JP3528475B2 - Active filter for power - Google Patents

Active filter for power

Info

Publication number
JP3528475B2
JP3528475B2 JP29827096A JP29827096A JP3528475B2 JP 3528475 B2 JP3528475 B2 JP 3528475B2 JP 29827096 A JP29827096 A JP 29827096A JP 29827096 A JP29827096 A JP 29827096A JP 3528475 B2 JP3528475 B2 JP 3528475B2
Authority
JP
Japan
Prior art keywords
harmonic
amplitude
current
phase
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29827096A
Other languages
Japanese (ja)
Other versions
JPH10145972A (en
Inventor
稔 西鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP29827096A priority Critical patent/JP3528475B2/en
Publication of JPH10145972A publication Critical patent/JPH10145972A/en
Application granted granted Critical
Publication of JP3528475B2 publication Critical patent/JP3528475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、電力系統に生ずる
高調波を吸収する電力用アクティブフィルタに関するも
のである。 【0002】 【従来の技術】電力用アクティブフィルタ(AF)は負
荷電流の高調波成分を検出してこれを電流指令として高
調波成分を打ち消すようにインバータの出力電流を制御
する。 【0003】AFの制御には図3に示すようなp−q演
算法が多く用いられている。これは電流検出器CTL
検出した3相の負荷電流ILを電源電圧位相で座標変換
する3相2相変換回路31でp−q軸電流Ip,Iqに
変換し、ハイパスフィルタ33,34でその交流分を検
出し、2相3相変換回路35で3相に変換して3相の高
調波分電流を得、これを電流指令値Ih*としてインバ
ータ2を制御している。 【0004】このp−q演算法の他に図4に示すような
バンドパスフィルタ方式がある。これは電流検出器CT
Lで検出した負荷電流ILを2次〜n次高調波をそれぞれ
通す2次〜n次バンドパスフィルタ412〜41nを用い
てそれぞれ2次〜n次高調波成分を検出し、加算器42
で加算して高調波分電流とし、これを電流指令値Ih*
としてインバータ2を制御するものである。 【0005】 【発明が解決しようとする課題】ところで、上記図3の
p−q演算法は、高調波成分を一括し検出して制御する
ため各次数に分けて細かく制御することができない。ま
た、図4のバンドパスフィルタ方式は各次高調波成分を
それぞれ各バンドパスフィルタにより検出しているの
で、各次数に分離することは可能であるが、補償しよう
とする次数分のハイパスフィルタ回路が必要となり、ま
た分離した特性がフィルタの回路定数によって決まって
しまう欠点がある。 【0006】本発明は、従来のこのような問題点に鑑み
てなされたものであり、その目的とするところは、次数
分の回路を用いることなく、各次高調波の振幅及び位相
を細かく制御することができる電力用アクティブフィル
を提供することにある。 【0007】 【課題を解決するための手段】本発明は、負荷電流信号
から補償電流指令値を求めてインバータを制御して系統
に補償電流を出力する電力用アクティブフィルタにおい
て、負荷電流信号及び電源電流信号をそれぞれフーリエ
解析する第1、第2の高速フーリエ変換演算回路と、こ
の第1、第2の高速フーリエ変換演算回路の各フーリエ
解析データをそれぞれ演算して負荷電流高調波及び電源
電流高調波の各次成分の振幅,位相データを求める第
1、第2のディジタルフィルタ演算回路と、この第1、
第2のディジタルフィルタ演算回路で分離された負荷電
流高調波及び電源高調波の各次成分の振幅,位相データ
を比較して負荷電流高調波と電源高調波の伝達特性を求
める伝達特性演算回路と、この伝達特性演算回路で求め
られた伝達特性に基づいて負荷電流高調波の振幅及び位
相データを調整する振幅・位相調整回路と、この調整回
路で調整された負荷電流の各次高調波の振幅及び位相デ
ータを合成して前記補償電流指令値を求める各次高調波
合成回路とを備え、負荷高調波電流と電源高調波電流の
振幅特性より、電源側の高調波成分が負荷側のその成分
よりも大きい場合は、振幅・位相調整回路において、そ
の補償成分の振幅や位相を上記振幅特性が最小になるよ
うに調整し、各次高調波合成回路にてその他の正常な高
調波成分と合成して補償電流値を出力することを特徴と
する。 【0008】 【発明の実施の形態】 実施の形態1 図1にアクティブフィルタの制御ブロックを示す。同図
において、1はアクティブフィルタ(AF)、2は系統
に出力するAFのインバータ、3は負荷電流検出器CT
Lで検出した負荷電流ILをフーリエ解析するFFT(高
速フーリエ変換)演算回路、5はフーリエ解析されたデ
ータから負荷電流の各次数成分の振幅及び位相データを
得るディジタルフィルタ演算回路、9はそのデータを合
成してインバータ2へ補償電流指令値Ih*を出力する
各次高調波合成回路である。 【0009】本発明は、負荷電流ILをFFT演算回路
3でフーリエ解析し、ディジタルフィルタ演算回路5で
フィルタ演算して負荷電流高調波の各次成分の振幅及び
位相データを求める。このため各次成分の振幅及び位相
情報は完全に分離できる。 【0010】この分離された各次成分の振幅位相データ
を基に各次高調波合成回路9で補償しようとする各次成
分のデータを合成して補償電流指令値Ih*得る。した
がって、AFは負荷電流の高調波を次数毎にきめ細かに
抑制することが可能となる。 【0011】実施の形態2 図2アクティブフィルタ(AF)の制御ブロックの他の
例を示す。なお、前記図1に示したものと同一構成部分
は、同一符号を付してその重複する説明を省略する。 【0012】図2において、4は電源電流検出器CTS
で検出した電源電流ISをフーリエ解析するFFT演算
回路、6はそのフーリエ解析されたデータから負荷電流
の各次数成分の振幅及び位相データを得るディジタルフ
ィルタ演算回路、7はディジタルフィルタ演算回路4及
び6からの同時検出の負荷電流IL及び電源電流ISの高
調波の振幅及び位相データを比較して負荷高調波と電源
高調波の伝達特性を求める伝達特性演算回路である。 【0013】8はディジタルフィルタ演算回路5からの
負荷電流高調波の振幅及び位相データを上記負荷高調波
と電源高調波の伝達特性で調整する振幅・位相調整回
路、9はこの調整された負荷電流の各次高調波の振幅及
び位相データを合成してインバータ2へ補償電流指令値
Ih*を出力する各次高調波合成回路である。 【0014】本発明は、負荷電流IL及び電源電流IS
同時に検出し、それぞれ高速フーリエ変換回路3及び5
とディジタルフィルタ演算回路4及び6で電流IL,IS
の高調波を各次数成分に分離し、伝達特性演算回路7で
比較して負荷電流高調波と電源電流高調波の伝達特性を
求め、振幅・位相調整回路8でこの伝達特性に基づいて
フィルタ演算回路5からの分離された負荷電流高調波の
各次成分の振幅及び位相データを調整する。例えば、負
荷高調波電流と電源高調波電流の振幅比(振幅特性)よ
り、電源側の成分が負荷側の成分よりも大きい場合は、
その成分がアクティブフィルタの動作にも関わらず拡大
されていることになる。(系統共振現象)従って、振
幅,位相調整回路8においてその補償成分の振幅や位相
を上記振幅特性が最小になるように調整し、後段の各次
高調波合成回路9にてその他の正常な高調波成分(振幅
特性が拡大傾向にない成分)と合成して補償電流値Ih
*を出力すれば高調波の拡大を防止することができる。
即ち、アクティブフィルタは、系統の特性に見合った最
適な補償特性を得ることが可能となる。(系統診断機
能) 【0015】 【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載する効果を奏する。 【0016】(1)補償しようとする各次高調波の振幅
及び位相を細かく制御することが可能となる。 【0017】(2)負荷電流と電源電流の検出を同時に
行い系統の伝達特性の診断による最適な補償特性が得ら
れる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power active filter for absorbing harmonics generated in a power system. 2. Description of the Related Art An active power filter (AF) detects a harmonic component of a load current and uses the detected component as a current command to control an output current of an inverter so as to cancel the harmonic component. For controlling the AF, a pq calculation method as shown in FIG. 3 is often used. That is, the three-phase load current I L detected by the current detector C T L is converted into p-q axis currents I p and I q by a three-phase two-phase conversion circuit 31 that performs coordinate conversion with the power supply voltage phase, and the high-pass filters 33 and 34. The two-phase / three-phase conversion circuit 35 converts the alternating current into three phases to obtain a three-phase harmonic current, which is used as a current command value Ih * to control the inverter 2. In addition to the pq operation method, there is a band pass filter method as shown in FIG. This is the current detector CT
The second to n-th order harmonic components are detected by using the second to n-th order band-pass filters 41 2 to 41 n that pass the second to n-th order harmonics of the load current I L detected by L , respectively. 42
To obtain a harmonic component current, which is referred to as a current command value Ih *.
To control the inverter 2. In the pq operation method shown in FIG. 3, since harmonic components are collectively detected and controlled, fine control cannot be performed for each order. In the band-pass filter system shown in FIG. 4, since each higher-order harmonic component is detected by each band-pass filter, it is possible to separate the higher-order harmonic components into the respective orders. However, a high-pass filter circuit for the order to be compensated is used. And there is a disadvantage that the separated characteristics are determined by the circuit constant of the filter. SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and has as its object to finely control the amplitude and phase of each higher harmonic without using circuits of the same order. Active fill for power can
It is to provide the data. [0007] The present invention provides a load current signal.
From the compensation current command value to control the inverter
Active power filter that outputs compensation current to
Fourier load current signal and power supply current signal respectively.
First and second fast Fourier transform operation circuits to be analyzed;
Of the first and second fast Fourier transform operation circuits of
Analyze the analysis data to calculate the load current harmonic and power
Find the amplitude and phase data of each order component of the current harmonic
A first and second digital filter operation circuit;
The load voltage separated by the second digital filter operation circuit
Amplitude and phase data of each harmonic component of current harmonics and power supply harmonics
To determine the transfer characteristics of the load current harmonic and the power supply harmonic.
Transfer characteristic calculation circuit and the transfer characteristic calculation circuit
The amplitude and position of load current harmonics
Amplitude / phase adjustment circuit for adjusting phase data, and this adjustment circuit
The amplitude and phase data of each harmonic of the
Harmonics for obtaining the compensation current command value by combining
A synthesis circuit is provided, and the load harmonic current and the power supply harmonic current are
From the amplitude characteristics, the harmonic component on the power supply side is
If it is larger than that, the amplitude / phase adjustment circuit
The amplitude and phase of the compensating component
And adjust other normal high
The feature is that the compensation current value is output by combining with the harmonic component.
I do. Embodiment 1 FIG. 1 shows a control block of an active filter. In the figure, reference numeral 1 denotes an active filter (AF), 2 denotes an AF inverter for outputting to a system, and 3 denotes a load current detector CT.
FFT (Fast Fourier Transform) arithmetic circuit for performing Fourier analysis of load current I L detected by L , digital filter arithmetic circuit for obtaining amplitude and phase data of each order component of load current from data subjected to Fourier analysis, 9 Each harmonic synthesis circuit combines data and outputs a compensation current command value Ih * to the inverter 2. According to the present invention, the load current IL is subjected to Fourier analysis by the FFT operation circuit 3, and the digital filter operation circuit 5 performs a filter operation to obtain the amplitude and phase data of each order component of the load current harmonic. Therefore, the amplitude and phase information of each next component can be completely separated. Based on the separated amplitude and phase data of each of the next-order components, data of each of the next-order components to be compensated by each of the higher-order harmonic synthesis circuits 9 is synthesized to obtain a compensation current command value Ih *. Therefore, the AF can finely suppress the harmonics of the load current for each order. Embodiment 2 FIG. 2 shows another example of the control block of the active filter (AF). The same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated. In FIG. 2, reference numeral 4 denotes a power supply current detector CT S
In FFT calculation circuit for Fourier analysis of the power current I S detected, 6 digital filter operation circuit for obtaining an amplitude and phase data of each order component of the load current from the Fourier analysis data, 7 digital filter operation circuit 4 and a load current I L and the power supply current I transfer characteristic calculation circuit for comparing the amplitude and phase data determine the transfer characteristic of the load harmonics and line harmonics of the harmonic of S simultaneous detection of six. Reference numeral 8 denotes an amplitude / phase adjusting circuit for adjusting the amplitude and phase data of the load current harmonic from the digital filter operation circuit 5 based on the transfer characteristics of the load harmonic and the power supply harmonic, and 9 denotes the adjusted load current. , And outputs the compensation current command value Ih * to the inverter 2 by combining the amplitude and phase data of each harmonic. According to the present invention, the load current IL and the power supply current IS are simultaneously detected, and the fast Fourier transform circuits 3 and 5 are respectively detected.
And the digital filter operation circuits 4 and 6, the currents I L and I S
Are separated into respective order components, and the transfer characteristic calculation circuit 7 compares the harmonics to obtain the transfer characteristics of the load current harmonic and the power supply current harmonic. The amplitude / phase adjustment circuit 8 calculates the filter based on the transfer characteristics. The amplitude and phase data of each component of the load current harmonic separated from the circuit 5 is adjusted. For example, according to the amplitude ratio (amplitude characteristic) of the load harmonic current and the power supply harmonic current, when the component on the power supply side is larger than the component on the load side,
That component is expanded in spite of the operation of the active filter. (System Resonance Phenomenon) Therefore, the amplitude and phase of the compensating component are adjusted in the amplitude and phase adjusting circuit 8 so that the amplitude characteristics are minimized. Compensating current value Ih by combining with a wave component (a component whose amplitude characteristic does not tend to expand)
If * is output, the expansion of harmonics can be prevented.
That is, the active filter can obtain an optimal compensation characteristic corresponding to the characteristic of the system. (System Diagnosis Function) The present invention is configured as described above, and has the following effects. (1) The amplitude and phase of each higher harmonic to be compensated can be finely controlled. (2) Detecting the load current and the power supply current at the same time and obtaining the optimum compensation characteristics by diagnosing the transmission characteristics of the system.

【図面の簡単な説明】 【図1】実施の形態1にかかるアクティブフィルタの制
御ブロック図。 【図2】実施の形態2にかかるアクティブフィルタの制
御ブロック図。 【図3】従来例にかかるアクティブフィルタの制御ブロ
ック図。 【図4】他の従来例にかかるアクティブフィルタの制御
ブロック図。 【符号の説明】 1…アクティブフィルタ(AF) 2…インバータ 3,5…FFT(高速フーリエ変換)演算回路 4,6…ディジタルフィルタ演算回路 7…伝達特性演算回路 8…振幅・位相調整回路 9…各次高調波合成回路 31…3相2相変換回路 33,34…ハイパスフィルタ 35…2相3相変換回路 412〜41n…2次〜n次バンドパスフィルタ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a control block diagram of an active filter according to a first embodiment. FIG. 2 is a control block diagram of an active filter according to a second embodiment. FIG. 3 is a control block diagram of an active filter according to a conventional example. FIG. 4 is a control block diagram of an active filter according to another conventional example. [Description of Signs] 1 Active filter (AF) 2 Inverter 3 5 FFT (fast Fourier transform) operation circuit 4 6 Digital filter operation circuit 7 Transfer characteristic operation circuit 8 Amplitude / phase adjustment circuit 9 Each harmonic synthesis circuit 31... Three-phase two-phase conversion circuits 33 and 34. High-pass filter 35... Two-phase three-phase conversion circuits 41 2 to 41 n .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H02M 7/48 H02M 7/48 E ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 identification code FI H02M 7/48 H02M 7/48 E

Claims (1)

(57)【特許請求の範囲】 【請求項1】 負荷電流信号から補償電流指令値を求め
てインバータを制御して系統に補償電流を出力する電力
用アクティブフィルタにおいて、負荷電流信号及び電源電流信号をそれぞれフーリエ解析
する第1、第2の高速フーリエ変換演算回路と、 この第1、第2の高速フーリエ変換演算回路の各フーリ
エ解析データをそれぞれ演算して負荷電流高調波及び電
源電流高調波の各次成分の振幅,位相データを求める第
1、第2のディジタルフィルタ演算回路と、 この第1、第2のディジタルフィルタ演算回路で分離さ
れた負荷電流高調波及び電源高調波の各次成分の振幅,
位相データを比較して負荷電流高調波と電源高調波の伝
達特性を求める伝達特性演算回路と、 この伝達特性演算回路で求められた伝達特性に基づいて
負荷電流高調波の振幅及び位相データを調整する振幅・
位相調整回路と、 この調整回路で調整された負荷電流の各次高調波の振幅
及び位相データを合成して前記補償電流指令値を求める
各次高調波合成回路とを備え、 負荷高調波電流と電源高調波電流の振幅特性より、電源
側の高調波成分が負荷側のその成分よりも大きい場合
は、振幅・位相調整回路において、その補償成分の振幅
や位相を上記振幅特性が最小になるように調整し、各次
高調波合成回路にてその他の正常な高調波成分と合成し
て補償電流値を出力する ことを特徴とする電力用アクテ
ィブフィルタ
(57) In the Patent Claims 1 The active filter power for outputting a compensation current to the system by controlling the inverter seeking compensation current command value from the load current signal, the load current signal and the source current signal To the Fourier analysis
First and second fast Fourier transform operation circuits, and the respective Fourier transform circuits of the first and second fast Fourier transform operation circuits.
D) Calculate the analysis data to calculate load current harmonics and
For obtaining the amplitude and phase data of each order component of the source current harmonic
The first and second digital filter operation circuits are separated from each other by the first and second digital filter operation circuits.
Amplitude of each component of load current harmonic and power supply harmonic,
Compare the phase data and compare the transfer of load current harmonic and power supply harmonic.
Transfer characteristic calculation circuit for determining the transfer characteristic, and the transfer characteristic calculated based on the transfer characteristic calculated by the transfer characteristic calculation circuit.
Adjust the amplitude and phase data of the load current harmonic.
Phase adjustment circuit and amplitude of each higher harmonic of load current adjusted by this adjustment circuit
And the compensating current command value by combining the phase data
Each of the higher harmonic synthesis circuits is provided, and based on the amplitude characteristics of the load harmonic current and the power supply harmonic current,
If the harmonic component on the load side is larger than that component on the load side
Is the amplitude of the compensation component in the amplitude / phase adjustment circuit.
And phase so that the above amplitude characteristics are minimized.
The harmonics are combined with other normal harmonics by the harmonics synthesis circuit.
Power actuating device that outputs a compensation current value
Active filter .
JP29827096A 1996-11-11 1996-11-11 Active filter for power Expired - Lifetime JP3528475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29827096A JP3528475B2 (en) 1996-11-11 1996-11-11 Active filter for power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29827096A JP3528475B2 (en) 1996-11-11 1996-11-11 Active filter for power

