JP3532094B2 - Monitoring device for water treatment equipment with membrane separation device - Google Patents

Monitoring device for water treatment equipment with membrane separation device

Info

Publication number
JP3532094B2
JP3532094B2 JP08516698A JP8516698A JP3532094B2 JP 3532094 B2 JP3532094 B2 JP 3532094B2 JP 08516698 A JP08516698 A JP 08516698A JP 8516698 A JP8516698 A JP 8516698A JP 3532094 B2 JP3532094 B2 JP 3532094B2
Authority
JP
Japan
Prior art keywords
water
data
membrane separation
membrane
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08516698A
Other languages
Japanese (ja)
Other versions
JPH11277063A (en
Inventor
清司 和泉
山田  豊
雅治 塗師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP08516698A priority Critical patent/JP3532094B2/en
Publication of JPH11277063A publication Critical patent/JPH11277063A/en
Application granted granted Critical
Publication of JP3532094B2 publication Critical patent/JP3532094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、水処理設備の運転
管理技術に係り、膜分離装置を有する水処理設備の監視
装置に関する。 【0002】 【従来の技術】従来、図6に示すような、水処理設備に
おいては、流入する被処理水41を曝気槽42へ受け入
れるとともに、曝気槽42において散気装置43から空
気を供給しながら連続的に被処理水を生物学的処理し、
曝気槽42の混合液44を沈殿槽45で固液分離し、沈
殿槽45における上澄水46を放流槽47を経て系外へ
放流し、沈殿槽45で沈降分離した汚泥を曝気槽42へ
返送することにより、活性汚泥の系外への流出を抑制す
るとともに、曝気槽42における汚泥濃度を高めてい
た。 【0003】このような水処理設備においては、その運
転管理を行なうために、槽内の状態を示すpHなどの各
種の指標を測定しており、測定したデータを記録するた
めに、紙に印字する記録計や電子データとして記録する
データロガ装置を使用している。また、最低1週間に1
度の頻度で点検を行なうような、小規模の水処理設備に
おいては、簡単な記録計を利用するか、記録を取らない
で運転管理を行なっている。 【0004】大型の水処理設備においては、生物処理槽
における槽内の状態を監視するために、DO計、ORP
計、pH計等の複数のセンサーを設置し、詳細にデータ
を記録してきめ細かな運転制御を行なっており、パーソ
ナルコンピュータ程度の制御機器を使用してデータの記
録および運転制御を行なっている。 【0005】一方、図7に示すような、膜分離装置を利
用する水処理装置においては、被処理水51が流入する
流量調整槽52に続く生物槽53に膜分離装置54を浸
漬し、膜分離装置54の下方に散気装置55を配置して
おり、膜分離装置54に連通してサイホン管路をなす透
過液導出系55が放流槽56の水深下において開口し、
生物槽53と放流槽56における液位差に基づく自然水
頭を駆動圧力として膜分離装置54を運転している。 【0006】このような膜分離装置を利用した活性汚泥
処理においては、膜分離装置による固液分離により槽内
の活性汚泥濃度を高濃度に維持することができるので、
処理水質が安定し、維持管理も容易なことから広く普及
し始めている。しかし、この方法は、活性汚泥に対する
管理を著しく軽減できる反面において、膜分離装置の管
理が必要となる。 【0007】 【発明が解決しようとする課題】膜分離装置は、運転を
継続するに伴って膜の細孔等に有機物や無機物が付着す
るので、定期的に薬液を使用して膜に付着した汚れを分
解洗浄している。この膜洗浄は、通常において半年から
1年に1回程度の頻度で定期的に実施しており、あるい
は膜の汚れが著しくひどくなり、膜のろ過抵抗が大きく
なった時点で随時に実施している。この膜の汚れの判断
は、透過流束を一定に維持する運転条件下においては、
汚れによるろ過抵抗の増加に比例してろ過に必要なろ過
圧力(ろ過水頭)が増加することから、ろ過水頭を監視
することにより行なっており、ろ過水頭が上限基準を越
えた時点で膜洗浄が必要と判断している。また、ろ過水
頭の監視に際しては、水温によって水の粘度が変わるこ
とから、水温も監視項目としている。 【0008】しかし、ろ過水頭の増加は、膜面の汚れに
起因するろ過抵抗の増加によるものだけでなく、透過液
を導く透過液導出系の異常による通液抵抗の増加によっ
ても生じ、また逆に、膜面自体は汚れが進行しているに
も拘わらず、膜の損傷によってろ過水頭の増加が生起し
ない場合などもある。 【0009】したがって、メンテナンス時において、そ
の場限りの監視を行なっても、現在のろ過水頭が膜面の
汚れを正常に反映した結果であると判断できず、ろ過水
頭などの膜分離装置の運転指標を継続して記録し、監視
期間における経時的変化を表わすデータに基づき膜面の
汚れを判断する必要がある。 【0010】本発明は上記した課題を解決するものであ
り、監視期間における膜分離装置の運転状態を履歴とし
て記録し、膜面の汚れの経時的変化を画像データとして
表示することができる膜分離装置を有する水処理設備の
監視装置を提供することを目的とする。 【0011】 【課題を解決するための手段】上記した課題を解決する
ために、本発明の膜分離装置を有する水処理設備の監視
装置は、槽内に膜分離装置を浸漬した水処理設備におい
て、水位計もしくは圧力計にて測定するろ過水頭と、水
温計にて測定する槽内の水温と、流量計にて測定する膜
透過液の流量とを指標として膜分離装置の運転状態を監
視する装置であって、予め設定する監視期間において各
指標の測定値を設定したサンプリング時間毎に記録する
データ記録回路と、データ記録回路に記憶したろ過水頭
と流量と水温の測定データを時系列的に表示するデータ
表示回路と、データ記録回路とデータ表示回路とを制御
する制御回路とを備えたものである。 【0012】また、データ記録回路に記録した測定デー
タを外部に送信する送信機能を備えたものである。 【0013】 【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1〜図5において、水処理装置1
は、流入する被処理水2を受け入れる流量調整槽3と、
被処理水2を生物学的に処理する曝気槽4と、曝気槽4
に浸漬した膜分離装置5と、膜分離装置5の下方に配置
した散気装置6と、膜透過液を貯留する放流槽7と、膜
分離装置5に連通してサイホン管路をなし、放流槽7の
水深下において開口する透過液導出管8と、放流槽7の
膜透過液を系外へ放出する放流管7aと、流量調整槽3
から曝気槽4へ被処理水2を一定量ずつ供給する定流量
ポンプ9と、散気装置6に曝気空気を供給するブロア1
0と、曝気槽4における水温を測定する水温計11と、
膜分離装置5に作用するろ過水頭を計測するために、曝
気槽4に設けた水位計12(圧力計でも良く、機種によ
って曝気槽以外の槽にも水位計を設けることもある)
と、透過液導出管8における膜透過液の流量を測定する
