JP3530292B2 - Hydraulic circuit of injection molding machine - Google Patents
Hydraulic circuit of injection molding machineInfo
- Publication number
- JP3530292B2 JP3530292B2 JP31801195A JP31801195A JP3530292B2 JP 3530292 B2 JP3530292 B2 JP 3530292B2 JP 31801195 A JP31801195 A JP 31801195A JP 31801195 A JP31801195 A JP 31801195A JP 3530292 B2 JP3530292 B2 JP 3530292B2
- Authority
- JP
- Japan
- Prior art keywords
- switching valve
- cylinder
- hydraulic pressure
- circuit
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は射出成形機の油圧回
路に関する。
【0002】
【従来の技術】図3には、従来の射出成形機の油圧回路
の1例が示されている。図3において、1は金型、2は
スクリュ、3はスクリュ2を包むように設けられた加熱
シリンダ、11は型開閉シリンダ、12はエジェクタシ
リンダ、13は射出シリンダ、14は油圧モータ、21
〜24は方向切換弁、30は主油圧発生装置(主ポンプ
ユニット)、31及び32は上記主油圧発生装置30の
主ポンプ及び圧力、流量を比例制御するレギュレーショ
ンユニット、35は副油圧発生装置(副ポンプユニッ
ト)、36及び37は上記副油圧発生装置35の副ポン
プ及び圧力を一定値固定値)に制御するレギュレーショ
ンユニット、38は方向切換弁、39はチェック弁、4
0は上記エジェクタシリンダ12のヘッド側、ロッド側
ポートに接続されたマニュアル流量制御弁である。
【0003】上記副油圧発生装置35は、上記レギュレ
ーションユニット37で圧力が比例制御され、チェック
弁39を介して主油圧発生装置30との合流を選択する
方向切換弁38に接続される。また上記チェック弁39
の吐出側は切換弁38の入口で分岐され、回路Cを介し
てエジェクタ動作を行う方向切換弁22に接続される。
【0004】上記のように構成された従来の油圧回路に
おいて、先ず型開閉、射出、スクリュ回転(可塑化)時
の増速について説明すると、型開閉、射出、スクリュ回
転動作は、主油圧発生装置30で圧力、流量を制御され
た圧油によって、方向切換弁21〜24を介して行われ
る。この場合、大きい流量を必要とするので、方向切換
弁38のソレノイドをオンにし、副油圧発生装置35の
圧油を主油圧発生装置30からの回路Aに供給する。副
ポンプ36からの圧油は、チェック弁39を開き、方向
切換弁38を介して上記主回路Aに到達する。
【0005】次に型開き動作中のエジェクタ動作につい
て説明する。型開き途中にエジェクタ動作を行う際に
は、方向切換弁38のソレノイドをオフにして、副油圧
発生装置35からの圧油により、マニュアル流量制御弁
40で流量を制御してエジェクタ動作を行う。即ち、型
開き動作は主油圧発生装置30、エジェクタ動作は副油
圧発生装置35で独立に行うことができる。
【0006】次に型開完了後のエジェクタ動作について
説明する。型開動作完了後エジェクタ動作を行う時は、
方向切換弁38のソレノイドをオンにし、主油圧発生装
置30からの圧油で(この圧油の圧力、流量はレギュレ
ーションユニット32で制御される)エジェクタ動作を
行う。この時副油圧発生装置35は、レギュレーション
ユニット37によって、圧力がチェック弁39のクラッ
キング圧力より低圧でアンロードされるため、副油圧発
生装置35の油圧が、エジェクタラインに流れ込むこと
はなく、精密な制御が行える。
【0007】
【発明が解決しようとする課題】射出成形機による成形
作業の中で、例えば肉厚が薄い割に容積が大きい成形品
の場合には、樹脂の冷却時間は短くなる一方、樹脂の量
は多いので、スクリュ2を回転させて樹脂を可塑化する
ために必要な時間は長くなる。この為、冷却時間が終わ
ってもスクリュ2が可塑化動作をしているので、上記の
ような従来の油圧回路による場合は金型を開くことがで
きず、サイクル時間が長くなる。
【0008】このような場合、型開閉動作とスクリュ回
転動作(可塑化動作)を並行して行えるようにすれば、
成形サイクル時間を短縮でき、作業効率を向上させるこ
とができるが、型開閉動作をさせるための油圧回路を別
個に設ける必要があり、回路が複雑となるとともに、増
設したタンクやポンプユニットのスペースが増加してコ
スト高となるという問題点がある。
【0009】本発明の目的は、可塑化動作で型開閉とエ
ジェクタ動作と並行して行うことを可能として、射出成
形の生産効率が向上し、かつ低コストの射出成形機の油
圧回路を提供することにある。
【0010】
【課題を解決するための手段】本発明は上記問題点を解
決するもので、その要旨とする手段は、射出用スクリュ
先端の流路に、同流路を開閉するシャットオフバルブを
備えるとともに、型開閉シリンダ、射出シリンダ及びエ
ジェクタシリンダへの圧油の圧力と流量を比例制御する
主・副油圧発生装置を有し、同主油圧発生装置と副油圧
発生装置からの圧油の合流を選択する切換弁を備えた射
出成形機の油圧回路であって、上記副油圧発生装置と上
記切換弁との間の油路から分岐され、上記型開閉シリン
ダ及びエジェクタシリンダに接続される分岐回路と、同
分岐回路に設けられて上記副油圧発生装置と上記型開閉
シリンダ又はエジェクタシリンダとの油路の接続を切り
換える第2の切換弁とを備え、上記主油圧発生装置から
の油路と、上記第2の切換弁からの油路とを、上記型開
閉シリンダに向かう油の流れのみを許容するチェック弁
をそれぞれ介して合流し、同型開閉シリンダ用の方向切
換弁に接続してなることを特徴とする射出成形機の油圧
回路にある。
【0011】上記手段によれば、型締め完了後、主油圧
発生装置からの圧油で、特に増速時にはこれに副油圧発
生装置からの圧油を合流させて射出動作を行い、射出終
了後直ちにシャットオフバルブを閉じて、主油圧発生装
置の圧油でスクリュを回転させ、次の可塑化動作を開始
する。
【0012】一方、所定の冷却時間経過後、上記スクリ
ュ回転と併行して、副油圧発生装置からの圧油で型開き
を行い、第2の切換弁を切り換えてエジェクタシリンダ
を押出し、エジェクタ動作を行い、さらに型閉じ動作を
行って、上記スクリュ回転が終了したら型締めを行っ
