation module and remote controller
EP3098866A4 (en) * 2014-01-22 2017-11-29 Murata Manufacturing Co., Ltd. Piezoelectric power generation module and remote controller
US9882511B2 (en) 2014-01-22 2018-01-30 Murata Manufacturing Co., Ltd. Piezoelectric power generation module and remote controller
EP3432372A1 (en) * 2017-07-20 2019-01-23 Koninklijke Philips N.V. Actuator structure and actuation method thereof

Also Published As

Publication number Publication date
JP3539138B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
EP1981096B1 (en) Drive unit
US7567012B2 (en) Drive unit
US5917267A (en) Linear drive mechanism using electromechanical conversion element
US5907212A (en) Apparatus provided with electro-mechanical transducer
US6727635B2 (en) Driving device
JP2004056878A (en) Drive unit, position controller, and camera
US7911114B2 (en) Impact drive actuator
JP4277384B2 (en) Piezoelectric actuator
US6194811B1 (en) Drive apparatus
JPH10290589A (en) Driver using electromechanical transducer
US6566790B1 (en) Driving apparatus and driving method of piezoelectric actuator
JP3218851B2 (en) Driving method of driving device using electro-mechanical conversion element
JPH11356070A (en) Drive unit using electromechanical transducing element and driving circuit therefor
US20060049716A1 (en) Drive unit
JP3539138B2 (en) Drive circuit for drive device using electromechanical transducer
JPH11356071A (en) Drive unit using electromechanical transducing element and driving circuit therefor
JPH11341840A (en) Driver using electromechanical sensing element
CN109075248B (en) Method and device for controlling an electromechanical element
JP4492756B2 (en) Piezoelectric actuator
US7986477B2 (en) Driving device and optical apparatus
JPH11154018A (en) Method for keeping fixed feedback cycle and drive controller and optical device controlled by the method
JP2000078861A (en) Driving circuit suitable for actuator using electromechanical transducer
JPH10337056A (en) Control method for driver
US20070040479A1 (en) Drive unit
JPH10234192A (en) Drive device using electromechanical transducer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees