JP3537909B2 - Method for producing ZSM-5 type zeolite membrane and liquid mixture separation membrane - Google Patents

Method for producing ZSM-5 type zeolite membrane and liquid mixture separation membrane

Info

Publication number
JP3537909B2
JP3537909B2 JP08868295A JP8868295A JP3537909B2 JP 3537909 B2 JP3537909 B2 JP 3537909B2 JP 08868295 A JP08868295 A JP 08868295A JP 8868295 A JP8868295 A JP 8868295A JP 3537909 B2 JP3537909 B2 JP 3537909B2
Authority
JP
Japan
Prior art keywords
membrane
zsm
type zeolite
liquid mixture
porous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08868295A
Other languages
Japanese (ja)
Other versions
JPH08257302A (en
Inventor
健一 岡本
英敏 喜多
正和 近藤
範一 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP08868295A priority Critical patent/JP3537909B2/en
Publication of JPH08257302A publication Critical patent/JPH08257302A/en
Application granted granted Critical
Publication of JP3537909B2 publication Critical patent/JP3537909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ZSM−5型ゼオライ
ト膜の製造法、及び2種以上の液体混合物から特定の液
体を分離することに使用するZSM−5型ゼオライトか
らなる液体混合物分離膜に関するものである。
The present invention relates to a method for producing a ZSM-5 type zeolite membrane and a liquid mixture separation membrane comprising a ZSM-5 type zeolite used for separating a specific liquid from a mixture of two or more liquids. It is about.

【0002】[0002]

【従来の技術】非多孔質高分子膜によって液体混合物か
ら特定の液体を分離できることは、例えば、スチレン−
アクリル酸共重合体膜によって水とホルムアルデヒドと
を分離する手段を開示した米国特許第2,953,50
2号公報や、ポリビニルアルコール膜によって共沸混合
物状態の水とアルコールとを分離する手段を開示した米
国特許第4,035,291号公報などによって知られ
ている。
BACKGROUND OF THE INVENTION The ability to separate a particular liquid from a liquid mixture by means of a non-porous polymer membrane is e.g.
U.S. Pat. No. 2,953,50 which discloses means for separating water and formaldehyde by means of an acrylic acid copolymer membrane
No. 4,035,291 which discloses means for separating water and alcohol in an azeotropic mixture state by a polyvinyl alcohol membrane.

【0003】前記液体分離手段には、液体混合物から特
定の液体を蒸気として分離するパーベーパレーション
法、液体混合物を蒸気状態で特定の液体を分離するベー
パーパーミエーション法などがあり、共沸混合物、沸点
が近接し、且つ比揮発度が小さい液体混合物、加熱によ
って重合や変成を起こす物質を含む混合物を分離又は濃
縮する新しい分離法として注目されるに至っている。そ
して実用化された混合液体分離膜として、セルロースア
セテート膜、ポリビニルアルコール膜(特開昭59−1
09204号公報)、ポリエチレンイミン系架橋膜(特
開昭59−55305号公報)などがある。
The liquid separation means includes a pervaporation method for separating a specific liquid from a liquid mixture as a vapor, a vapor permeation method for separating a specific liquid in a vapor state from a liquid mixture, and the like. Attention has been paid to a new separation method for separating or concentrating a liquid mixture having a close boiling point and a small specific volatility, or a mixture containing a substance which undergoes polymerization or modification by heating. Cellulose acetate membranes and polyvinyl alcohol membranes (Japanese Unexamined Patent Publication No. Sho 59-1) have been used as mixed liquid separation membranes that have been put to practical use.
No. 09204) and a polyethyleneimine-based crosslinked film (JP-A-59-55305).

【0004】その他の液体混合物分離膜としては、例え
ばポリエチレン、ポリプロピレン、ポリアミド、ポリス
チレン、又はこれらの共重合体膜、水−アルコール混合
物の分離用としてエチレン−ビニルアルコール共重合体
膜、ポリジメチルシロキサン膜などが知られており、ま
た水−ジオキサン混合物の分離用としてポリ四フッ化エ
チレンの微多孔膜にN−ビニルピロリドンをグラファイ
トした膜が知られている。
[0004] Other liquid mixture separation membranes include, for example, polyethylene, polypropylene, polyamide, polystyrene, or a copolymer membrane thereof, an ethylene-vinyl alcohol copolymer membrane for separating a water-alcohol mixture, and a polydimethylsiloxane membrane. Further, a membrane in which N-vinylpyrrolidone is graphitized on a microporous polytetrafluoroethylene membrane for separating a water-dioxane mixture is known.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来知られ
ている液体混合物分離膜は、いずれも水と有機液体の分
離に際し、常に水を膜により分離するものであった。こ
のため多量の水中に微量の有機液体が存在する場合に
は、パーベーパレーション膜を通して多量の水を除去す
る必要があり、効率の良い分離手段とは言いがたいとい
う問題がある。
By the way, any of the known liquid mixture separation membranes always separates water by a membrane when separating water and an organic liquid. For this reason, when a small amount of organic liquid is present in a large amount of water, it is necessary to remove a large amount of water through a pervaporation membrane, and there is a problem that it cannot be said to be an efficient separation means.