流量計13とを有している。 【0014】監視装置14は、水温計11による測定水
温と、水位計12にる測定ろ過水頭と、流量計13にる
測定流量とを指標として膜分離装置5の運転状態を監視
するものであり、水温計11と水位計12と流量計13
を接続するための複数の入力ポート15と、データを外
部へ出力するための出力ポート16を側部に有し、上面
にデータを表示する液晶パネルPと操作ボタン17を有
している。 【0015】さらに詳述すると、監視装置14は、各入
力ポート15に接続したA/D変換を行なうA/Dイン
ターフェイス回路18と、出力ポート16に接続した通
信インターフェイス回路19と、操作ボタン17に接続
したスイッチ回路20と、各種の初期設定を行なうディ
ップスイッチ回路20aと、設定データを記録するEE
PROM回路21と、基本プログラムを格納するROM
回路22と、測定データを記録するRAM回路23と、
時刻を出力するカレンダー回路24と、液晶パネル16
に接続した液晶インターフェイス回路25と、各回路を
制御するCPU26とを有している。 【0016】上記した構成において、流量調整槽3に受
け入れた被処理水2は、定流量ポンプ9により流量調整
槽3から曝気槽4へ一定量ずつ供給し、曝気槽4におい
て散気装置6から空気を供給しながら槽内の活性汚泥に
より生物学的に処理する。 【0017】一方、膜分離装置5は、透過液導出管8が
サイフォン管路をなすことから、曝気槽4における液面
と放流槽7における液面との間における自然水頭をろ過
水頭(駆動圧力)として作動し、有機濾過膜等の膜を透
過した膜透過液が透過液導出管8を通って放流槽7に流
れ出る一方で、活性汚泥が槽内に残留する。尚、本実施
の形態においては、自然水頭を利用した重力ろ過を行な
っているが、吸引ポンプを利用してろ過水頭を与えるこ
ともできる。 【0018】このとき、定流量ポンプ9が流量調整槽3
から曝気槽4へ供給する被処理水2の流量と、透過液導
出管8を通って放流槽7に流れ出る透過液量が拮抗し、
曝気槽4における液面が膜分離装置5に所定のろ過水頭
を与える液位に位置する。経時的変化により、膜分離装
置5における膜の透過流束が膜面の汚れ等に起因して低
下すると、透過液導出管8を通って放流槽7に流れ出る
膜透過液量の低下に伴って曝気槽4における液位が上昇
してろ過水頭が増加し、ろ過水頭の増加によりによって
膜透過液量が増加し、膜透過液量が定流量ポンプ9の供
給量に見合う量に回復するまでろ過水頭が増加する。 【0019】監視装置14は、CPU26とRAM回路
23とで構成するデータ記録回路において、水温計1
1、水位計12、流量計13から各入力ポート15に入
力する電圧入力を、各A/Dインターフェイス回路18
を通してサンプリングし、収集したデータをRAM回路
23に測定値として記憶する。 【0020】この測定は、放流槽7における液位が一定
であるとして、水位計12により測定する曝気槽4の液
位から予め設定する放流槽7における液位を減じた値を
ろ過水頭として測定し、測定したろ過水頭を水温計11
で測定する水温に基づいて補正し、標準水温におけるろ
過水頭を求める。 【0021】測定値のサンプリングは、1秒間隔でデー
タを取り込み、これをサンプリング時間(例えば3分
間)毎の平均値として行ない、予め設定する監視期間
(例えば15日)において保存する。監視期間は、水処
理設備1の維持管理頻度に応じて設定するものであり、
点検時に前回の点検から今回の点検までの期間に相当す
る。測定値は監視期間における全データを保存し、監視
期間を超える古いデータを逐次に消去するとともに最新
のデータを保存データに加える。 【0022】メンテナンス時には、CPU26と液晶イ
ンターフェイス回路25と液晶パネルPとからなるデー
タ表示回路により、データ記録回路に記憶した測定デー
タを時系列的に表示する。 【0023】この表示は、図4に示すように、サンプリ
ングした日時Hと、サンプリングにより得られた測定値
を予め設定する基準値との比としてパーセントで表示
し、各入力ポート毎のデータD、つまりろ過水頭、水
温、流量の各測定値を一覧に表示し、操作ボタン17を
適宜に操作することにより、古いものから新しいもの
へ、あるいは新しいものから古いものへ順次に時系列的
に表示する。 【0024】また、操作ボタン17を操作し、表示モー
ドをグラフ画面に切り替えると、図5に示すように、監
視期間における測定データDを、X軸を時間としY軸を
測定値(予め設定する基準値との比としてパーセントで
表示)として、その変化を時系列的にグラフとして表示
し、各入力ポート毎のデータ、つまりろ過水頭、水温、
流量の各測定値を個別に表示し、操作ボタン17を適宜
に操作することにより表示するデータ種を切り替える。 【0025】表示する時間軸の単位は、操作ボタン17
の操作により変更することができ、最大において監視期
間の全期間のデータを一度に表示することができる。ま
た、画面上には、時間軸の単位Mと、表示している最新
のデータ(画面上右端)の測定した日時Hと、同データ
の値Vを表示する。 【0026】したがって、メンテナンス時に保存したデ
ータを画面表示することにより、その場において、監視
期間におけるろ過水頭の変化を時系列的に認識すること
ができ、現在のろ過水頭が正常な経時的変化により招来
したものか否かを判断することができ、流量の変化を確
認することにより膜の損傷の有無を判断することができ
る。 【0027】また、保存したデータを通信インターフェ
イス回路19を通して出力ポート16に出力し、出力ポ
ート16に接続したモデム等を介して遠隔地において測
定値データを受け取り、膜分離装置5の運転状態を遠隔
地において監視することができる。 【0028】 【発明の効果】以上述べたように、本発明によれば、監
視期間におけるろ過水頭の変化を時系列的に認識して、
膜の汚れ状態を示す指標としてのろ過水頭の正当性を判
断することができ、流量の変化を確認することにより膜
の損傷の有無を判断することができ、送信機能により、
保存したデータを遠隔地において認知し、膜分離装置の
運転状態を遠隔地において監視することができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to an operation management technique for a water treatment facility, and more particularly to a monitoring apparatus for a water treatment facility having a membrane separation device. 2. Description of the Related Art Conventionally, in a water treatment facility as shown in FIG. 6, an inflowing treated water 41 is received in an aeration tank 42, and air is supplied from a diffuser 43 in the aeration tank 42. Biological treatment of the treated water continuously,
The mixed solution 44 in the aeration tank 42 is separated into solid and liquid in a sedimentation tank 45, the supernatant water 46 in the sedimentation tank 45 is discharged out of the system via a discharge tank 47, and the sludge settled and separated in the sedimentation tank 45 is returned to the aeration tank 42. By doing so, the activated sludge is prevented from flowing out of the system, and the sludge concentration in the aeration tank 42 is increased. In such a water treatment facility, various indicators such as pH indicating the state in the tank are measured in order to manage the operation, and the measured data is printed on paper to record the data. It uses a recorder that records data and a data logger that records data as electronic data. Also, at least once a week
In small-scale water treatment facilities where inspections are performed frequently, a simple recorder is used or operation is managed without taking records. In a large water treatment facility, a DO meter, an ORP,
A plurality of sensors such as a meter and a pH meter are installed, and detailed data is recorded to perform detailed operation control. Data recording and operation control are performed using a control device such as a personal computer. On the other hand, in a water treatment apparatus using a membrane separation apparatus as shown in FIG. 7, a membrane separation apparatus 54 is immersed in a biological tank 53 following a flow rate adjustment tank 52 into which water 51 to be treated flows. An aeration device 55 is disposed below the separation device 54, and a permeated liquid outlet system 55, which communicates with the membrane separation device 54 and forms a siphon conduit, is opened below the depth of the discharge tank 56,
The membrane separation device 54 is operated using the natural head based on the liquid level difference between the biological tank 53 and the discharge tank 56 as a driving pressure. In the activated sludge treatment using such a membrane separation device, the activated sludge concentration in the tank can be maintained at a high concentration by solid-liquid separation by the membrane separation device.
It has begun to spread widely because the quality of treated water is stable and maintenance is easy. However, while this method can significantly reduce the management of activated sludge, it requires management of a membrane separation device. [0007] In the membrane separation apparatus, organic substances and inorganic substances adhere to the pores and the like of the membrane as the operation is continued. Dirt is disassembled and cleaned. This membrane cleaning is usually carried out regularly at a frequency of about once every six months to one year, or at any time when the membrane becomes extremely dirty and the filtration resistance of the membrane increases. I have. This determination of membrane fouling is made under operating conditions that maintain a constant flux.
Since the filtration pressure (filtration head) required for filtration increases in proportion to the increase in filtration resistance due to contamination, monitoring is performed by monitoring the filtration head. When the filtration head exceeds the upper limit, membrane cleaning is started. I judge it is necessary. In monitoring the head of the filtered water, the viscosity of the water changes depending on the temperature of the water. [0008] However, the increase in the filtration head is caused not only by the increase in filtration resistance due to contamination of the membrane surface, but also by the increase in flow resistance due to an abnormality in the permeate discharge system for guiding the permeate. In some cases, even though the membrane surface itself is being stained, an increase in filtration head does not occur due to damage to the membrane. [0009] Therefore, even if ad hoc monitoring is performed during maintenance, it is not possible to determine that the current filtered water head is a result of normally reflecting the contamination of the membrane surface, and the operation of the membrane separation device such as the filtered water head is not possible. It is necessary to continuously record the index and judge the contamination of the film surface based on data representing a change over time during the monitoring period. The present invention solves the above-mentioned problem, and records the operating state of a membrane separation apparatus as a history during a monitoring period, and can display a time-dependent change in contamination on the membrane surface as image data. It is an object to provide a monitoring device for a water treatment facility having the device. [0011] In order to solve the above-mentioned problems, a monitoring apparatus for a water treatment facility having a membrane separation apparatus according to the present invention is provided in a water treatment facility in which the membrane separation apparatus is immersed in a tank. The operating state of the membrane separation device is monitored by using the filtered water head measured by a water level gauge or a pressure gauge, the water temperature in the tank measured by a water temperature gauge, and the flow rate of the membrane permeate measured by a flow meter as indexes. An apparatus, comprising: a data recording circuit for recording a measurement value of each index during a preset monitoring period for each set sampling time; and a filtration head stored in the data recording circuit.
And a data display circuit for displaying measured data of flow rate and water temperature in time series, and a control circuit for controlling the data recording circuit and the data display circuit. [0012] Further, a transmission function for transmitting measurement data recorded in the data recording circuit to the outside is provided. Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1 to FIG.
Is a flow control tank 3 for receiving the in-process water 2,
An aeration tank 4 for biologically treating the water 2 to be treated;
, A diffuser 6 disposed below the membrane separator 5, a discharge tank 7 for storing the membrane permeate, and a siphon pipe communicating with the membrane separator 5 to form a siphon pipe. A permeated liquid outlet pipe 8 opened below the depth of the tank 7, a discharge pipe 7a for discharging the membrane permeated liquid from the discharge tank 7 to the outside of the system, and a flow control tank 3
Constant flow pump 9 for supplying water 2 to the aeration tank 4 at a constant rate from the air, and blower 1 for supplying aeration air to the diffuser 6
0, a water thermometer 11 for measuring the water temperature in the aeration tank 4,
A water level gauge 12 provided in the aeration tank 4 to measure the filtered water head acting on the membrane separation device 5 (a pressure gauge may be used, and a water level gauge may be provided in a tank other than the aeration tank depending on the model).
And a flow meter 13 for measuring the flow rate of the membrane permeate in the permeate outlet pipe 8. The monitoring device 14 monitors the operating state of the membrane separation device 5 using the water temperature measured by the water temperature gauge 11, the filtered water head measured by the water level meter 12, and the flow measured by the flow meter 13 as indices. , Water temperature meter 11, water level meter 12, and flow meter 13
, And an output port 16 for outputting data to the outside. The liquid crystal panel P for displaying data on the upper surface and operation buttons 17 are provided. More specifically, the monitoring device 14 includes an A / D interface circuit 18 connected to each input port 15 for performing A / D conversion, a communication interface circuit 19 connected to the output port 16, and an operation button 17. A connected switch circuit 20, a dip switch circuit 20a for performing various initial settings, and an EE for recording setting data.
PROM circuit 21 and ROM for storing basic programs
A circuit 22, a RAM circuit 23 for recording measurement data,
A calendar circuit 24 for outputting time, and a liquid crystal panel 16
, And a CPU 26 for controlling each circuit. In the above configuration, the water 2 to be treated received in the flow control tank 3 is supplied by the constant flow pump 9 from the flow control tank 3 to the aeration tank 4 at a constant rate, and is supplied from the diffuser 6 in the aeration tank 4. Biological treatment with activated sludge in the tank while supplying air. On the other hand, in the membrane separation device 5, since the permeated liquid outlet pipe 8 forms a siphon pipe, the natural water head between the liquid surface in the aeration tank 4 and the liquid surface in the discharge tank 7 is filtered water head (driving pressure). ), The membrane permeate which has passed through the membrane such as the organic filtration membrane flows out to the discharge tank 7 through the permeate outlet pipe 8, while the activated sludge remains in the tank. In the present embodiment, gravity filtration using a natural head is performed, but a filtered head may be provided using a suction pump. At this time, the constant flow pump 9 is connected to the flow control tank 3
And the amount of permeate flowing out of the permeate outlet pipe 8 into the discharge tank 7 antagonizes the flow rate of the water to be treated 2 supplied to the aeration tank 4 from
The liquid level in the aeration tank 4 is located at a liquid level that gives the membrane separation device 5 a predetermined filtered head. If the permeation flux of the membrane in the membrane separation device 5 is reduced due to a change over time due to contamination of the membrane surface or the like, the amount of the membrane permeate flowing into the discharge tank 7 through the permeate outlet pipe 8 is reduced. The liquid level in the aeration tank 4 rises to increase the filtration head, and the increase in the filtration head causes an increase in the amount of membrane permeate, and filtration until the amount of membrane permeate recovers to an amount commensurate with the supply of the constant flow pump 9. The water head increases. The monitoring device 14 includes a water temperature meter 1 in a data recording circuit comprising a CPU 26 and a RAM circuit 23.
1. A voltage input from the water level meter 12 and the flow meter 13 to each input port 15 is input to each A / D interface circuit 18.
And the collected data is stored in the RAM circuit 23 as a measured value. In this measurement, assuming that the liquid level in the discharge tank 7 is constant, a value obtained by subtracting the preset liquid level in the discharge tank 7 from the liquid level in the aeration tank 4 measured by the water level meter 12 is used as a filtered water head. And the measured filtered water head is
Correct based on the water temperature measured in the above, and obtain the filtered head at the standard water temperature. The sampling of measured values is performed by taking in data at one-second intervals, averaging the data every sampling time (for example, 3 minutes), and storing the data during a preset monitoring period (for example, 15 days). The monitoring period is set according to the maintenance frequency of the water treatment equipment 1,
At the time of inspection, it corresponds to the period from the previous inspection to the current inspection. As the measured values, all data during the monitoring period is stored, old data that exceeds the monitoring period is sequentially deleted, and the latest data is added to the stored data. During maintenance, the measurement data stored in the data recording circuit is displayed in chronological order by a data display circuit comprising the CPU 26, the liquid crystal interface circuit 25, and the liquid crystal panel P. As shown in FIG. 4, the display is expressed as a ratio between the date and time H at which the sample was taken and the measured value obtained by the sampling as a percentage. That is, the measured values of the filtered water head, the water temperature, and the flow rate are displayed in a list, and by appropriately operating the operation button 17, the oldest one is displayed in chronological order from the newest one, or the newest one is displayed in chronological order. . When the operation button 17 is operated to switch the display mode to the graph screen, as shown in FIG. 5, the measurement data D during the monitoring period is measured with the X-axis as time and the Y-axis as a measurement value (set in advance). The change is displayed as a graph in chronological order, and the data for each input port, ie, filtered water head, water temperature,
Each measured value of the flow rate is individually displayed, and the data type to be displayed is switched by appropriately operating the operation button 17. The unit of the displayed time axis is the operation button 17.
Can be changed by the operation described above, and the data of the entire monitoring period can be displayed at a time at the maximum. Further, on the screen, the unit M of the time axis, the measured date and time H of the latest data being displayed (the right end on the screen), and the value V of the data are displayed. Therefore, by displaying the data saved at the time of maintenance on the screen, the change of the filtered water head during the monitoring period can be recognized in a time-series manner on the spot, and the current filtered water head can be recognized by the normal temporal change. It is possible to judge whether or not it is caused, and it is possible to judge whether or not the membrane is damaged by checking the change in the flow rate. The stored data is output to the output port 16 through the communication interface circuit 19, and the measured value data is received at a remote place through a modem or the like connected to the output port 16, and the operating state of the membrane separation device 5 is changed. Can be monitored on the ground. As described above, according to the present invention, the change in the filtration head during the monitoring period is recognized in a time-series manner.
It is possible to judge the validity of the filtration head as an indicator of the state of membrane contamination, and to determine the presence or absence of membrane damage by checking the change in flow rate.
The stored data can be recognized at a remote location, and the operating state of the membrane separation device can be monitored at a remote location.

