JP3535025B2 - Fully enclosed cooling rotary electric machine - Google Patents

Fully enclosed cooling rotary electric machine

Info

Publication number
JP3535025B2
JP3535025B2 JP31676298A JP31676298A JP3535025B2 JP 3535025 B2 JP3535025 B2 JP 3535025B2 JP 31676298 A JP31676298 A JP 31676298A JP 31676298 A JP31676298 A JP 31676298A JP 3535025 B2 JP3535025 B2 JP 3535025B2
Authority
JP
Japan
Prior art keywords
electric machine
cooling
fully
stator
rotating electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31676298A
Other languages
Japanese (ja)
Other versions
JP2000152563A (en
Inventor
孝一 松岡
稔 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP31676298A priority Critical patent/JP3535025B2/en
Publication of JP2000152563A publication Critical patent/JP2000152563A/en
Application granted granted Critical
Publication of JP3535025B2 publication Critical patent/JP3535025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、全閉冷却型回転電
機に関するものである。 【0002】 【従来の技術】従来提案されている全閉冷却型回転電機
では、単に回転電機の外部に冷却風を流すか、機内を循
環する空気を媒体として発熱部から冷却部まで熱を運
び、冷却部でフィン等を通して外部に熱を放出する構成
になっている。 【0003】 【発明が解決しようとする課題】しかしながら、上記し
た従来の回転電機の冷却方法では、発熱体から放熱部ま
での熱抵抗が大きく、温度上昇を防ぎながら大量の熱を
放出することは難しい。つまり、従来の全閉冷却型回転
電機は、温度上昇が大きくなりがちであるといった問題
があった。 【0004】回転電機を全閉型にすると、冷却風を機内
に導入する必要が無くなり、塵埃の侵入を防ぐことがで
き、メンテンスフリーで低騒音の回転電機が実現できる
が、一方で、回転電機内への冷却風に代わる新たな冷却
手段を考える必要がある。 【0005】ところで、先行技術例として、ループ型細
管ヒートパイプを用いた全閉冷却型電動機〔登録257
2444号公報(実願平4−52839号)〕がある。 【0006】図8は従来の全閉冷却型電動機の断面図、
図9はその全閉冷却型電動機のループパイプの斜視図で
ある。 【0007】主電動機の回転子102、固定子103に
発生した熱は軸101に装着された内蔵ファン105に
より、枠内ファン側より内気通風路106の風道入口1
07a、通気管108、風道出口107bを経て主電動
機枠内反ファン側に循環し、冷却された内気は矢印で示
した経路を経て、回転子102,固定子103を冷却
し、内蔵ファン105側へと還流する。ループパイプ1
09の受熱部109aは内気通風路106の風道入口1
07a内に配設され、放熱部109cは、主電動機枠1
04の外部に内気通風路106ともに車両走行時の走行
風に露出されており、走行風は紙面に直角に流れるよう
に配置される。 【0008】図9に示すように、受熱部109a(10
9a1,109a2,109a3)と、他端の受熱部
(図示なし)と、放熱部109c(109c1,109
c2,109c3)とからなるループパイプを構成して
いる。ループパイプはアダプタ110により風道入口1
07a、風道出口107bに取付けられる。 【0009】しかしながら、上記した従来の方法では、
機内空気を中間媒体とした間接冷却であって全体での熱
抵抗が大きい。 【0010】本発明は、この種の電動機に改良を加え
て、発熱体から外気までの経路の熱抵抗を小さくするこ
とができ、冷却性能が向上し、回転電機の温度上昇を低
減することができる全閉冷却型回転電機を提供すること
を目的とする。 【0011】 【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕全閉冷却型回転電機において、固定子に配置さ
れ、外気に触れるフィンが形成されるループ式細管ヒー
トパイプ内蔵の薄板状冷却エレメントを具備し、この
ープ式細管ヒートパイプ内蔵の薄板状冷却エレメントを
積層鉄心及びコイルエンド部分に挟むように配置するよ
うにしたものである。 【0012】 【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら詳細に説明する。 【0013】図1は本発明の第1実施例を示す全閉冷却
型回転電機の要部断面図、図2はその全閉冷却型回転電
機の固定子の冷却装置を示す断面図、図3はその固定子
の部分斜視図、図4はその固定子のコイルエンド部分の
斜視図、図5はその薄板状冷却エレメントを示す図であ
る。 【0014】これらの図において、1は全閉冷却型回転
電機の回転軸、2はその回転軸に固定される回転子、3
はベアリング、10は外部ケーシング、11は固定子、
12は固定子積層鉄心、13は固定子コイル、13Aは
コイルエンド、14は固定子積層鉄心に挟まれるループ
式細管ヒートパイプ内蔵の薄板状冷却エレメント、15
はコイルエンド部分に挟まれるループ式細管ヒートパイ
プ内蔵の薄板状冷却エレメント、16は内気、17は外
気である。 【0015】この全閉冷却型回転電機の断面を見ると、
図2に示すように、ある固定子積層鉄心12の円周には
凹部を形成しておき、その凹部に薄板状冷却エレメント
14の基部14Bを装着して、放射状に複数枚を前後の
固定子積層鉄心(図示なし)で挟み込んで配置するよう
にしている。また、図3に示すように、薄板状冷却エレ
メント14は前後の配置をずらすように配置することも
できる。 【0016】また、図4に示すように、コイルエンド1
3A間には薄板状冷却エレメント15の基部を挟み込む
ようにし、そのコイルエンド13Aは突出したフィン1
5Aを除いて樹脂で固めるようにしてもよい。 【0017】そこで、 固定子コイル13の発熱(鉄
心内)、固定子積層鉄心12の発熱は固定子コイル13
→固定子積層鉄心12→薄板状冷却エレメント14→外
気17で放熱される。 【0018】また、 固定子コイルエンド13Aの発
熱→固定子コイルエンド13A→薄板状冷却エレメント
15→外気17で放熱される。 【0019】ここで、薄板状冷却エレメント14,15
について説明すると、図5に示すように、例えば、ルー
プ式細管ヒートパイプ14−1,15−1が薄板状の熱
伝導性材料(例えば、アルミニウム)14−2,15−
2に内蔵されるように構成されている。そのループ式細
管ヒートパイプ14−1,15−1内には、作動流体と
して、フロンHCFC142bを内容積70%封入した
ものを用いることができる(例えば、米国特許4921
041号、特開昭63−318493号公報、特公平6
−97147号公報参照)。 【0020】このように、発熱体である固定子コイル
3、固定子積層鉄心12から薄板状冷却エレメント1
4,15までは熱伝導により熱が伝えられるが、接触面
積が大きいため、熱抵抗は小さい。よって、薄板状冷却
エレメント14,15自身の熱抵抗は非常に小さい。そ
して、それがそのまま冷却フィン14A,15Aとな
り、ここでも空気との接触面積を大きくとることができ
るので、熱抵抗を小さくすることができる。 【0021】よって、全体での熱抵抗は空気等を中間媒
体にする場合に比べて非常に小さくすることができる。 【0022】次に、本発明の第2実施例について説明す
る。 【0023】図6は本発明の第2実施例を示す全閉冷却
型回転電機の内部模式図、図7はその図6のA−A′線
断面図である。 【0024】これらの図において、21は回転子、22
は固定子積層鉄心、23はドーナッ状薄円板からなる冷
却エレメントであり、図示しないが、図5に示すような
ループ式細管ヒートパイプがドーナッ状薄円板を形成す
る熱伝導性材料に内蔵されるように構成されている。 【0025】また、回転子の冷却は、図示しないが、通
常用いられるように、回転子自らの回転により、ファン
が作動して、回転電機内の空気の循環により、回転子コ
イル→機内空気→冷却フィンの経路で放熱するように構
成することができる。 【0026】なお、上記実施例では、薄板状冷却エレメ
ントとしたが、大型の回転電機においては、適宜厚みを
持たせることは可能であり、その意味で板状冷却エレメ
ントであってもよい。 【0027】また、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。 【0028】 【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。 【0029】(A)発熱体から外気に至るまでの経路の
熱抵抗を小さくすることができ、冷却性能が向上し、回
転電機の温度上昇を低減することができる。 【0030】(B)塵埃の侵入を防ぐことができ、メン
テナンスフリーの全閉冷却型回転電機を実現することが
できる。 【0031】(C)従来のファンを備えた全閉型回転電
機は、騒音を発生することになるが、本発明の全閉冷却
型回転電機は、ファンを要しないので、騒音を防止する
ことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fully-closed cooling rotary electric machine. 2. Description of the Related Art In a fully-closed cooling type rotary electric machine proposed in the past, cooling air is simply flown outside the rotary electric machine, or heat is transferred from a heat generating portion to a cooling portion by using air circulating in the device as a medium. In the cooling section, heat is released to the outside through fins and the like. [0003] However, in the above-mentioned conventional cooling method for a rotating electric machine, the thermal resistance from the heating element to the heat radiating portion is large, and it is difficult to release a large amount of heat while preventing the temperature from rising. difficult. In other words, the conventional fully-closed cooling type rotary electric machine has a problem that the temperature rise tends to be large. [0004] When the rotating electric machine is fully closed, there is no need to introduce cooling air into the machine, dust can be prevented from entering, and a maintenance-free and low-noise rotating electric machine can be realized. It is necessary to consider a new cooling method that replaces the cooling wind into the inside. By the way, as a prior art example, a fully-closed cooling type electric motor using a loop type thin tube heat pipe [Registration 257]
2444 (Japanese Utility Model Application No. 4-52839). FIG. 8 is a sectional view of a conventional fully-closed cooling motor.
FIG. 9 is a perspective view of a loop pipe of the fully closed cooling electric motor. [0007] The heat generated in the rotor 102 and the stator 103 of the main motor is supplied to the air passage inlet 1 of the inside air passage 106 from the fan side in the frame by the built-in fan 105 mounted on the shaft 101.
07a, the ventilation pipe 108, and the airway exit 107b, circulates to the fan side inside the main motor frame, and the cooled inside air cools the rotor 102 and the stator 103 through the path indicated by the arrow, and the built-in fan 105 Reflux to the side. Loop pipe 1
09 is a heat receiving portion 109a of the air passage entrance 1 of the inside air passage 106.
07a, and the heat radiating portion 109c is
Both the inside air passage 106 and the inside air passage 106 are exposed to the traveling wind when the vehicle is traveling, and the traveling wind is arranged so as to flow at a right angle to the paper surface. As shown in FIG. 9, the heat receiving portion 109a (10
9a1, 109a2, 109a3), a heat receiving portion (not shown) at the other end, and a heat radiating portion 109c (109c1, 109c).
c2, 109c3). The loop pipe is connected to the airway entrance 1 by the adapter 110.
07a, attached to the airway exit 107b. However, in the above-mentioned conventional method,
Indirect cooling using the air inside the machine as an intermediate medium and large thermal resistance as a whole. According to the present invention, by improving this type of motor, the thermal resistance of the path from the heating element to the outside air can be reduced, the cooling performance can be improved, and the temperature rise of the rotating electric machine can be reduced. An object of the present invention is to provide a fully-closed cooling type rotating electric machine that can be used. In order to achieve the above object, the present invention provides: [1] In a fully-closed cooling type rotating electric machine, a loop disposed on a stator and formed with fins that come into contact with outside air. Type capillary tube
Comprising a thin plate-shaped cooling element of the heat pipe built, the Le
Is obtained by the thin plate-shaped cooling element-loop type capillary tube heat pipe incorporated in to place so as to sandwich the laminated core and the coil end portion. Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view of a main part of a fully-closed cooling type rotating electric machine showing a first embodiment of the present invention, FIG. 2 is a sectional view showing a cooling device of a stator of the fully-closed cooling type rotating electric machine, and FIG. FIG. 4 is a partial perspective view of the stator, FIG. 4 is a perspective view of a coil end portion of the stator, and FIG. 5 is a view showing the thin plate cooling element. In these figures, reference numeral 1 denotes a rotating shaft of a fully-closed cooling type rotary electric machine, 2 denotes a rotor fixed to the rotating shaft, 3
Is a bearing, 10 is an outer casing, 11 is a stator,
12 is a stator laminated core, 13 is a stator coil, 13A is a coil end, 14 is a thin plate cooling element with a built-in loop-type thin tube heat pipe sandwiched between the stator laminated cores, 15
Is a thin plate cooling element with a built-in loop-type thin tube heat pipe sandwiched between coil end portions, 16 is inside air, and 17 is outside air. Looking at the cross section of the fully-closed cooling type rotating electric machine,
As shown in FIG. 2, a recess is formed in the circumference of a certain stator laminated core 12, and the base 14 B of the thin plate cooling element 14 is mounted in the recess, and a plurality of stators are radially inserted into the front and rear stators. It is arranged to be sandwiched between laminated iron cores (not shown). Further, as shown in FIG. 3, the thin plate cooling elements 14 can be arranged so that the front and rear arrangements are shifted. Further, as shown in FIG.
3A, the base of the thin cooling element 15 is sandwiched between the fins 1A.