【0006】更に、前記日本公報に記載された液体混合
物分離膜は、いずれも物性が近似した物質の分離、とり
わけメタノール−水の分離性能が低く、DMF(N,N
−ジメチルホルムアミド)などの有機溶剤に対する耐久
性が低いなどのため、分離可能な水−有機液体混合物と
しては、エタノールより炭素数の多い、即ち炭素数が3
以上のアルコール類、ケトン類などにしか使用できず、
実用性に乏しいという欠点がある。
Furthermore, the liquid mixture separation membranes described in the above-mentioned Japanese publications have low separation performance of substances having similar physical properties, particularly low methanol-water separation performance, and have a low DMF (N, N
-Dimethylformamide), the water-organic liquid mixture which can be separated has a higher carbon number than ethanol, that is, has a carbon number of 3 as a separable water-organic liquid mixture.
It can be used only for the above alcohols, ketones, etc.
There is a disadvantage that it is not practical.

【0007】本発明者は、耐熱性、耐溶剤性、耐薬品性
などが高いゼオライトが吸着によって液体混合物から特
定の液体を分離できることに着目し、特定の混合液体に
対する分離性能を有するゼオライトを見いだすことと、
分離操作を連続的に行うためにそのゼオライトを膜化す
る方法を鋭意検討した結果本発明を完成するに至った。
The present inventor has noticed that zeolites having high heat resistance, solvent resistance, chemical resistance and the like can separate a specific liquid from a liquid mixture by adsorption, and find a zeolite having a separating performance for a specific mixed liquid. That
As a result of intensive studies on a method of forming a zeolite into a membrane in order to continuously perform a separation operation, the present invention has been completed.

【0008】即ち本発明は、ZSM−5型ゼオライト膜
の製造法を提供することを第1の目的としている。また
本発明は、ZSM−5型ゼオライトを用いた液体混合物
分離膜を提供することを第2の目的としている。
That is, a first object of the present invention is to provide a method for producing a ZSM-5 type zeolite membrane. A second object of the present invention is to provide a liquid mixture separation membrane using a ZSM-5 type zeolite.

【0009】[0009]

【課題を解決するための手段】前記第1の目的を達成す
るための本発明のZSM−5型ゼオライト膜製造法の構
成は、H2 O、Na2 O、SiO2 及びテトラプロピル
アンモニウムハロゲン化物(TPAX)の成分のモル組
成比を、それぞれH2 O/Na2 O=20〜60、Na
2 O/SiO2 =1以上、H2 O/{Na2 O+(TP
AX)2 O}=5〜50としたアルミノシリケートゲル
を形成し、多孔質支持体を浸漬したアルミノシリケート
ゲルをを100〜180℃の温度をに保持しながら、3
〜6時間水熱合成させ、多孔質支持体表面を覆う膜状の
反応生成物を形成させ、次いで400℃以上の温度で1
2〜48時間、前記反応生成物を焼成するものである。
In order to achieve the first object, the method for producing a ZSM-5 type zeolite membrane of the present invention comprises H 2 O, Na 2 O, SiO 2 and tetrapropylammonium halide. The molar composition ratio of the components of (TPAX) is H 2 O / Na 2 O = 20-60, Na
2 O / SiO 2 = 1 or more, H 2 O / {Na 2 O + (TP
AX) to form the 2 O} = 5 to 50 and the aluminosilicate gel, while retaining the aluminosilicate gel was immersed porous support to a temperature of 100 to 180 ° C., 3
Hydrothermal synthesis for ~ 6 hours to form a reaction product in the form of a film covering the surface of the porous support.
The reaction product is calcined for 2 to 48 hours.

【0010】前記(TPAX)2 Oは反応中間生成物で
ある。また、前記焼成は、ピンホールなどの原因になる
未反応物、特にテトラプロピルアンモニウムハロゲン化
物(TPAX)を除去することが目的である。前記水熱
合成は、工業的にはアルミノシリケートゲルを攪拌しな
がら行わせることが好ましい。但し、小規模又は沸騰状
態で行わせるときは、特に攪拌しないでも良好に反応を
進行させることができる。
The (TPAX) 2 O is a reaction intermediate. The firing is intended to remove unreacted substances that cause pinholes and the like, in particular, tetrapropylammonium halide (TPAX). The hydrothermal synthesis is industrially preferably performed while stirring the aluminosilicate gel. However, when the reaction is carried out in a small scale or in a boiling state, the reaction can be favorably advanced without particularly stirring.