【図面の簡単な説明】 【図1】本発明の実施の形態における水処理装置の構成
を示す摸式図である。 【図2】同実施の形態における監視装置の平面図であ
る。 【図3】同実施の形態における監視装置の回路構成を示
すブロック図である。 【図4】同実施の形態における監視装置における表示画
面を示す摸式図である。 【図5】同実施の形態における監視装置におけるグラフ
の表示画面を示す摸式図である。 【図6】従来の水処理装置の構成を示す摸式図である。 【図7】従来の水処理装置の構成を示す摸式図である。 【符号の説明】 1 水処理装置 2 被処理水 3 流量調整槽 4 曝気槽 5 膜分離装置 6 散気装置 7 放流槽 8 透過液導出管 9 定流量ポンプ 10 ブロア 11 水温計 12 水位計 13 流量計 14 監視装置 15 入力ポート 16 出力ポート 17 操作ボタン 18 A/Dインターフェイス回路 19 通信インターフェイス回路 20 スイッチ回路 21 EEPROM回路 22 ROM回路 23 RAM回路 24 カレンダー回路 25 液晶インターフェイス回路 26 CPU
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a configuration of a water treatment apparatus according to an embodiment of the present invention. FIG. 2 is a plan view of the monitoring device according to the embodiment. FIG. 3 is a block diagram showing a circuit configuration of the monitoring device according to the embodiment. FIG. 4 is a schematic diagram showing a display screen of the monitoring device according to the embodiment. FIG. 5 is a schematic diagram showing a graph display screen in the monitoring device according to the embodiment. FIG. 6 is a schematic diagram showing a configuration of a conventional water treatment apparatus. FIG. 7 is a schematic diagram showing a configuration of a conventional water treatment apparatus. [Description of Signs] 1 Water treatment device 2 Water to be treated 3 Flow control tank 4 Aeration tank 5 Membrane separation device 6 Diffusion device 7 Discharge tank 8 Permeate outlet pipe 9 Constant flow pump 10 Blower 11 Water temperature gauge 12 Water level gauge 13 Flow rate Total 14 Monitoring device 15 Input port 16 Output port 17 Operation button 18 A / D interface circuit 19 Communication interface circuit 20 Switch circuit 21 EEPROM circuit 22 ROM circuit 23 RAM circuit 24 Calendar circuit 25 Liquid crystal interface circuit 26 CPU