You may make it solidify with resin except 5A. Therefore, the heat generated by the stator coil 13 (within the iron core) and the heat generated by the stator laminated core 12 are
→ Stator laminated core 12 → Thin plate cooling element 14 → Heat is radiated by outside air 17. Heat is radiated from the stator coil end 13A → stator coil end 13A → thin plate cooling element 15 → outside air 17. Here, the sheet-like cooling elements 14, 15
For example, as shown in FIG. 5, for example, loop-type thin tube heat pipes 14-1 and 15-1 are formed of a thin plate-like heat conductive material (for example, aluminum) 14-2 and 15-.
2. In the loop-type thin tube heat pipes 14-1 and 15-1, a fluid filled with 70% of Freon HCFC142b can be used as a working fluid (for example, US Pat.
041, JP-A-63-318493, JP-B-6
-97147 gazette). As described above, the stator coil 1 which is a heating element
3. From the laminated stator core 12 to the thin cooling element 1
Heat is transmitted by heat conduction to 4 and 15, but the thermal resistance is small due to the large contact area. Therefore, the heat resistance of the thin plate cooling elements 14 and 15 themselves is very small. Then, the cooling fins 14A and 15A are used as they are, and the contact area with the air can be increased here, so that the thermal resistance can be reduced. Therefore, the total thermal resistance can be made very small as compared with the case where air or the like is used as the intermediate medium. Next, a second embodiment of the present invention will be described. FIG. 6 is a schematic view showing the internal configuration of a fully-closed cooling type rotary electric machine according to a second embodiment of the present invention, and FIG. 7 is a sectional view taken along the line AA 'of FIG. In these figures, 21 is a rotor, 22
Is a stator laminated iron core, and 23 is a cooling element made of a donut-shaped thin disk. Although not shown, a loop-type thin tube heat pipe as shown in FIG. 5 is built in a heat conductive material forming the donut-shaped thin disk. It is configured to be. The cooling of the rotor is not shown, but as is usually used, the fan operates by the rotation of the rotor itself, and the circulation of air in the rotating electric machine causes the rotation of the rotor coil → air inside the machine → It can be configured to dissipate heat in the cooling fin path. In the above embodiment, a thin plate cooling element is used. However, a large rotating electric machine can have an appropriate thickness, and in that sense, a plate cooling element may be used. Further, the present invention is not limited to the above-described embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention. As described above, according to the present invention, the following effects can be obtained. (A) The thermal resistance of the path from the heating element to the outside air can be reduced, the cooling performance can be improved, and the temperature rise of the rotating electric machine can be reduced. (B) Intrusion of dust can be prevented, and a maintenance-free fully-closed cooling type rotating electric machine can be realized. (C) A fully-closed rotary electric machine equipped with a conventional fan generates noise, but the fully-closed cooled rotary electric machine of the present invention does not require a fan. Can be.

【図面の簡単な説明】 【図1】本発明の第1実施例を示す全閉冷却型回転電機
の要部断面図である。 【図2】本発明の第1実施例を示す全閉冷却型回転電機
の固定子の冷却装置を示す断面図である。 【図3】本発明の第1実施例を示す全閉冷却型回転電機
の固定子の部分斜視図である。 【図4】本発明の第1実施例を示す全閉冷却型回転電機
の固定子のコイルエンド部分の斜視図である。 【図5】本発明の第1実施例を示す全閉冷却型回転電機
の固定子の薄板状冷却エレメントを示す図である。 【図6】本発明の第2実施例を示す全閉冷却型回転電機
の内部模式図である。 【図7】図6のA−A′線断面図である。 【図8】従来の全閉冷却型電動機の断面図である。 【図9】従来の全閉冷却型電動機のループパイプの斜視
図である。 【符号の説明】 1 回転軸 2 回転子 3 ベアリング 10 外部ケーシング 11 固定子 12,22 固定子積層鉄心 13 固定子コイル 13A コイルエンド 14,15 ループ式細管ヒートパイプ内蔵の薄板状
冷却エレメント 14A,15A 冷却フィン14B 基部 16 内気 17 外気 21 回転子 23 ドーナッ状薄円板からなる冷却エレメント
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a main part of a fully-closed cooling type rotating electric machine according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing a cooling device for the stator of the fully-closed cooling type rotating electric machine according to the first embodiment of the present invention. FIG. 3 is a partial perspective view of a stator of the fully-closed cooling type rotating electric machine according to the first embodiment of the present invention. FIG. 4 is a perspective view of a coil end portion of a stator of the fully-closed cooling type rotating electric machine according to the first embodiment of the present invention. FIG. 5 is a view showing a thin cooling element of a stator of the fully-closed cooling type rotating electric machine according to the first embodiment of the present invention. FIG. 6 is an internal schematic diagram of a fully-closed-cooling type rotating electric machine showing a second embodiment of the present invention. FIG. 7 is a sectional view taken along line AA ′ of FIG. 6; FIG. 8 is a sectional view of a conventional fully-closed cooling type electric motor. FIG. 9 is a perspective view of a loop pipe of a conventional fully closed cooling electric motor. [Description of Signs] 1 Rotating shaft 2 Rotor 3 Bearing 10 Outer casing 11 Stator 12, 22 Stator laminated iron core 13 Stator coil 13A Coil end 14, 15 Thin plate-shaped cooling element 14A, 15A with built-in loop-type thin tube heat pipe Cooling fin 14B base 16 Inside air 17 Outside air 21 Rotor 23 Cooling element composed of a thin disk