て、次のサイクルを開始する。
【0013】このように、上記手段によれば、シャット
オフバルブと第2の切換弁との併用により、型開閉動作
と併行してスクリュ回転動作を行うことができ、成形サ
イクル時間が短縮される。
【0014】
【発明の実施の形態】以下図1〜図2を参照して本発明
の実施形態を詳細に説明する。図1には本発明の実施形
態に係る射出成形機の油圧回路の回路図が示されてい
る。
【0015】図1において、1は金型、2は射出用のス
クリュ、3は同スクリュを包むように設けられた加熱シ
リンダ、11は型開閉シリンダ、12はエジェクタシリ
ンダ、13は射出シリンダ、14は油圧モータ、30は
主油圧発生装置、31は同主油圧発生装置30の主ポン
プ、32は主油圧系の圧力、流量を制御するレギュレー
ションユニットである。
【0016】Aは上記主油圧発生装置からの圧油が通流
する主回路、21は型開閉シリンダ11用の方向切換
弁、22はエジェクタシリンダ用の方向切換弁、23は
射出シリンダ用の方向切換弁、24は油圧モータ14用
の方向切換弁である。以上の構成は図2に示される従来
のものと同様である。
【0017】51は副油圧発生装置、36は同装置の副
ポンプ、52はレギュレーションユニットである。Zは
上記副油圧発生装置51からの圧油が通流する副回路
で、切換弁38を介して上記主回路Aに合流されてい
る。上記主回路Aは、途中で分岐されて上記方向切換弁
21,23,24の入口ポートに夫々接続されている。
上記レギュレーションユニット52は圧力及び流量の比
例制御を行う機能を有する。従って図3に示されるよう
なマニュアル流量制御弁40は不要となる。
【0018】Cは上記副回路Zの切換弁38の上流で分
岐された分岐回路であり、同分岐回路Cには方向切換弁
53が設けられている。そして同方向切換弁53の出口
側の一方は回路Dを介して上記型開閉シリンダ用方向切
換弁21の入口ポートへ向かう主回路Aと合流し、他方
はエジェクタシリンダ12用の方向切換弁22と接続さ
れている。
【0019】54は上記方向切換弁53と方向切換弁2
1との間の回路Dに設けられたチェック弁、55は上記
方向切換弁21へ向かう主油路Aに設けられたチェック
弁であり、何れも方向切換弁21に向かう油の流れのみ
を許容するように構成されている。
【0020】50は上記射出用のスクリュ2の先端部の
樹脂流路に設けられ、同流路を開閉するシャットオフバ
ルブである。
【0021】上記のように構成された油圧回路を備えた
射出成形機の作動時において、型締装置が型締動作を完
了した後、加熱シリンダ3によって樹脂の可塑化が完了
しているとき、シャットオフバルブ50を開き、主油圧
発生装置30から主回路A、方向切換弁23を経て圧油
を射出シリンダ13に供給し、スクリュ2を前進させて
射出動作を行う。射出を増速する際には切換弁38のソ
レノイドをオンとし、副油圧発生装置51からの圧油を
副回路Zを介して主回路Aに供給する。
【0022】射出を完了したら直ちにシャットオフバル
ブ50を閉じ、主回路Aの圧油を方向切換弁24を経て
油圧モータ14に供給し、スクリュ2を回転させて可塑
化動作を開始する。このとき、切換弁38のソレノイド
はオフとなり同切換弁38は閉となっている。所定の冷
却期間が経過したら、型締装置においては、副油圧発生
装置51から副回路Z、方向切換弁53及び21を経
て、型開閉シリンダ11のロッド側に圧油を供給して型
開動作を行う。
【0023】型開完了後、方向切換弁53を切換え、副
回路Zから分岐回路Cを経た圧油を方向切換弁22を経
由してエジェクタシリンダ12のヘッド側に供給してエ
ジェクタ動作を行い、続いて方向切換弁22を閉に切換
えてエジェクタシリンダ12を引込める。さらに、上記
と逆の手順で型閉動作を行い、スクリュ2の回転(可塑
化)が完了したら、型締を行って次のサイクルに移行す
る。
【0024】尚、図1に示される油圧装置においては、
副油圧発生装置51による増速、並びに型開動作中のエ
ジェクタシリンダ動作、型開後の主油圧発生装置30に
よるエジェクタ動作は、図3に示される従来例において
説明した動作と同一の動作を行うこともできる。
【0025】また、射出工程の後半の保圧時に切換弁3
8のソレノイドをオフとして同切換弁38を閉じ、型締
保持用の回路Bの切換弁(図示せず)により、回路Bを
閉じ、副油圧発生装置51の圧油を方向切換弁53及び
21を経て型開閉シリンダ11のヘッド側油室に供給す
ることにより、副油圧発生装置51により圧力及び流量
の比例制御を行うことができるので、型締圧力を多段に
プログラム制御して射出成形を行うことができる。
【0026】図2は型締圧力を3段に変化させた場合の
型締圧力Pと時間tとの関係を示すダイアグラムであ
り、図において、型締圧力P1 ,P2 ,P3 及び昇圧時
間t1,t2 は、副油圧発生装置51のレギュレーショ
ンユニット52によって型締圧力及び流量をプログラム
制御して決めることができる。
【0027】
【発明の効果】本発明は以上のように構成されており、
本発明によれば、次の効果を奏する。
【0028】(1)シャットオフバルブと第2の切換弁
との共働により、型開閉動作時に並行してスクリュ回転
(可塑化)動作を行うことが可能となるので、成形サイ
クル時間を短縮することができ、射出成形の生産効率が
向上する。
【0029】(2)型開閉動作には専用の油圧発生装置
を増設せず、第2の切換弁の切り換えによって副油圧発
生装置を利用することが可能となるので、装置コストが
低減されるとともに、省スペースとなる。
【0030】(3)型開閉、射出、スクリュ回転時の副
油圧発生装置を併用しての増速、型開き動作中に並行し
て、エジェクタ移動、型開き終了後の主油圧発生装置を
用いたエジェクタ動作も行うことができ、さらに又、副
油圧発生装置を用いて射出保圧、及び冷却工程にて型締
圧力を多段に変化させるプログラム制御が可能となるの
で、専用の油圧発生装置を増設せずに射出圧縮成形が可
能となる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic circuit for an injection molding machine. 2. Description of the Related Art FIG. 3 shows an example of a hydraulic circuit of a conventional injection molding machine. In FIG. 3, 1 is a mold, 2 is a screw, 3 is a heating cylinder provided to wrap the screw 2, 11 is a mold opening / closing cylinder, 12 is an ejector cylinder, 13 is an injection cylinder, 14 is a hydraulic motor, 21
24 is a direction switching valve, 30 is a main hydraulic pressure generator (main pump unit), 31 and 32 are main pumps of the main hydraulic pressure generator 30 and a regulation unit for proportionally controlling pressure and flow rate, and 35 is a sub hydraulic pressure generator ( A sub-pump unit), 36 and 37 are regulation units for controlling the sub-pump and pressure of the sub-hydraulic generator 35 to a fixed value), 38 is a direction switching valve, 39 is a check valve,
Reference numeral 0 denotes a manual flow control valve connected to the head-side and rod-side ports of the ejector cylinder 12. [0003] The auxiliary hydraulic pressure generator 35 is connected to a direction switching valve 38 for selecting a junction with the main hydraulic pressure generator 30 via a check valve 39, the pressure of which is controlled proportionally by the regulation unit 37. Check valve 39
Is branched at the inlet of the switching valve 38 and is connected via a circuit C to the direction switching valve 22 that performs an ejector operation. In the conventional hydraulic circuit constructed as described above, first, the opening and closing of the mold, the injection, and the speed increase at the time of screw rotation (plasticization) will be described. This is performed through the directional control valves 21 to 24 by pressure oil whose pressure and flow rate are controlled at 30. In this case, since a large flow rate is required, the solenoid of the directional control valve 38 is turned on, and the pressure oil of the auxiliary hydraulic pressure generator 35 is supplied to the circuit A from the main hydraulic pressure generator 30. The pressure oil from the sub-pump 36 opens the check valve 39 and reaches the main circuit A via the direction switching valve 38. Next, the ejector operation during the mold opening operation will be described. When performing the ejector operation during opening of the mold, the solenoid of the direction switching valve 38 is turned off, and the ejector operation is performed by controlling the flow rate with the manual flow control valve 40 using the pressure oil from the auxiliary hydraulic pressure generator 35. That is, the mold opening operation can be performed independently by the main hydraulic pressure generating device 30, and the ejector operation can be performed independently by the auxiliary hydraulic pressure generating device 35. Next, the ejector operation after the completion of the mold opening will be described. When performing the ejector operation after the mold opening operation is completed,
The solenoid of the direction switching valve 38 is turned on, and an ejector operation is performed with the pressure oil from the main hydraulic pressure generator 30 (the pressure and flow rate of the pressure oil are controlled by the regulation unit 32). At this time, the auxiliary hydraulic pressure generating device 35 is unloaded by the regulation unit 37 at a pressure lower than the cracking pressure of the check valve 39, so that the hydraulic pressure of the auxiliary hydraulic pressure generating device 35 does not flow into the ejector line, so Control can be performed. [0007] In a molding operation using an injection molding machine, for example, in the case of a molded product having a large volume in spite of its small thickness, the cooling time of the resin is shortened while the resin is cooled. Since the amount is large, the time required for rotating the screw 2 to plasticize the resin becomes long. For this reason, since the screw 2 is still plasticizing even after the cooling time is over, the mold cannot be opened in the case of the conventional hydraulic circuit as described above, and the cycle time becomes longer. In such a case, if the mold opening and closing operation and the screw rotating operation (plasticizing operation) can be performed in parallel,
Although the molding cycle time can be shortened and the working efficiency can be improved, it is necessary to provide a separate hydraulic circuit for opening and closing the mold, which complicates the circuit and increases the space for additional tanks and pump units. There is a problem that the cost increases due to an increase. An object of the present invention is to provide a hydraulic circuit of an injection molding machine which can perform the opening and closing of the mold and the ejector operation in parallel with the plasticizing operation, thereby improving the production efficiency of the injection molding and at a low cost. It is in. The present invention has been made to solve the above-mentioned problems, and a gist of the invention is to provide a shut-off valve for opening and closing the flow passage at the tip of an injection screw. It has a main / sub hydraulic generator that proportionally controls the pressure and flow rate of hydraulic oil to the mold opening / closing cylinder, injection cylinder, and ejector cylinder, and merges hydraulic oil from the main hydraulic generator and auxiliary hydraulic generator. A hydraulic circuit of an injection molding machine provided with a switching valve for selecting a branch valve that is branched from an oil passage between the auxiliary hydraulic pressure generating device and the switching valve and is connected to the mold opening / closing cylinder and the ejector cylinder. If, provided in the branch circuit and a second switching valve for switching the connection of the oil passage between the sub hydraulic pressure generating device and the switchgear cylinder or ejector cylinder, from the main hydraulic pressure generating device
The oil passage from the second switching valve and the oil passage from the second switching valve.
Check valve that allows only oil flow toward the closed cylinder
Through each other, and direction cut for the same type of open / close cylinder
A hydraulic circuit for an injection molding machine, wherein the hydraulic circuit is connected to a valve . According to the above-mentioned means, after the completion of the mold clamping, the injection operation is performed by combining the pressure oil from the main hydraulic pressure generating device with the pressure oil from the auxiliary hydraulic pressure generating device particularly at the time of speed increase, and after the injection is completed. Immediately close the shut-off valve, rotate the screw with the pressure oil of the main hydraulic pressure generator, and start the next plasticizing operation. On the other hand, after the elapse of a predetermined cooling time, the mold is opened with the pressurized oil from the sub-hydraulic pressure generating device in parallel with the rotation of the screw, the second switching valve is switched to eject the ejector cylinder, and the ejector operation is performed. Then, the mold closing operation is performed, and when the screw rotation is completed, the mold is closed and the next cycle is started. As described above, according to the above means, the screw rotation operation can be performed in parallel with the mold opening / closing operation by using the shutoff valve and the second switching valve together, and the molding cycle time is shortened. . An embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 1 shows a circuit diagram of a hydraulic circuit of an injection molding machine according to an embodiment of the present invention. In FIG. 1, 1 is a mold, 2 is an injection screw, 3 is a heating cylinder provided so as to wrap the screw, 11 is a mold opening / closing cylinder, 12 is an ejector cylinder, 13 is an injection cylinder, and 14 is A hydraulic motor, 30 is a main hydraulic pressure generator, 31 is a main pump of the main hydraulic pressure generator 30, and 32 is a regulation unit for controlling the pressure and flow rate of the main hydraulic system. A is a main circuit through which pressure oil from the main hydraulic pressure generator flows, 21 is a directional switching valve for the mold opening / closing cylinder 11, 22 is a directional switching valve for an ejector cylinder, and 23 is a direction for an injection cylinder. The switching valve 24 is a direction switching valve for the hydraulic motor 14. The above configuration is the same as the conventional one shown in FIG. Reference numeral 51 denotes a sub-hydraulic generator, 36 denotes a sub-pump of the same, and 52 denotes a regulation unit. Z is a sub-circuit through which the pressure oil from the sub-hydraulic generator 51 flows, and is joined to the main circuit A via the switching valve 38. The main circuit A is branched on the way and connected to the inlet ports of the directional control valves 21, 23, 24, respectively.
The regulation unit 52 has a function of performing proportional control of pressure and flow rate. Therefore, the manual flow control valve 40 as shown in FIG. 3 becomes unnecessary. C is a branch circuit branched upstream of the switching valve 38 of the sub-circuit Z. The branch circuit C is provided with a direction switching valve 53. One of the outlets of the directional switching valve 53 merges with the main circuit A toward the inlet port of the mold opening / closing cylinder directional switching valve 21 via a circuit D, and the other of the directional switching valve 22 and the directional switching valve 22 for the ejector cylinder 12. It is connected. Reference numeral 54 denotes the directional control valve 53 and the directional control valve 2
The check valve 55 provided in the main oil passage A toward the directional control valve 21 is a check valve provided in the circuit D between the directional control valve 1 and the directional control valve 21. It is configured to A shut-off valve 50 is provided in the resin flow path at the tip of the injection screw 2 and opens and closes the flow path. During the operation of the injection molding machine having the hydraulic circuit configured as described above, when the plasticizing of the resin is completed by the heating cylinder 3 after the mold clamping device has completed the mold clamping operation, The shut-off valve 50 is opened, the pressurized oil is supplied from the main oil pressure generating device 30 to the injection cylinder 13 via the main circuit A and the direction switching valve 23, and the screw 2 is advanced to perform an injection operation. When increasing the injection speed, the solenoid of the switching valve 38 is turned on, and the pressure oil from the auxiliary hydraulic pressure generator 51 is supplied to the main circuit A via the auxiliary circuit Z. Immediately after the injection is completed, the shut-off valve 50 is closed, the pressure oil of the main circuit A is supplied to the hydraulic motor 14 through the directional control valve 24, and the screw 2 is rotated to start the plasticizing operation. At this time, the solenoid of the switching valve 38 is turned off and the switching valve 38 is closed. After the predetermined cooling period has elapsed, the mold clamping device supplies the pressurized oil to the rod side of the mold opening / closing cylinder 11 from the auxiliary hydraulic pressure generating device 51 via the auxiliary circuit Z and the direction switching valves 53 and 21 to perform the mold opening operation. I do. After the mold opening is completed, the direction switching valve 53 is switched, and the pressure oil that has passed through the branch circuit C from the sub circuit Z is supplied to the head side of the ejector cylinder 12 via the direction switching valve 22 to perform an ejector operation. Subsequently, the direction switching valve 22 is switched to the closed state, and the ejector cylinder 12 is retracted. Further, the mold closing operation is performed in a procedure reverse to the above, and when the rotation (plasticization) of the screw 2 is completed, the mold is clamped to shift to the next cycle. Incidentally, in the hydraulic device shown in FIG.
Auxiliary hydraulic pressure generating device 51 increasing by speed, and mold opening operation in the ejector cylinder motion, ejector operation by the main oil pressure generating device 30 after mold opening performs the same operations as those described in the conventional example shown in FIG. 3 You can also . Further, at the time of pressure holding in the latter half of the injection process, the switching valve 3
8, the switching valve 38 is closed, the circuit B is closed by a switching valve (not shown) of the circuit B for holding mold clamping, and the hydraulic oil of the auxiliary hydraulic pressure generator 51 is supplied to the direction switching valves 53 and 21. Is supplied to the head-side oil chamber of the mold opening / closing cylinder 11 through the sub-hydraulic pressure generator 51, so that the proportional control of the pressure and the flow rate can be performed. be able to. FIG. 2 is a diagram showing the relationship between the mold clamping pressure P and the time t when the mold clamping pressure is changed in three stages. In the figure, the mold clamping pressures P 1 , P 2 , P 3 and the pressure increase are shown. The times t 1 and t 2 can be determined by controlling the mold clamping pressure and the flow rate by the regulation unit 52 of the auxiliary hydraulic pressure generator 51. The present invention is configured as described above.
According to the present invention, the following effects can be obtained. (1) The cooperation between the shut-off valve and the second switching valve enables the screw rotation (plasticization) operation to be performed in parallel with the mold opening / closing operation, thereby shortening the molding cycle time. Can improve the production efficiency of injection molding. (2) A dedicated hydraulic pressure generating device is not added to the mold opening / closing operation, and the auxiliary hydraulic pressure generating device can be used by switching the second switching valve, so that the device cost can be reduced. , Space saving. (3) Use of the main hydraulic pressure generator after the end of the ejector movement and the mold opening, in parallel with the speed increase and the mold opening operation using the auxiliary hydraulic pressure generator during the mold opening / closing, injection and screw rotation. The ejector operation can be performed, and the auxiliary hydraulic pressure generator can be used to control the injection pressure, and the program control of changing the mold clamping pressure in multiple stages in the cooling process. Injection compression molding becomes possible without adding.
【図面の簡単な説明】
【図1】本発明の実施形態に係る射出成形機の油圧回路
図。
【図2】上記実施形態における多段型締圧力プログラム
制御の型締圧力変化を示すダイアグラム。
【図3】従来の射出成形機の油圧回路図。
【符号の説明】
2 スクリュ
11 型開閉シリンダ
12 エジェクタシリンダ
30 主油圧発生装置
38 切換弁
50 シャットオフバルブ
51 副油圧発生装置
52 レギュレーションユニット
53 切換弁(第2の切換弁)
A 主回路
Z 副回路
C 分岐回路BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a hydraulic circuit diagram of an injection molding machine according to an embodiment of the present invention. FIG. 2 is a diagram showing a change in mold clamping pressure under multi-stage mold clamping pressure program control in the embodiment. FIG. 3 is a hydraulic circuit diagram of a conventional injection molding machine. [Description of Signs] 2 Screw 11 type opening / closing cylinder 12 Ejector cylinder 30 Main oil pressure generator 38 Switching valve 50 Shut-off valve 51 Secondary oil pressure generator 52 Regulation unit 53 Switching valve (second switching valve) A Main circuit Z Sub circuit C branch circuit
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29C 45/00 - 45/84 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B29C 45/00-45/84
Claims (1)
開閉するシャットオフバルブを備えるとともに、型開閉
シリンダ、射出シリンダ及びエジェクタシリンダへの圧
油の圧力と流量を比例制御する主・副油圧発生装置を有
し、同主油圧発生装置と副油圧発生装置からの圧油の合
流を選択する切換弁を備えた射出成形機の油圧回路であ
って、上記副油圧発生装置と上記切換弁との間の油路か
ら分岐され、上記型開閉シリンダ及びエジェクタシリン
ダに接続される分岐回路と、同分岐回路に設けられて上
記副油圧発生装置と上記型開閉シリンダ又はエジェクタ
シリンダとの油路の接続を切り換える第2の切換弁とを
備え、上記主油圧発生装置からの油路と、上記第2の切
換弁からの油路とを、上記型開閉シリンダに向かう油の
流れのみを許容するチェック弁をそれぞれ介して合流
し、同型開閉シリンダ用の方向切換弁に接続してなるこ
とを特徴とする射出成形機の油圧回路。(57) [Claims 1] A flow path at the tip of an injection screw is provided with a shut-off valve for opening and closing the flow path, and pressurized oil is supplied to a mold opening / closing cylinder, an injection cylinder, and an ejector cylinder. A hydraulic circuit for an injection molding machine having a main / sub hydraulic pressure generator for proportionally controlling pressure and flow rate, and a switching valve for selecting a merger of pressure oil from the main hydraulic pressure generator and the auxiliary hydraulic pressure generator. A branch circuit branched from an oil passage between the auxiliary hydraulic pressure generating device and the switching valve and connected to the mold opening / closing cylinder and the ejector cylinder; and a branch circuit provided in the branch circuit and the sub hydraulic pressure generating device and the mold. A second switching valve for switching the connection of an oil passage to an opening / closing cylinder or an ejector cylinder; and an oil passage from the main hydraulic pressure generating device;
The oil passage from the valve is connected to the oil
Merge via check valves that only allow flow
A hydraulic circuit for the injection molding machine, wherein the hydraulic circuit is connected to a direction switching valve for the same type of opening / closing cylinder .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31801195A JP3530292B2 (en) | 1995-12-06 | 1995-12-06 | Hydraulic circuit of injection molding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31801195A JP3530292B2 (en) | 1995-12-06 | 1995-12-06 | Hydraulic circuit of injection molding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09155943A JPH09155943A (en) | 1997-06-17 |
JP3530292B2 true JP3530292B2 (en) | 2004-05-24 |
Family
ID=18094501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31801195A Expired - Fee Related JP3530292B2 (en) | 1995-12-06 | 1995-12-06 | Hydraulic circuit of injection molding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3530292B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1058479A (en) * | 1996-08-26 | 1998-03-03 | Toyo Mach & Metal Co Ltd | Composite injection molding machine |
JP3812265B2 (en) * | 2000-02-16 | 2006-08-23 | 豊田合成株式会社 | Control device and control method for injection molding machine |
CN105538625B (en) * | 2016-01-25 | 2018-01-02 | 海天塑机集团有限公司 | A kind of injection machine synchronization system and its oil circuit control method |
CN109719917A (en) * | 2019-03-07 | 2019-05-07 | 安徽江澜智能装备有限公司 | A kind of thin-walled pressure vessel special injection molding synchronization oil piping system |
-
1995
- 1995-12-06 JP JP31801195A patent/JP3530292B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09155943A (en) | 1997-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101506921B1 (en) | Hydraulic circuit of injection cylinder in die casting apparatus | |
JP2001088191A (en) | Hydraulic driving apparatus for injection molding machine | |
JP3530292B2 (en) | Hydraulic circuit of injection molding machine | |
JP4953946B2 (en) | Hydraulic drive method and apparatus for injection molding machine | |
JPH06106587A (en) | Method of shortening injection rise time in injection speed control | |
US4019845A (en) | Control system for injection-molding machine | |
JP5495388B2 (en) | Injection molding machine and control method of injection molding machine | |
JP5755261B2 (en) | Injection molding machine and injection molding method | |
JPS5931394Y2 (en) | Hydraulic control circuit for mold clamping frame in injection molding machine | |
JPH08281760A (en) | Method for controlling temperature of operation oil of oil pressure circuit of injection molding machine | |
GB1490637A (en) | Device for hydraulically controlling injecting holding and filling pressures in injection moulding machines | |
JP2527126B2 (en) | Compression mold clamping device for injection molding machine | |
JP3037580B2 (en) | Method and apparatus for controlling clamping force of toggle-type mold clamping device | |
JP3629524B2 (en) | Hybrid injection molding machine and control method thereof | |
JPH08252846A (en) | Hydraulic circuit of injection molding machine | |
JPH0834044A (en) | Injection molding method and apparatus | |
JP6950596B2 (en) | Hydraulic supply system for injection molding machines | |
JPH1134135A (en) | Pressure releasing method and control method of injection drive apparatus in injection molding machine | |
JPH0719774Y2 (en) | Hydraulic circuit of injection cylinder in injection molding machine | |
JP3220789B2 (en) | Depressurizing method of mold clamping cylinder | |
JP3258916B2 (en) | Molding machine | |
JP2770133B2 (en) | Injection molding machine protection device | |
JPH04257412A (en) | Hydraulic circuit of injection molder | |
JPH04272819A (en) | Hydraulic circuit for injection molding machine | |
JP3502284B2 (en) | Hydraulic circuit of injection molding machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040227 |
|
LAPS | Cancellation because of no payment of annual fees |