【0011】前記水熱合成を反応組成物を新たに調整
し、前記水熱合成及び焼成を複数回、通常2〜5回程度
繰り返すことが好ましい。このように膜を積層すること
により、良好な液体混合物分離膜を多孔質支持体上に形
成させることができる。前記各成分は、シリカゾル:コ
ロイダルシリカ、水酸化ナトリウムなどによって供給す
ることができる。
It is preferable that the above-mentioned hydrothermal synthesis is newly prepared for the reaction composition, and the above-mentioned hydrothermal synthesis and calcination are repeated a plurality of times, usually about 2 to 5 times. By laminating the membranes in this way, a good liquid mixture separation membrane can be formed on the porous support. Each of the above components can be supplied by silica sol: colloidal silica, sodium hydroxide, or the like.

【0012】前記ZSM−5型ゼオライトは、例えば、
冨永博夫編「ゼオライトの科学と応用」講談社サイエン
ティフィク社、1987年1月発行、2.2ゼオライト
の基本構造単位と分類、第17頁「表2.2 代表的な
分子ふるいゼオライト」などにより従来から知られた物
質である。ZSM−5型ゼオライトの活性が低下した場
合には、焼成することにより回復させることができる。
The ZSM-5 type zeolite is, for example,
"Science and application of zeolites" edited by Kodansha Scientific Co., Ltd., January 1987, 2.2 Basic structural units and classification of zeolites, page 17, "Table 2.2 Typical molecular sieve zeolites" It is a conventionally known substance. When the activity of ZSM-5 type zeolite decreases, it can be recovered by firing.

【0013】前記水熱合成を行う際の成分比が上記範囲
の外、反応温度が上記より低い、反応時間が上記より短
かい、反応回数が少ない、などが起こると、 結晶が
生成しない、 膜にピンホールができるなどの問題が
あり、好ましくない。また反応温度が上記範囲より高
い、反応時間が上記範囲より長い、反応回数が上記範囲
より多いとと、結晶がアモルファス化してしまい、分離
膜としての機能(分離性能、透過性能)がなくなるので
好ましくない。更に焼成温度が上記範囲より低い、焼成
時間が上記範囲より短い場合には、未反応物質が残留
し、膜としての機能(分離性能、透過性能)が低くなり
好ましくない。
If the component ratio during the hydrothermal synthesis is out of the above range, the reaction temperature is lower than the above, the reaction time is shorter than the above, or the number of times of the reaction is small, etc., no crystals are formed. However, there is a problem that a pinhole is formed, which is not preferable. When the reaction temperature is higher than the above range, the reaction time is longer than the above range, and the number of times of the reaction is more than the above range, the crystal becomes amorphous, and the function as a separation membrane (separation performance, permeation performance) is lost, which is preferable. Absent. Further, when the calcination temperature is lower than the above range and the calcination time is shorter than the above range, unreacted substances remain and the function as a membrane (separation performance and permeation performance) is undesirably lowered.

【0014】前記水熱合成によって得られる膜厚は、通
常3〜100μm程度の範囲のものが得られる。前記多
孔質支持体には特に限定はない。例えば、アルミナ多孔
質、金属、有機・無機高分子、セラミックスなどの多孔
質材料からなる管や板体などを用いることができる。前
記多孔質支持体の平均気孔径が0・05μm未満である
と、透過速度が小さく実用的でない。この平均気孔径が
10μmを越えると選択性が低下する。また、気孔率が
10%未満では透過速度が小さく、60%を越える選択
性んが低下する上に、支持体としての強度が得られな
い。好ましい多孔質支持体としては、平均気孔径が0.
1〜2μm、気孔率が30〜50%のアルミナ質多孔質
支持体である。
The film thickness obtained by the hydrothermal synthesis is usually in the range of about 3 to 100 μm. The porous support is not particularly limited. For example, a tube or plate made of a porous material such as alumina porous, metal, organic / inorganic polymer, and ceramics can be used. If the average pore size of the porous support is less than 0.05 μm, the permeation rate is too small to be practical. When the average pore diameter exceeds 10 μm, the selectivity decreases. On the other hand, if the porosity is less than 10%, the permeation rate is low, the selectivity exceeding 60% is reduced, and the strength as a support cannot be obtained. A preferred porous support has an average pore diameter of 0.
An alumina porous support having a pore size of 1 to 2 μm and a porosity of 30 to 50%.

【0015】なお、多孔質支持体の形状には特に制限は
ないが、一般にパーベーパレーション法或いはベーパー
ミエーション法に用いられる分離膜形状としては、外径
10nm前後、長さ20〜100cmのパイプであっ
て、その厚さは0.2〜数mmのもの、或いは外径30
〜100mm程度、長さ20〜100cm及びそれ以上
うの円柱に内径2〜12mm程度の孔が軸方向に多数個
性或いは蓮根状に開いたものが好ましい。
The shape of the porous support is not particularly limited. Generally, a separation membrane used for the pervaporation method or the vapor permeation method has a pipe having an outer diameter of about 10 nm and a length of 20 to 100 cm. And the thickness is 0.2 to several mm, or the outer diameter is 30 mm.
It is preferable that a cylinder having an inner diameter of about 2 to 12 mm is formed in a cylinder having a length of about 100 mm, a length of about 20 cm to 100 cm or more, and a large number of holes or a lotus root in the axial direction.

【0016】本発明の第2の目的を達成するための液体
混合物分離膜は、管状の多孔質支持体表面上にZSM−
5型ゼオライト膜を析出させたものである。ZSM−5
型ゼオライト膜を多孔質支持体表面析出させる手段とし
ては、前記水熱−焼成合成によってもよく、また気相合
成など他の手段によって行うこともできる。いずれの場
合も、管状の多孔質支持体を使用する。前記多孔質支持
体には特に限定はない。例えば、アルミナ多孔質、金
属、有機・無機高分子、セラミックスなどの多孔質材料
からなる管や板体などを用いることができる。
In order to achieve the second object of the present invention, a liquid mixture separation membrane is provided on a surface of a tubular porous support.
A type 5 zeolite membrane is deposited. ZSM-5
Means for depositing the zeolite membrane on the surface of the porous support may be the above-described hydrothermal-sintering synthesis or other means such as gas-phase synthesis. In each case, a tubular porous support is used. The porous support is not particularly limited. For example, a tube or plate made of a porous material such as alumina porous, metal, organic / inorganic polymer, and ceramics can be used.

【0017】本発明の液体混合物分離膜は、パーベーパ
レーション法、ベーパーパーミエイション法、気相分離
法のいずれにも使用することができる。前記ZSM−5
型ゼオライト膜の分離対象となる液体混合物は、特に限
定されないが、例えば、水と、メタノール、エタノー
ル、プロパノールなどのアルコール類との液体混合物、
アセトン、メチルエチルケトンなどのケトン類、四塩化
炭素、トリクロロエチレンなどのハロゲン化炭化水素な
どの有機溶液と、メタノール、エタノール、プロパノー
ルなどのアルコール類との液体混合物、前記アルコール
類と、ベンゼン、シクロヘキサンなどの芳香族類との液
体混合物などである。
The liquid mixture separation membrane of the present invention can be used in any of a pervaporation method, a vapor permeation method, and a gas phase separation method. The ZSM-5
The liquid mixture to be separated from the type zeolite membrane is not particularly limited, for example, water, a liquid mixture of alcohols such as methanol, ethanol, and propanol,
A liquid mixture of an organic solution such as a ketone such as acetone and methyl ethyl ketone, a halogenated hydrocarbon such as carbon tetrachloride and trichloroethylene, and an alcohol such as methanol, ethanol, and propanol; the alcohol and an aromatic such as benzene and cyclohexane And a liquid mixture with a tribal group.

【0018】なおZSM−5型ゼオライト膜は、水−メ
タノール、水−エタノール、水−プロパノールなどの水
−アルコール類の分離に特に有効に適用することができ
る。但しこれらは例示のためであり、本発明によって分
離対象液体混合物はこれらに限定されない。ZSM−5
型ゼオライト膜による液体分離操作は、通常、分離液側
を減圧して行う。
The ZSM-5 type zeolite membrane can be particularly effectively applied to the separation of water-alcohols such as water-methanol, water-ethanol and water-propanol. However, these are merely examples, and the liquid mixture to be separated according to the present invention is not limited to these. ZSM-5
The liquid separation operation using a zeolite membrane is usually performed under reduced pressure on the separated liquid side.

【0019】[0019]

【作用】前記モル組成比のアルミノシリケートゲルを形
成し、前記限定の水熱合成・焼成を行わせる手段は、多
孔質支持体表面に支持体に密着性がよく、ピンホールな
どの欠陥のないZSM−5型ゼオライト膜を形成させる
ことができる。また、多孔質支持体上にZSM−5型ゼ
オライト膜を析出させた液体混合物分離膜は、従来の有
機質液体混合物分離膜と異なり、耐熱性、耐溶剤性、耐
薬品性に優れており、しかも少ないエネルギー消費量
で、効率よく液体を分離することが可能である。
The means for forming an aluminosilicate gel having the above molar composition ratio and performing the above-mentioned hydrothermal synthesis and calcination means that the porous support has good adhesion to the support and no defects such as pinholes. A ZSM-5 type zeolite membrane can be formed. Moreover, unlike a conventional organic liquid mixture separation membrane, a liquid mixture separation membrane in which a ZSM-5 type zeolite membrane is deposited on a porous support has excellent heat resistance, solvent resistance, and chemical resistance, and It is possible to efficiently separate a liquid with a small amount of energy consumption.