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−138948(JP,A) 特開 昭57−62754(JP,A) 特開 昭62−25841(JP,A) 実開 昭56−7470(JP,U) 実開 昭54−84008(JP,U) 特公 昭36−16563(JP,B1) 米国特許3010038(US,A) (58)調査した分野(Int.Cl.7,DB名) H02K 9/22,3/24 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-138948 (JP, A) JP-A-57-62754 (JP, A) JP-A-62-25841 (JP, A) 7470 (JP, U) JP-A 54-84008 (JP, U) JP-B 36-16563 (JP, B1) US Patent 3010038 (US, A) (58) Fields investigated (Int. Cl. 7 , DB) Name) H02K 9 / 22,3 / 24

Claims (1)

(57)【特許請求の範囲】 【請求項1】 固定子に配置され、外気に触れるフィン
が形成されるループ式細管ヒートパイプ内蔵の薄板状冷
却エレメントを具備し、該ループ式細管ヒートパイプ内
蔵の薄板状冷却エレメントを積層鉄心及びコイルエンド
部分に挟むように配置することを特徴とする全閉冷却型
回転電機。
(57) is disposed to the Claims 1] a stator, comprising a thin plate-shaped cooling element of the loop capillary tube heat pipe internal fins touching the outside air is formed, the loop capillary tube heat pipe Inside
Laminated core and the coil end of the thin plate-shaped cooling element storehouse
A fully-closed cooling type rotating electric machine characterized by being arranged so as to be sandwiched between portions .
JP31676298A 1998-11-09 1998-11-09 Fully enclosed cooling rotary electric machine Expired - Fee Related JP3535025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31676298A JP3535025B2 (en) 1998-11-09 1998-11-09 Fully enclosed cooling rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31676298A JP3535025B2 (en) 1998-11-09 1998-11-09 Fully enclosed cooling rotary electric machine

Publications (2)

Publication Number Publication Date
JP2000152563A JP2000152563A (en) 2000-05-30
JP3535025B2 true JP3535025B2 (en) 2004-06-07

Family

ID=18080651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31676298A Expired - Fee Related JP3535025B2 (en) 1998-11-09 1998-11-09 Fully enclosed cooling rotary electric machine

Country Status (1)

Country Link
JP (1) JP3535025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532309A (en) * 2013-10-17 2014-01-22 浙江工商大学 Intelligent heat-superconducting motor cooler