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−126882(JP,A) 特開 平5−168871(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/44 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-126882 (JP, A) JP-A-5-168871 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/44

Claims (1)

(57)【特許請求の範囲】 【請求項1】 槽内に膜分離装置を浸漬した水処理設備
において、水位計もしくは圧力計にて測定するろ過水頭
と、水温計にて測定する槽内の水温と、流量計にて測定
する膜透過液の流量とを指標として膜分離装置の運転状
態を監視する装置であって、予め設定する監視期間にお
いて各指標の測定値を設定したサンプリング時間毎に記
録するデータ記録回路と、データ記録回路に記憶した
過水頭と流量と水温の測定データを時系列的に表示する
データ表示回路と、データ記録回路とデータ表示回路と
を制御する制御回路とを備えたことを特徴とする膜分離
装置を有する水処理設備の監視装置。
(57) [Claims] [Claim 1] In a water treatment facility in which a membrane separation device is immersed in a tank, a filtered head measured by a water level gauge or a pressure gauge and a filter head measured by a water temperature meter are used. A device for monitoring the operating state of a membrane separation device using a water temperature and a flow rate of a membrane permeate measured by a flow meter as an index, wherein a measurement value of each index is set for each sampling time during a monitoring period set in advance. a data recording circuit for recording, filtered stored in the data recording circuit
A water treatment apparatus having a membrane separation device, comprising: a data display circuit for displaying measured data of a water head, a flow rate, and a water temperature in a time series, and a control circuit for controlling the data recording circuit and the data display circuit. Equipment monitoring equipment.
JP08516698A 1998-03-31 1998-03-31 Monitoring device for water treatment equipment with membrane separation device Expired - Lifetime JP3532094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08516698A JP3532094B2 (en) 1998-03-31 1998-03-31 Monitoring device for water treatment equipment with membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08516698A JP3532094B2 (en) 1998-03-31 1998-03-31 Monitoring device for water treatment equipment with membrane separation device

Publications (2)

Publication Number Publication Date
JPH11277063A JPH11277063A (en) 1999-10-12
JP3532094B2 true JP3532094B2 (en) 2004-05-31

Family

ID=13851087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08516698A Expired - Lifetime JP3532094B2 (en) 1998-03-31 1998-03-31 Monitoring device for water treatment equipment with membrane separation device

Country Status (1)

Country Link
JP (1) JP3532094B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168871A (en) * 1991-12-17 1993-07-02 Kurita Water Ind Ltd Membrane separation device
JPH08126882A (en) * 1994-10-28 1996-05-21 Toshiba Corp Device for controlling operation of water generating plant

Also Published As

Publication number Publication date
JPH11277063A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
EP0814887B1 (en) Filtration monitoring and control system
US6077435A (en) Filtration monitoring and control system
JP5358894B2 (en) Water purifier
JPH05215745A (en) Apparatus for monitoring fouling in industrial water, fouling monitor and continuous measuring method of fouling
JP3532094B2 (en) Monitoring device for water treatment equipment with membrane separation device
JP3442354B2 (en) Maintenance management method of immersion type membrane separation device
JP3475513B2 (en) Intake water quality control device
JP3115339B2 (en) Septic tank remote management method
KR20040056596A (en) A water purifier having water analysis function and management method thereof
JP3862005B2 (en) Membrane filtration device and membrane filtration method
JP2002102615A (en) Filtering system
WO2001039870A2 (en) Determination of the efficiency of a filter
JP3442353B2 (en) Maintenance management method of immersion type membrane separation device
US5807699A (en) Apparatus and method for monitoring condition of a biomass
EP0589970A1 (en) Monitoring apparatus.
Schlegel et al. Requirements with respect to on-line analyzers for N and P
JP2015231607A (en) Remote management control system for membrane filtration apparatus
JP2001149921A (en) Water treating device
Iranpour et al. Assessment of aeration system performance efficiency: Frequent sampling for damage detection
JPS6052737A (en) Pickling liquid sampling device for measurement of acid concentration
JP2022141400A (en) Fi measurement unit, fi measurement program, recording medium containing fi measurement program, fi information system, and method of constructing fi database
JP3512384B2 (en) Method for obtaining raw water inflow and method for obtaining treated water discharge in extrusion flow type water treatment equipment
JPH0921738A (en) Method and system for measuring concentration of microorganism
JPH10235369A (en) Remote monitor system for pool facility
JPH0768248A (en) Waste water treatment apparatus and collective control device of two or more water treatment apparatuses

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

EXPY Cancellation because of completion of term