【0020】[0020]

【実施例】以下実施例により本発明を具体的に説明す
る。 実施例1(合成例1) シリカゾル、水酸化ナトリウム、水、テトラプロピルア
ンモニウムブロミド(TPABr)を、モル組成比、H
2 O/Na2 Oを20〜60、Na2 O/SiO2 を1
以上、H2 O/{Na2 O+(TPABr)2 O}を5
〜50となるように混合しアルミノシリケートゲルを調
整した。
The present invention will be described in detail with reference to the following examples. Example 1 (Synthesis Example 1) Silica sol, sodium hydroxide, water, tetrapropylammonium bromide (TPABr) were mixed in a molar composition ratio of H
2 O / Na 2 O 20 to 60, a Na 2 O / SiO 2 1
As described above, H 2 O / {Na 2 O + (TPABr) 2 O} was changed to 5
Aluminosilicate gel was prepared by mixing so as to be ~ 50.

【0021】前記反応液と、表面に種結晶を仕込んだ管
状の多孔質アルミナ支持体(三井研削砥石(株)製マル
チポアロン:直径1cm、長さ20cm、肉厚1mm、
孔径1μm、気孔率40%)とを、円筒状のPTFE
(ポリテトラフルオロエチレン)製耐圧反応管内に仕込
んだ。なお、前記管状の支持体の両端を密封し、筒内に
反応液が侵入しないようにした。
The reaction solution and a tubular porous alumina support charged with a seed crystal on its surface (Multiporeon manufactured by Mitsui Grinding Stone Co., Ltd .: diameter 1 cm, length 20 cm, wall thickness 1 mm,
PTFE having a pore diameter of 1 μm and a porosity of 40%)
(Polytetrafluoroethylene) was charged in a pressure-resistant reaction tube. The tubular support was sealed at both ends to prevent the reaction solution from entering the tube.

【0022】次いで、100〜180℃の温度で3〜6
時間の間水熱合成させた。次いで、新たに前記反応液を
調整した中に前回反応終了した支持体を入れ、1〜5回
前記と同様に水熱合成を行わせた。前記反応終了後、表
面に膜生成が析出した前記支持体を取り出し、500℃
で20時間焼成した。
Next, at a temperature of 100 to 180 ° C., 3 to 6
Hydrothermal synthesis over time. Next, the support that had been subjected to the previous reaction was put into the newly prepared reaction solution, and hydrothermal synthesis was performed 1 to 5 times in the same manner as described above. After the completion of the reaction, the support on which film formation was deposited on the surface was taken out, and the temperature was 500 ° C.
For 20 hours.

【0023】以上のようにして得た多孔質アルミナ支持
体表面の表面部分のX線回折を行ったところ、得られた
多孔質アルミナ支持体表面物質のピークパターンは、市
販品のゼオライトZSM−5粉末(ユニオンカーバイド
社製)のピークパターンとよく一致し、前記支持体表面
にZSM−5型ゼオライトが生成していることが確認さ
れた。
X-ray diffraction of the surface portion of the surface of the porous alumina support obtained as described above revealed that the peak pattern of the surface material of the porous alumina support obtained was a commercially available zeolite ZSM-5. The peak pattern matched well with the powder (manufactured by Union Carbide), and it was confirmed that ZSM-5 type zeolite was formed on the surface of the support.

【0024】また、多孔質アルミナ支持体表面に生成し
た膜表面をSEM(走査型電子顕微鏡)により撮影した
ところ、図1に示すように、支持体上に厚さ30μm程
度の緻密なZSM−5型ゼオライト結晶体からなる膜が
析出していた。
When the film surface formed on the surface of the porous alumina support was photographed by an SEM (scanning electron microscope), as shown in FIG. 1, a dense ZSM-5 having a thickness of about 30 μm was formed on the support. A film composed of the zeolite crystal was deposited.

【0025】実施例2(分離膜例) 次に、前記実施例1によって得たZSM−5型型ゼオラ
イト膜によるパーベーパレーション性能を測定した。先
ず、ZSM−5型ゼオライト膜1を図3に示す装置の分
離セル2に取り付けた。なお、図3に示す符号3は、Z
SM−5型ゼオライト膜1の管状の多孔質アルミナ支持
体であり、有効膜面積は47cm2 であった。
Example 2 (Example of Separation Membrane) Next, pervaporation performance of the ZSM-5 type zeolite membrane obtained in Example 1 was measured. First, the ZSM-5 type zeolite membrane 1 was attached to the separation cell 2 of the apparatus shown in FIG. The symbol 3 shown in FIG.
This was a tubular porous alumina support of the SM-5 type zeolite membrane 1, and the effective membrane area was 47 cm 2 .

【0026】分離セル2は、被透過液室4とその両側に
配置した透過液室5とからなり、被透過液室4と透過液
室5とをZSM−5型ゼオライト膜1によって隔てた分
離セル2を恒温槽6内に配置した。被透過液室4の一方
の端部に被透過液7の供給管8を接続し、他方の端部に
排出管9を接続した。前記供給管8に、ポンプ10を介し
て被透過液貯槽11を取り付け、また排出管9には熱交換
器12を介して排出液溜13を取り付けた。ZSM−5型ゼ
オライト膜1を透過した分離液は減圧手段により蒸気相
で取り出し、冷却して固化させ、回収した。即ち、透過
液室5に接続した分離液取り出し用の配管14を配管14A
と配管14Bとに分岐し、それぞれ冷却トラップ15A,15
Bを介して真空ポンプ16に接続した。なお、図3に示す
符号16は窒素ガス排出管であり、17は切換コックであ
る。
The separation cell 2 comprises a permeated liquid chamber 4 and a permeated liquid chamber 5 disposed on both sides of the permeated liquid chamber 4. The separated liquid chamber 4 is separated from the permeated liquid chamber 5 by a ZSM-5 type zeolite membrane 1. Cell 2 was placed in thermostat 6. A supply pipe 8 for the permeated liquid 7 was connected to one end of the permeated liquid chamber 4, and a discharge pipe 9 was connected to the other end. A permeated liquid storage tank 11 was attached to the supply pipe 8 via a pump 10, and a discharge liquid reservoir 13 was attached to the discharge pipe 9 via a heat exchanger 12. The separated liquid having passed through the ZSM-5 type zeolite membrane 1 was taken out in a vapor phase by a decompression means, cooled, solidified, and collected. That is, the pipe 14 connected to the permeate chamber 5 for taking out the separated liquid is connected to the pipe 14A.
And piping 14B, and cooling traps 15A, 15B, respectively.
It was connected to a vacuum pump 16 via B. Reference numeral 16 shown in FIG. 3 is a nitrogen gas discharge pipe, and 17 is a switching cock.

【0027】性能試験は、被分離液(液体混合物)を1
2〜30cm3 /分の割合で供給し、真空ポンプ16と冷
却トラップ15A又は14Bとにより、透過液室5内圧を
0.1Torrの真空度に保持した。膜の透過性能は、
単位面積、単位時間当たりの全透過量Q(kg/m
2 h)と、下記式で定義する分離係数αとにより評価し
た。
In the performance test, the liquid to be separated (liquid mixture) was
The liquid was supplied at a rate of 2 to 30 cm 3 / min, and the internal pressure of the permeate chamber 5 was maintained at a vacuum of 0.1 Torr by the vacuum pump 16 and the cooling trap 15A or 14B. The permeability of the membrane is
Total permeation Q per unit area and unit time (kg / m
And 2 h), was assessed by the α separation factor is defined by the following equation.

【0028】 式中、FA ,FB は、それぞれ供給液中の有機液体A,
水Bの平均濃度(wt%)であり、PA ,PB は、それ
ぞれ透過液中の有機液体A,水Bの平均濃度(wt%)
である。評価試験結果を表1に纏めた。
[0028] In the formula, F A and F B are the organic liquids A,
The average concentration (wt%) of water B, and P A and P B are the average concentrations (wt%) of organic liquid A and water B in the permeate, respectively.
It is. Table 1 summarizes the evaluation test results.

【0029】[0029]

【表1】 ─────────────────────────────────── 水に混合した有機液体 分離温度 液体Aの濃度 全透過量Q 分離係数 ─────── の種類 (℃) FA (wt%) PA (kg/m2h) α ─────────────────────────────────── アセトン 30 7 84.8 1.06 74.1 メチルエチルケトン 30 7 93.3 0.41 185. ジオキサン 30 7 20.8 0.23 3.5 エチルアルコール 30 7 75.9 0.25 41.8 ジメチルホルムアミド 30 7 7. 0.59 1. ─────────────────────────────────── 以上の結果から、ZSM−5型ゼオライトをアルミナ支
持体上に緻密に析出させた液体混合物分離膜は、水−有
機物の液体混合物に対し、高い有機物選択性を示した。
[Table 1] 有機 Organic liquid mixed with water Separation temperature of liquid A Concentration Total permeate Q Separation coefficient 種類 type (℃) F A (wt%) P A (kg / m 2 h) α ───────────────ア セ ト ン Acetone 30 7 84.8 1.06 74.1 Methyl ethyl ketone 30 7 93.3 0.41 185. Dioxane 30 7 20.8 0.23 3.5 Ethyl alcohol 30 7 75.9 0.25 41.8 Dimethylformamide 30 7 7. 0.59 1. か ら From the above results, ZSM-5 type zeolite The liquid mixture separation membrane in which was deposited densely on an alumina support showed high organic substance selectivity with respect to a water-organic liquid mixture.

【0030】[0030]

【発明の効果】以上説明したように本発明のZSM−5
型ゼオライト膜の製造法は、前記成分比のアルミノシリ
ケートゲルを形成し、前記限定の水熱合成・焼成を行わ
せるようにしたのて、、多孔質支持体表面への密着性が
よく、ピンホールなどの欠陥のないZSM−5型ゼオラ
イト膜を形成させることができる。また、管状の多孔質
支持体上にZSM−5型ゼオライト膜を析出させた液体
混合物分離膜は、従来の有機質液体混合物分離膜と異な
り、耐熱性、耐溶剤性、耐薬品性に優れており、しかも
少ないエネルギー消費量で、効率よく混合された液体を
分離することが可能である。したがって、液体混合物の
分離を工業的に、特に水に溶解した有機物の工業的分離
回収に有利に適用することができる。
As described above, the ZSM-5 according to the present invention has been described.
The production method of the zeolite membrane is to form an aluminosilicate gel having the above component ratio and perform the limited hydrothermal synthesis and firing, so that the adhesion to the porous support surface is good, A ZSM-5 type zeolite membrane without defects such as holes can be formed. In addition, a liquid mixture separation membrane obtained by depositing a ZSM-5 type zeolite membrane on a tubular porous support is excellent in heat resistance, solvent resistance, and chemical resistance, unlike a conventional organic liquid mixture separation membrane. Further, it is possible to efficiently separate the mixed liquid with a small amount of energy consumption. Therefore, the separation of a liquid mixture can be advantageously applied industrially, particularly for industrial separation and recovery of organic matter dissolved in water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例のゼオライト膜の走査電子顕微鏡写真で
ある。
FIG. 1 is a scanning electron micrograph of a zeolite membrane of an example.

【図2】実施例によって得られたゼオライト膜の分離性
能を測定した装置構成図である。
FIG. 2 is an apparatus configuration diagram in which the separation performance of a zeolite membrane obtained by an example was measured.

【符号の説明】[Explanation of symbols]

1 ZSM−5型ゼオライト膜 2 分離セル 3 多孔質アルミナ支持体 4 被透過液室 5 透過液室 6 恒温槽 7 被透過液 10 被透過液貯槽 12 排出液溜 14A 冷却トラップ 14B 冷却トラップ 15 真空ポンプ 1 ZSM-5 type zeolite membrane 2 Separation cell 3 porous alumina support 4 permeated liquid chamber 5 Permeate chamber 6 Constant temperature bath 7 Permeate 10 Permeate storage tank 12 Drainage reservoir 14A Cooling trap 14B Cooling trap 15 Vacuum pump

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−105420(JP,A) 特開 平5−279014(JP,A) 国際公開94/001209(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C02F 71/02 C01B 33/20 - 39/54 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-105420 (JP, A) JP-A-5-279014 (JP, A) WO 94/001209 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) C02F 71/02 C01B 33/20-39/54

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 H2 O、Na2 O、SiO2 及びテトラ
プロピルアンモニウムハロゲン化物(TPAX)の成分
のモル組成比を、それぞれH2 O/Na2 O=20〜6
0、Na2 O/SiO2 =1以上、H2 O/{Na2
+(TPAX)2 O}=5〜50としたアルミノシリケ
ートゲルを形成し、多孔質支持体を浸漬したアルミノシ
リケートゲル100〜180℃の温度保持しなが
ら、3〜6時間水熱合成させ、多孔質支持体表面を覆う
膜状の反応生成物を形成させ、次いで400℃以上の温
度で12〜48時間、前記反応生成物を焼成することか
らなるZSM−5型ゼオライト膜製造法。
1. The molar composition ratio of the components of H 2 O, Na 2 O, SiO 2 and tetrapropylammonium halide (TPAX) is H 2 O / Na 2 O = 20 to 6 respectively.
0, Na 2 O / SiO 2 = 1 or more, H 2 O / {Na 2 O
+ (TPAX) 2 O} = 5 to 50 to form an aluminosilicate gel, and hydrothermally synthesize the aluminosilicate gel impregnated with the porous support at a temperature of 100 to 180 ° C. for 3 to 6 hours. Forming a reaction product in the form of a film covering the surface of the porous support, and then calcining the reaction product at a temperature of 400 ° C. or higher for 12 to 48 hours.
【請求項2】 前記水熱合成及び焼成を2回以上繰り返
すことからなる請求項1記載のZSM−5型ゼオライト
膜製造法。
2. The method for producing a ZSM-5 type zeolite membrane according to claim 1, wherein said hydrothermal synthesis and calcination are repeated at least twice.
【請求項3】 管状の多孔質支持体上に請求項1又は2
によって得られるZSM−5型ゼオライト膜を析出させ
たことからなる液体混合物分離膜。
3. The method according to claim 1, wherein the support is a tubular porous support.
A liquid mixture separation membrane comprising depositing a ZSM-5 type zeolite membrane obtained by the method described above.
【請求項4】 多孔質支持体が、平均気孔径0.1〜2
μm、気孔率30〜50%のアルミナ質多孔質支持体で
ある請求項1又は2記載のZSM−5型ゼオライト膜製
造法
4. The porous support has an average pore diameter of 0.1 to 2
μm, 30-50% porosity alumina porous support
3. A ZSM-5 type zeolite membrane according to claim 1 or 2.
Construction method .
【請求項5】 多孔質支持体が、平均気孔径0.1〜2
μm、気孔率30〜50%のアルミナ質多孔質支持体で
ある請求項3に記載の液体混合物分離膜
5. The porous support has an average pore diameter of 0.1 to 2
μm, 30-50% porosity alumina porous support
A liquid mixture separation membrane according to claim 3 .
JP08868295A 1995-03-23 1995-03-23 Method for producing ZSM-5 type zeolite membrane and liquid mixture separation membrane Expired - Lifetime JP3537909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08868295A JP3537909B2 (en) 1995-03-23 1995-03-23 Method for producing ZSM-5 type zeolite membrane and liquid mixture separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08868295A JP3537909B2 (en) 1995-03-23 1995-03-23 Method for producing ZSM-5 type zeolite membrane and liquid mixture separation membrane

Publications (2)

Publication Number Publication Date
JPH08257302A JPH08257302A (en) 1996-10-08
JP3537909B2 true JP3537909B2 (en) 2004-06-14

Family

ID=13949610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08868295A Expired - Lifetime JP3537909B2 (en) 1995-03-23 1995-03-23 Method for producing ZSM-5 type zeolite membrane and liquid mixture separation membrane

Country Status (1)

Country Link
JP (1) JP3537909B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686262B2 (en) * 1998-07-27 2005-08-24 三井造船株式会社 Mixture separation membrane
JP4831934B2 (en) * 2001-10-19 2011-12-07 三菱化学株式会社 Water-soluble organic substance concentrator
JP4768215B2 (en) * 2003-04-09 2011-09-07 財団法人ファインセラミックスセンター Method for producing zeolite membrane
KR20080004611A (en) 2005-06-10 2008-01-09 가부시키가이샤 붓산 나노테크 겐큐쇼 Manufacturing device for zeolite membrane
JP4923487B2 (en) 2005-09-01 2012-04-25 三菱化学株式会社 Zeolite separation membrane and method for producing the same
JP5135671B2 (en) 2005-09-28 2013-02-06 三菱化学株式会社 Method for producing zeolite separation membrane
BRPI0618738A2 (en) 2005-11-17 2011-09-13 Ngk Insulators Ltd Process for the production of zeolite film
JP4984566B2 (en) 2006-02-24 2012-07-25 三菱化学株式会社 Method for producing zeolite separation membrane
JP5034462B2 (en) * 2006-11-30 2012-09-26 株式会社デンソー Method for producing mesoporous body
JP6559146B2 (en) * 2014-09-30 2019-08-14 日本碍子株式会社 Method for producing separation membrane structure
JP2019042636A (en) * 2017-08-30 2019-03-22 旭化成株式会社 Gas separation membrane module

Also Published As

Publication number Publication date
JPH08257302A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
JP3431973B2 (en) Method for producing liquid mixture separation membrane
US6387269B1 (en) Membrane for separating fluids
US5554286A (en) Membrane for liquid mixture separation
JP3670852B2 (en) Production method of mixture separation membrane
JP3667384B2 (en) Liquid mixture separation membrane
JP3537909B2 (en) Method for producing ZSM-5 type zeolite membrane and liquid mixture separation membrane
JP3537908B2 (en) Method for producing Y-type zeolite membrane and liquid mixture separation membrane
Kazemimoghadam et al. Synthesis of MFI zeolite membranes for water desalination
JP2003144871A (en) Mordenite type zeolite film composite and method for manufacturing the same and thickening method using the composite
JP5087644B2 (en) Method for producing ZSM-5 type zeolite membrane
CN108295668B (en) Graphene composite alumina ceramic nano-filtration membrane, filter, preparation method and application thereof
WO2010110274A1 (en) Zeolite membrane, separation membrane, and component separation method
JP4751996B2 (en) Method for producing ZSM-5 type zeolite membrane
JP3754520B2 (en) Method for forming NaX type zeolite membrane
JP2003210950A (en) Liquid mixture separation membrane
JP3530807B2 (en) Manufacturing method of mixture separation membrane device and mixture separation membrane device
JP2976010B2 (en) Alcohol selective permeation type separation membrane
JP3840506B2 (en) Method for producing mixture separation membrane
JP2890469B2 (en) Method for producing porous separation membrane
JP3218101B2 (en) Semipermeable membrane for separating organic matter and method for producing the same
JP2006159144A (en) Composite membrane
JP2006231123A (en) Composite membrane
JPS60106504A (en) Separation of aqueous solution of organic substance using membrane
JP2006247616A (en) Composite membrane
JPH0585208B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150326

Year of fee payment: 11

EXPY Cancellation because of completion of term