Publications (2)

Publication Number Publication Date
JPH10145972A JPH10145972A (en) 1998-05-29
JP3528475B2 true JP3528475B2 (en) 2004-05-17

Family

ID=17857471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29827096A Expired - Lifetime JP3528475B2 (en) 1996-11-11 1996-11-11 Active filter for power

Country Status (1)

Country Link
JP (1) JP3528475B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305195C (en) * 2003-06-09 2007-03-14 清华大学 Active power filtering method with inversing capacitor regulation and branch impendance controlled decoupling
ES2233193B1 (en) * 2003-11-18 2006-03-16 Enertron, S.L. ACTIVE FILTER TO BE USED IN A NETWORK WITH A NON-LINEAR LOAD.
JP4766005B2 (en) * 2007-06-07 2011-09-07 株式会社明電舎 Harmonic current compensator
JP2009213322A (en) * 2008-03-06 2009-09-17 Yanmar Co Ltd Distributed power supply system
JP2010187521A (en) * 2009-01-16 2010-08-26 Mitsubishi Electric Corp Motor drive controller, compressor, blower, air conditioner and refrigerator or freezer
JP4937281B2 (en) * 2009-01-16 2012-05-23 三菱電機株式会社 Motor drive control device, compressor, blower, air conditioner, refrigerator or freezer
JP5560730B2 (en) * 2009-05-13 2014-07-30 株式会社明電舎 Power converter control method, uninterruptible power supply, parallel sag compensator
JP5922869B2 (en) * 2011-01-18 2016-05-24 ダイキン工業株式会社 Power converter
JP6145300B2 (en) 2013-05-01 2017-06-07 東芝機械株式会社 Inverter device and inverter generator
CN104635140A (en) * 2014-12-29 2015-05-20 国家电网公司 Low-voltage active power filter testing device and testing method thereof
CN104833853B (en) * 2015-05-14 2017-08-11 电子科技大学 A kind of adaptive sliding window DFT harmonic detecting methods of frequency

Also Published As

Publication number Publication date
JPH10145972A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
EP0492396B1 (en) Parallel inverter system
JP3528475B2 (en) Active filter for power
EP0595319B1 (en) PWM inverter control system and method
US4903184A (en) Reactive power controller
JP2001286150A (en) Power-converter unit
US4755738A (en) Reactive power compensation apparatus
US11404955B2 (en) Method for controlling fault using switching technique of three phase four wire interlinking converter
US5065304A (en) Controller for AC power converter
EP0371192A1 (en) Electric quantity detecting method
JPH11299102A (en) Active filter
US5825173A (en) Circuit for detecting phase angle of three-phase alternating current
JP3570913B2 (en) Control device for semiconductor switch
Montero-Hernandez et al. A fast detection algorithm suitable for mitigation of numerous power quality disturbances
JPH0937560A (en) Inverter controller
JP2774246B2 (en) Control device for current source converter
JP3315874B2 (en) Power converter
JP3252634B2 (en) Inverter circuit output voltage control method
JP3110898B2 (en) Inverter device
JP2002058163A (en) Method for determining frequency characteristic of electric power system
JPH08140268A (en) Controller of reactive power compensator
JPH08171992A (en) Method and device for controlling power of halogen lamp
KR100635717B1 (en) Phase Locked Loop
JP3887944B2 (en) Active filter
JP3274274B2 (en) Demagnetization suppression control circuit
JPH1094157A (en) Digital protective relay

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term