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098382A1 (en) * 2007-02-15 2008-08-21 Hamilton Medical Ag Blower for a medical ventilator and medical ventilator with such a blower
JP5172199B2 (en) * 2007-04-27 2013-03-27 住友電気工業株式会社 Stator
EP2340598A2 (en) * 2008-09-23 2011-07-06 AeroVironment, Inc. Compressed motor winding
DE102008053090A1 (en) * 2008-10-24 2010-04-29 Siemens Aktiengesellschaft Dynamoelectric machine
MX2012011571A (en) 2010-05-04 2013-02-12 Remy Technologies Llc Electric machine cooling system and method.
US9054565B2 (en) 2010-06-04 2015-06-09 Remy Technologies, Llc Electric machine cooling system and method
EP2580846B1 (en) 2010-06-08 2018-07-18 Remy Technologies, LLC Electric machine cooling system and method
US8456046B2 (en) 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
US8519581B2 (en) 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8482169B2 (en) 2010-06-14 2013-07-09 Remy Technologies, Llc Electric machine cooling system and method
US8614538B2 (en) 2010-06-14 2013-12-24 Remy Technologies, Llc Electric machine cooling system and method
US8446056B2 (en) 2010-09-29 2013-05-21 Remy Technologies, Llc Electric machine cooling system and method
US8492952B2 (en) * 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
US8395287B2 (en) 2010-10-04 2013-03-12 Remy Technologies, Llc Coolant channels for electric machine stator
US8508085B2 (en) 2010-10-04 2013-08-13 Remy Technologies, Llc Internal cooling of stator assembly in an electric machine
US8593021B2 (en) 2010-10-04 2013-11-26 Remy Technologies, Llc Coolant drainage system and method for electric machines
US8648506B2 (en) 2010-11-09 2014-02-11 Remy Technologies, Llc Rotor lamination cooling system and method
US8497608B2 (en) 2011-01-28 2013-07-30 Remy Technologies, Llc Electric machine cooling system and method
WO2012145302A2 (en) 2011-04-18 2012-10-26 Remy Technologies, Llc Electric machine module cooling system and method
US8692425B2 (en) 2011-05-10 2014-04-08 Remy Technologies, Llc Cooling combinations for electric machines
US8803380B2 (en) 2011-06-03 2014-08-12 Remy Technologies, Llc Electric machine module cooling system and method
US9041260B2 (en) 2011-07-08 2015-05-26 Remy Technologies, Llc Cooling system and method for an electronic machine
US8803381B2 (en) 2011-07-11 2014-08-12 Remy Technologies, Llc Electric machine with cooling pipe coiled around stator assembly
US8546982B2 (en) 2011-07-12 2013-10-01 Remy Technologies, Llc Electric machine module cooling system and method
US9048710B2 (en) 2011-08-29 2015-06-02 Remy Technologies, Llc Electric machine module cooling system and method
US8975792B2 (en) 2011-09-13 2015-03-10 Remy Technologies, Llc Electric machine module cooling system and method
US9099900B2 (en) 2011-12-06 2015-08-04 Remy Technologies, Llc Electric machine module cooling system and method
US9331543B2 (en) 2012-04-05 2016-05-03 Remy Technologies, Llc Electric machine module cooling system and method
US10069375B2 (en) 2012-05-02 2018-09-04 Borgwarner Inc. Electric machine module cooling system and method
KR20140029886A (en) * 2012-08-31 2014-03-11 현대모비스 주식회사 Cooling structure for stator core
WO2015003699A2 (en) * 2013-07-12 2015-01-15 Schaeffler Technologies Gmbh & Co. Kg (Angestellter) Electric machine
CN106787354A (en) * 2016-07-15 2017-05-31 王子齐 Directly open low mesohigh efficiency power generation multipurpose power magneto
GB2599788B (en) * 2018-02-16 2022-10-05 Rolls Royce Plc Metal coil fabrication
CN109104028B (en) * 2018-11-01 2019-04-26 浙江江宇电机有限公司 Motor radiating control method
CN109245403B (en) * 2018-11-01 2021-01-26 浙江江宇电机有限公司 Motor heat dissipation control method
CN117545947A (en) * 2021-06-24 2024-02-09 加特可株式会社 Assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103532309A (en) * 2013-10-17 2014-01-22 浙江工商大学 Intelligent heat-superconducting motor cooler
CN103532309B (en) * 2013-10-17 2016-09-28 浙江工商大学 Intelligent hot superconducting motor cooler

Also Published As

Publication number Publication date
JP2000152563A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
JP3535025B2 (en) Fully enclosed cooling rotary electric machine
US6621186B2 (en) Alternator for vehicles
JP2837101B2 (en) Air-cooled motor
JP3206436B2 (en) Heat sink device
US20040190261A1 (en) Cooler with blower between two heatsinks
JPH09149599A (en) Totally enclosed rotating electric machine
JP4183814B2 (en) Cage electric motor
JPH07264802A (en) Induction motor
JPH0591696A (en) Rotating machine
JPH0545098Y2 (en)
JP3521262B2 (en) Rotating electric machine
JPH09285046A (en) Dynamo-electric machine and its stator
JPS6337588B2 (en)
JPS60212613A (en) Internal-combustion engine magnetic generator and its cooling fan fixing device
WO2016189886A1 (en) Rotating electric machine
JPS62296735A (en) Cooling device for motor
CN112467942B (en) Heat dissipation type axial motor
CN213547208U (en) Motor with winding coil heat dissipation
JPH05328706A (en) Eddy-current plate and cooling structure of retarder
JP3498569B2 (en) Electric motor
CN213879564U (en) Motor with iron core heat dissipation
JPS58100463U (en) Ventilation-cooled rotating electrical equipment
JPH0759292A (en) Rotating electric machine
JPS6341814Y2 (en)
JPS6110457Y2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees