JP3232885B2 - Power conversion device and control method - Google Patents

Power conversion device and control method

Info

Publication number
JP3232885B2
JP3232885B2 JP15328994A JP15328994A JP3232885B2 JP 3232885 B2 JP3232885 B2 JP 3232885B2 JP 15328994 A JP15328994 A JP 15328994A JP 15328994 A JP15328994 A JP 15328994A JP 3232885 B2 JP3232885 B2 JP 3232885B2
Authority
JP
Japan
Prior art keywords
phase
voltage
pulse
output
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15328994A
Other languages
Japanese (ja)
Other versions
JPH0823677A (en
Inventor
博雄 小西
正志 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15328994A priority Critical patent/JP3232885B2/en
Publication of JPH0823677A publication Critical patent/JPH0823677A/en
Application granted granted Critical
Publication of JP3232885B2 publication Critical patent/JP3232885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は直流送電変換装置あるい
は静止型無効電力補償装置等の電力系統に適用される電
力変換装置の位相を制御する制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for controlling the phase of a power converter applied to a power system such as a DC transmission converter or a static var compensator.

【0002】[0002]

【従来の技術】パワーエレクトロニクス技術を駆使して
実現された直流送電や、現在米国で進められているサイ
リスタ制御直列コンデンサ等のパワーエレクトロニクス
のキー技術は、電力用半導体素子で構成される大容量の
電力変換装置技術が重要である。電力用半導体素子、即
ちサイリスタで構成される大容量電力変換装置を交流系
統事故時にも安定に動作させるためには、制御装置から
の位相指令に応じて交流系統の動きに合った適切な位相
で制御パルスを出すことのできる位相制御装置が必要で
ある。
2. Description of the Related Art The key technologies of power electronics, such as DC power transmission realized by making full use of power electronics technology and thyristor controlled series capacitors currently being promoted in the United States, are large-capacity power semiconductor devices. Power converter technology is important. In order to operate a power semiconductor device, that is, a large-capacity power converter composed of thyristors stably even in the event of an AC system accident, an appropriate phase matching the movement of the AC system in response to a phase command from the control device. There is a need for a phase control device that can issue control pulses.

【0003】従来、制御装置からの位相指令に基づいて
制御されたパルスを得るため、常時交流系統の交流電圧
零点を各相毎に検出し、この電圧零点に基づく基準同期
点から制御パルスを作り出す方法が取られている。しか
し各相毎に電圧の零点を検出する場合は、最も頻繁に発
生する一線地絡事故が電力系統に発生すると、事故相の
零点が検出できなくなるので、位相差がうまく求まらな
くなる。そのため制御パルスを作成するもとになる基準
同期点が交流系統の電圧零点からずれ、事故期間中の制
御パルスの位相が誤りとなるだけでなく、事故除去時の
基準同期点もずれるので電力変換装置の動作が定常状態
に達するまでの回復時間も延びる。
Conventionally, in order to obtain a pulse controlled based on a phase command from a control device, an AC voltage zero of an AC system is always detected for each phase, and a control pulse is generated from a reference synchronization point based on the voltage zero. The way has been taken. However, when the zero point of the voltage is detected for each phase, if the single-line ground fault that occurs most frequently occurs in the power system, the zero point of the fault phase cannot be detected, so that the phase difference cannot be determined well. Therefore, the reference synchronization point from which the control pulse is created deviates from the voltage zero point of the AC system, causing not only an error in the phase of the control pulse during the fault period but also a shift of the reference synchronization point at the time of the fault elimination. The recovery time for the operation of the device to reach a steady state also increases.

【0004】このため特開昭52−42216 号公報に記載の
ように、事故直前の系統電圧の位相を記憶する記憶回路
と、切替回路を新たに設け、事故が発生したらそれまで
の基準同期点からの位相を記憶回路の位相に切替回路で
切り替えて制御パルスを得ていた。
For this reason, as disclosed in Japanese Patent Application Laid-Open No. 52-42216, a storage circuit for storing the phase of the system voltage immediately before the accident and a switching circuit are newly provided. The control pulse is obtained by switching the phase from the switch to the phase of the storage circuit by the switching circuit.

【0005】[0005]

【発明が解決しようとする課題】しかしその対策回路は
3相それぞれに設ける必要があるので、多数の構成要素
から成るため、より簡易な制御回路が望まれていた。
However, since a countermeasure circuit must be provided for each of the three phases, the control circuit is composed of a large number of components. Therefore, a simpler control circuit has been desired.

【0006】本発明の目的は、電力系統で不平衡事故が
発生し、交流電圧が消失しても基準の同期パルスを発生
できる高精度で構造の簡単な制御装置を提供することに
ある。
It is an object of the present invention to provide a high-precision and simple-structure control device capable of generating a reference synchronization pulse even when an unbalance accident occurs in an electric power system and an AC voltage is lost.

【0007】[0007]

【課題を解決するための手段】電力用半導体素子で構成
される電力変換装置をこの電力変換装置に入出力する3
相交流電圧の基準同期点に同期した制御パルスに基づい
て制御する前記電力変換装置の制御装置を、同期信号検
出手段と同期信号検出手段,制御回路,移相手段とから
構成する。
SUMMARY OF THE INVENTION A power converter composed of a power semiconductor element is input to and output from the power converter.
A control device of the power conversion device for controlling based on a control pulse synchronized with a reference synchronization point of the phase AC voltage includes a synchronization signal detection unit, a synchronization signal detection unit, a control circuit, and a phase shift unit.

【0008】同期信号検出手段は、3相交流電圧を入力
してその3相交流電圧の相電圧ベクトルをベクトル変換
して求めた新たな3相電圧ベクトルを用いて基準同期点
を作成する。また制御回路は、位相指令に応じた制御信
号を出力し、この制御信号に基づいて移相手段は、基準
同期点からシフトした制御パルスを出力する機能を有す
る。
The synchronizing signal detecting means inputs a three-phase AC voltage, and creates a reference synchronizing point using a new three-phase voltage vector obtained by vector-converting the phase voltage vector of the three-phase AC voltage. The control circuit outputs a control signal according to the phase command, and the phase shifter has a function of outputting a control pulse shifted from the reference synchronization point based on the control signal.

【0009】[0009]

【作用】基準同期点を求めるために、電力変換装置に入
出力する3相交流電圧ベクトルVuベクトル,Vvベク
トル,Vwベクトル(以下Vu,Vv,Vwと略し、ベ
クトルを現すものとする)を数1に基づいて新たな3相
交流電圧ベクトルA,B,Cを作成する。
In order to obtain a reference synchronization point, three-phase AC voltage vectors Vu, Vv, and Vw vectors (hereinafter, abbreviated as Vu, Vv, and Vw, which represent vectors) input and output to and from the power converter are represented by several numbers. 1, new three-phase AC voltage vectors A, B, and C are created.

【0010】 A={Vu−(Vv+Vw)}/2 B={Vv−(Vw+Vu)}/2 …(数1) C={Vw−(Vu+Vv)}/2 この新たなベクトル交流電圧ベクトルA,B,Cを用い
ることにより、事故の前後で変化しない基準同期点が得
られる。そしてこの基準同期点と位相指令に応じた制御
信号をもとに移相手段で基準同期点からシフトした前記
制御パルスを出力することにより、交流系統の不平衡事
故が発生しても同期点が消失することなく電力変換装置
を安定して運転することができる。
A = {Vu− (Vv + Vw)} / 2 B = {Vv− (Vw + Vu)} / 2 (Equation 1) C = {Vw− (Vu + Vv)} / 2 This new vector AC voltage vector A, By using B and C, a reference synchronization point that does not change before and after the accident can be obtained. By outputting the control pulse shifted from the reference synchronization point by the phase shift means based on the reference synchronization point and the control signal corresponding to the phase command, the synchronization point can be maintained even if an AC system unbalance accident occurs. The power converter can be operated stably without disappearing.

【0011】[0011]

【実施例】図1は本発明を直流送電制御装置の位相制御
装置に適用した場合の実施例である。交流系統11と交
流系統12の間に交直変換装置を介することで、簡単な
周波数や位相調整だけで電力の授受が可能になる。交流
系統11側は変換用変圧器21,22からそれぞれの変
換用変圧器に対する電力変換装置31,32で交流を直
流に変換し、直流リアクトル41を経て直流送電線5
1,52へ送電する。一方、直流送電線51,52から
送られてきた直流電力は直流リアクトル42から電力変
換装置33,34へ取り込まれ交流に変換されて、変換
用変圧器23,24を介して交流系統12へ送電され
る。
FIG. 1 shows an embodiment in which the present invention is applied to a phase control device of a DC power transmission control device. By passing the AC / DC converter between the AC system 11 and the AC system 12, power can be exchanged only by simple frequency and phase adjustment. On the side of the AC system 11, the conversion transformers 21 and 22 convert AC into DC by the power converters 31 and 32 for the respective conversion transformers, and the DC transmission line 5 passes through the DC reactor 41.
Power is transmitted to 1,52. On the other hand, the DC power transmitted from the DC transmission lines 51 and 52 is taken into the power converters 33 and 34 from the DC reactor 42 and converted into AC, and is transmitted to the AC system 12 via the transformers 23 and 24 for conversion. Is done.

【0012】同期信号検出回路61は交流電圧変成器6
01で検出した交直連系点の交流電圧に基づいて電力変
換装置31,32の点弧パルスを作るときの元になる回
路である。運転指令に基づいて制御回路62から出力さ
れた制御電圧Vsと同期信号検出回路61の出力とを移
相回路63に入力して、電力変換装置31,32の点弧
パルスを出力する。
The synchronizing signal detecting circuit 61 includes an AC voltage transformer 6
This is a circuit which is a source when generating ignition pulses for the power converters 31 and 32 based on the AC voltage at the AC / DC interconnection point detected at 01. The control voltage Vs output from the control circuit 62 based on the operation command and the output of the synchronization signal detection circuit 61 are input to the phase shift circuit 63, and the firing pulses of the power conversion devices 31 and 32 are output.

【0013】電力変換装置31,32に対する交流電圧
変成器601と、同期信号検出回路61,制御回路6
2、及び移相回路63と同様、電力変換装置33,34
に対しても交流電圧変成器701と、同期信号検出回路
71,制御回路72、及び移相回路73が必要である
が、その機能は全く同一なので詳細は省略する。
An AC voltage transformer 601 for the power converters 31 and 32, a synchronizing signal detecting circuit 61, and a control circuit 6
2, and the power converters 33 and 34 as in the phase shift circuit 63.
, An AC voltage transformer 701, a synchronization signal detection circuit 71, a control circuit 72, and a phase shift circuit 73 are required.

【0014】同期信号検出回路61の詳細を、制御回路
62及び移相回路63の制御を含め図2を用いて以下説
明する。交流電圧変成器601で検出された系統電圧か
らバンドパスフィルタ602で基本波信号を取り出し、
演算回路603で数1の演算を行い各相の電圧信号の零
点を検出する。
The details of the synchronization signal detection circuit 61 will be described below with reference to FIG. 2, including the control of the control circuit 62 and the phase shift circuit 63. A fundamental signal is extracted from the system voltage detected by the AC voltage transformer 601 by the band-pass filter 602,
The arithmetic circuit 603 performs the operation of Expression 1 to detect a zero point of the voltage signal of each phase.

【0015】位相差検出回路604は、図2(i)に示
した演算回路603の出力と詳細は後述する図2(ii)
のデコーダ608の出力とから各相毎の位相差を求めた
後、各相を合算し平滑化回路605に出力する。平滑化
回路605では位相差検出回路604からの出力波形を
平滑し、平滑した電圧Vcを出力する(図2(iii))。こ
の演算回路603と位相差検出回路604のデータ処理
方法についてはさらに後で詳細に述べる。
The phase difference detection circuit 604 outputs the output of the arithmetic circuit 603 shown in FIG.
After calculating the phase difference of each phase from the output of the decoder 608, the respective phases are summed and output to the smoothing circuit 605. The smoothing circuit 605 smoothes the output waveform from the phase difference detection circuit 604 and outputs a smoothed voltage Vc (FIG. 2 (iii)). The data processing method of the arithmetic circuit 603 and the phase difference detection circuit 604 will be described later in further detail.

【0016】図2(iv)に示した電圧パルス発振回路6
06は平滑化回路605の出力Vcに比例した周波数を
持つパルスを出力するもので、位相固定発振器(vco)と
も呼称される。この電圧パルス発振回路606で発振さ
れたパルスはカウンタ607で分周され、系統電圧零点
と位相差のあるパルスとしてデコーダ608で振り分
け、位相差検出回路604と鋸歯状波発生回路609へ
出力する。位相差検出回路604からデコーダ608は
いわゆるPLL(Phase Locked Loop)回路である。
The voltage pulse oscillating circuit 6 shown in FIG.
06 outputs a pulse having a frequency proportional to the output Vc of the smoothing circuit 605, and is also called a phase-locked oscillator (vco). The pulse oscillated by the voltage pulse oscillation circuit 606 is frequency-divided by the counter 607, distributed as a pulse having a phase difference from the system voltage zero point by the decoder 608, and output to the phase difference detection circuit 604 and the sawtooth wave generation circuit 609. The phase difference detection circuit 604 to the decoder 608 are so-called PLL (Phase Locked Loop) circuits.

【0017】また鋸歯状波発生回路609は図2(v)
に示すように、カウントされたパルスから鋸歯状波を形
成し、移相回路63で、鋸歯状波発生回路609の出力
と、制御回路62の出力である制御電圧Vsとから電力
変換装置31,32の点弧角α1 を有する点弧パルスを
出力する(図2(vi))。
The sawtooth wave generating circuit 609 is shown in FIG.
As shown in the figure, a sawtooth wave is formed from the counted pulses, and the phase shift circuit 63 converts the output of the sawtooth wave generation circuit 609 and the control voltage Vs output from the control circuit 62 into a power conversion device 31, A firing pulse having a firing angle α 1 of 32 is output (FIG. 2 (vi)).

【0018】次に演算回路603で求める数1について
図3のベクトル図を用いて説明する。演算回路603で
数1を演算し、新たな3相交流電圧ベクトルA,B,C
を求める。交流電圧ベクトルVuを基準にとり各相のベ
クトルを表わすと、正常時には数1のAは図3(i)か
ら明らかなようにu相のベクトル、同様にBはv相,C
はw相を表す。
Next, Equation 1 obtained by the arithmetic circuit 603 will be described with reference to the vector diagram of FIG. The arithmetic circuit 603 calculates Equation 1 to obtain new three-phase AC voltage vectors A, B, and C.
Ask for. When the vectors of each phase are represented based on the AC voltage vector Vu, A in Equation 1 is a u-phase vector as is apparent from FIG. 3 (i), B is a v-phase, C
Represents the w phase.

【0019】今、3相交流電圧の各相の負から正へ移行
するときの電圧零点である同期点をu,v,wとし、各
相の正から負へ移行する電圧零点の各相の同期点をそれ
ぞれx,y,zとすると、x,y,zはそれぞれu,
v,wに対し180度遅れている。よって同期点はu→
z→v→x→w→y→uで循環することになる。一方、
カウンタ607で分周されたパルスu′,z′,v′,
x′,w′,y′は、系統電圧零点u,z,v,x,
w,yと一定の位相差を持たせるようにデコーダ608
で振り分ける。なお一定の位相差としては60度以上が
望ましいが、その根拠については後述する。
Now, let u, v, and w be the synchronization points, which are the voltage zeros when the three-phase AC voltage shifts from negative to positive, respectively. Assuming that the synchronization points are x, y, and z, respectively, x, y, and z are u,
180 degrees behind v and w. Therefore, the synchronization point is u →
It circulates in the order of z → v → x → w → y → u. on the other hand,
The pulses u ′, z ′, v ′, divided by the counter 607,
x ', w', y 'are system voltage zeros u, z, v, x,
decoder 608 so as to have a certain phase difference from w and y.
Sort by. Note that the fixed phase difference is desirably 60 degrees or more, and the basis thereof will be described later.

【0020】位相差検出回路604は積分回路あるいは
フリップフロップで構成され、交流電圧の零点u,z,
v,x,w,yで積分回路に一定値を加算あるいはフリ
ップフロップをセットするようにし、鋸歯状波発生回路
608の出力パルスu′,z′,v′,x′,w′,
y′で積分回路から一定値を減算あるいはリセットする
ようにして、常に各相の信号が積分される。
The phase difference detecting circuit 604 is constituted by an integrating circuit or a flip-flop, and the zero points u, z,
A constant value is added to the integration circuit or a flip-flop is set by v, x, w, y, and output pulses u ′, z ′, v ′, x ′, w ′, and w ′ of the sawtooth wave generation circuit 608 are output.
The signal of each phase is always integrated by subtracting or resetting a constant value from the integrating circuit at y '.

【0021】図4は正常時の演算回路603及び位相差
検出回路604の動作をデコーダ608出力と比較して
示したもので、各相の同期点(電圧零点)検出信号u,
z,v,x,w,yは数式1に従って60度ごとに正常
な同期点が計算される。従って位相差検出回路604で
は演算回路603の出力でセットされ、デコーダ608の
出力u′,z′,v′,x′,w′,y′でリセットさ
れるから、各相の位相差は60度ごとの繰返しとなる。
図はデコーダ608の出力u′,z′,v′,x′,
w′,y′を同期点検出信号u,z,v,x,w,yか
ら70度遅らせた例を示している。
FIG. 4 shows the operation of the arithmetic circuit 603 and the phase difference detection circuit 604 in a normal state in comparison with the output of the decoder 608, and shows the synchronous point (zero voltage) detection signals u,
For z, v, x, w, and y, a normal synchronization point is calculated every 60 degrees according to Equation 1. Therefore, in the phase difference detection circuit 604, the phase difference is set by the output of the arithmetic circuit 603 and reset by the output u ', z', v ', x', w ', y' of the decoder 608. It will be repeated every degree.
The figure shows the outputs u ', z', v ', x',
In this example, w 'and y' are delayed by 70 degrees from the synchronization point detection signals u, z, v, x, w, and y.

【0022】位相差検出回路604の出力は平滑化回路
605で平均化されてVcとなり、この大きさに応じた
発振周波数のパルスが電圧パルス発振回路606から出
力され、既に述べたような機能にしたがって電力変換装
置31,32を制御する。
The output of the phase difference detection circuit 604 is averaged by the smoothing circuit 605 to become Vc, and a pulse having an oscillation frequency corresponding to the magnitude is output from the voltage pulse oscillation circuit 606, and the function described above is obtained. Therefore, the power converters 31 and 32 are controlled.

【0023】次に交流系統の不平衡事故の内、1線地絡
事故(1LG)により、u相電圧が消失した場合を図3
(ii)の電圧ベクトルと図5の演算回路603及び位相
差検出回路604の動作により説明する。
FIG. 3 shows a case where the u-phase voltage is lost due to a one-line ground fault (1LG) among the unbalanced faults in the AC system.
The operation will be described with reference to the voltage vector of (ii) and the operation of the arithmetic circuit 603 and the phase difference detection circuit 604 of FIG.

【0024】数1のAはu相ベクトルとなって信号の大
きさは変化するがu相ベクトルと位相は同じであり、ま
た電圧の零点も変わらない。Bは元のv相の位相よりも
30度位相が進み、Cは元のw相の位相よりも30度位
相が遅れた電圧ベクトルとなる。従って位相差検出回路
604からは事故時と事故前では基準同期点は変わらな
いから、3相全体で見る限りはトータルの位相差に変化
はない。
A in equation (1) becomes a u-phase vector and the magnitude of the signal changes, but the phase is the same as the u-phase vector, and the zero point of the voltage does not change. B is a voltage vector advanced by 30 degrees from the original phase of the v phase, and C is a voltage vector delayed by 30 degrees from the phase of the original w phase. Therefore, from the phase difference detection circuit 604, the reference synchronization point does not change at the time of the accident and before the accident, so that there is no change in the total phase difference from the viewpoint of all three phases.

【0025】事実、演算回路603の平滑された出力は
図5(iii)に示すように、u相に対しv相,w相は90
度の位相差があるが、1周期あたりの位相差検出回路6
04出力の平均値は、正常時(i)の平均値と同じVc
である。
In fact, as shown in FIG. 5 (iii), the smoothed output of the arithmetic circuit 603 is 90% for the v phase and the w phase for the u phase.
Although there is a phase difference of one degree, the phase difference detection circuit 6 per one cycle
04 output is the same Vc as the normal (i) average.
It is.

【0026】従って電圧パルス発振回路606の発振周
波数は正常時と変わらないから、鋸歯状波発生回路60
8で分周された図示のu′,z′,v′,x′,w′,
y′のパルス信号も変化しない。
Therefore, since the oscillation frequency of the voltage pulse oscillation circuit 606 is not different from that in the normal state, the sawtooth wave generation circuit 60
U ', z', v ', x', w ', shown in FIG.
The pulse signal of y 'does not change.

【0027】さらにまた交流系統不平衡事故の内、2線
地絡事故(2LG)によりu相,v相の電圧が消失した
場合は図6の通りとなる。数1ではA=−Vw/2だか
ら元のu相の電圧の零点位相よりも60度遅れた電圧ベ
クトル、またB=−Vw/2だから元のv相の電圧の零
点位相よりも60度進んだ電圧ベクトル、Cは大きさは
2分の1ではあるが、元のw相電圧位相と同位相の電圧
ベクトルが得られ、1線地絡事故と同様、3相全体で見
る限りはトータルの位相差に変化はない。
FIG. 6 shows the case where the u-phase and v-phase voltages disappear due to a two-line ground fault (2LG) among the AC system imbalance faults. In equation (1), A = -Vw / 2, so the voltage vector is delayed by 60 degrees from the zero-point phase of the original u-phase voltage, and B = -Vw / 2, the voltage vector leads by 60 degrees from the zero-phase of the original v-phase voltage. Although the magnitude of the voltage vector, C, is 1/2, a voltage vector having the same phase as the original w-phase voltage phase is obtained. There is no change in the phase difference.

【0028】すなわち演算回路603では、u相,v
相,w相の同期点は同じ位置に作られる。従ってこの場
合の位相差検出回路604の出力は図6(iii)に示すよ
うになり、この場合も1周期あたりの位相差検出回路6
04出力の平均値は、正常時の平均値と変わらないVc
となる。従って電圧パルス発振回路606の発振周波数
は正常時と変わらないから、鋸歯状波発生回路608で
分周された図示のu′,z′,v′,x′,w′,y′
のパルス信号はやはり変わらない。
That is, in the arithmetic circuit 603, the u phase, v
The synchronization points of the phase and the w phase are created at the same position. Therefore, the output of the phase difference detection circuit 604 in this case is as shown in FIG. 6 (iii), and also in this case, the phase difference detection circuit 6
The average value of the 04 output is the same as the normal average value Vc
Becomes Accordingly, since the oscillation frequency of the voltage pulse oscillation circuit 606 is not different from that in the normal state, u ', z', v ', x', w ', y' shown in FIG.
Is unchanged.

【0029】なお、3相トータルの位相差が変わらない
ようにするために、2相消失時に±60度の零点シフト
が生ずるから、正常時の演算回路603出力とデコーダ
608出力(例えばuとu′)との位相差が60度以上に
なるよう調整しておけば良い。
In order to prevent the total phase difference of the three phases from changing, a zero point shift of ± 60 degrees occurs when the two phases are lost.
It may be adjusted so that the phase difference between the 608 outputs (for example, u and u ') is 60 degrees or more.

【0030】このように3相の瞬時電圧信号を使って各
相の電圧零点が求まることにより、交流系統事故により
1相または2相の同期信号が無くなった場合にも、正常
時と同様に基準同期点が得られる。基準同期点が得られ
れば、この時点から制御回路62の出力電圧に相当する
大きさだけ移相したパルスを移相回路63によって作成
することにより、電力変換装置31,32の適切な制御
パルスを得ることができる。
By determining the zero point of each phase using the three-phase instantaneous voltage signal in this manner, even when the one-phase or two-phase synchronization signal is lost due to an AC system accident, the same reference as in the normal state is obtained. A synchronization point is obtained. When the reference synchronization point is obtained, a pulse whose phase is shifted by a magnitude corresponding to the output voltage of the control circuit 62 from this point is created by the phase shift circuit 63, so that appropriate control pulses for the power conversion devices 31 and 32 can be generated. Obtainable.

【0031】なお交流系統3相平衡事故で3相とも電圧
が消失した場合は、図3のベクトル図から明らかなよう
に演算手段では演算できないので別途、特開昭52−4221
6 号公報に述べられているように位相記憶が必要とな
る。
If the voltage is lost in all three phases due to the AC system three-phase equilibrium fault, the operation cannot be performed by the calculation means as is apparent from the vector diagram of FIG.
Phase storage is required, as described in Japanese Patent Publication No. 6 (1994).

【0032】図7は、本発明の位相制御回路をサイリス
タ制御直列コンデンサのサイリスタの位相制御回路に適
用した場合の他の実施例である。長距離送電線の場合、
リアクトルの影響を除去するため、3相交流送電線7
1,72,73に直列コンデンサ81,82,83を挿
入する。この直列コンデンサに並列にリアクトル81
1,812,813を挿入し、直列コンデンサ電流を打
ち消す電流をこのリアクトルに流すため、リアクトルに
直列に逆並列接続されたサイリスタ回路821〜826
を接続して制御するものである。その際、交流電圧変成
器901〜903で直列コンデンサ81,82,83両
端の電圧を検出する。
FIG. 7 shows another embodiment in which the phase control circuit of the present invention is applied to a thyristor phase control circuit of a thyristor controlled series capacitor. For long-distance transmission lines,
Three-phase AC transmission line 7
Series capacitors 81, 82, 83 are inserted into 1, 72, 73. The reactor 81 is connected in parallel with this series capacitor.
1, 812, 813, and thyristor circuits 821 to 826 connected in series and anti-parallel to the reactor in order to allow a current for canceling the series capacitor current to flow through the reactor.
Is connected and controlled. At this time, the AC voltage transformers 901 to 903 detect the voltage across the series capacitors 81, 82, 83.

【0033】また同期信号検出回路61と移相回路63
は図1と同様で、サイリスタ制御直列コンデンサの制御
回路91からの制御信号に応じて移相したサイリスタ8
21〜826を制御する。この構成においても同期信号
検出回路61で直列コンデンサ両端の電圧から基準同期
点が作られ、移相回路63で制御回路91からの制御信
号に応じて移相したサイリスタ821〜826を制御す
る適切な制御パルスが作られる。従って交流系統で事故
が発生し、同期信号が消失した場合の位相制御回路の動
作も既に述べた電力変換装置31,32の制御と同様で
ある。
A synchronizing signal detecting circuit 61 and a phase shift circuit 63
1 is the same as FIG. 1, and the thyristor 8 phase-shifted according to the control signal from the control circuit 91 of the thyristor control series capacitor
21 to 826 are controlled. In this configuration as well, a reference synchronization point is created from the voltage across the series capacitor by the synchronization signal detection circuit 61, and the phase shift circuit 63 controls the thyristors 821 to 826 phase-shifted according to the control signal from the control circuit 91. A control pulse is created. Therefore, the operation of the phase control circuit when an accident occurs in the AC system and the synchronization signal is lost is the same as the control of the power converters 31 and 32 described above.

【0034】[0034]

【発明の効果】従来は交流電圧各相毎に電圧零点を検出
し、この検出信号から位相差検出を行っていたので、装
置が大型になり、経済的でなかった。しかし本発明では
瞬時の3相の交流電圧をベクトル変換して新たな電圧ベ
クトルをもとに事故の前後で変化しない基準同期点が得
られる。
Conventionally, the voltage zero point is detected for each phase of the AC voltage, and the phase difference is detected from this detection signal, so that the apparatus becomes large and is not economical. However, in the present invention, the instantaneous three-phase AC voltage is converted into a vector, and a reference synchronization point that does not change before and after the accident can be obtained based on the new voltage vector.

【0035】また事故除去時にも高速に系統の同期点が
得られるので、交流系統の同期点に応じた適切な位相で
位相制御パルスを出すことができる。さらに事故除去に
より交流電圧が回復したときに高速に交流系統に同期し
た適切な位相パルスを出せるので電力変換装置の動作回
復が早く行える。これにより交流系統不平衡事故時およ
び事故除去時に電力変換装置を安定に動作させることが
できる。
Since the system synchronization point can be obtained at high speed even when the accident is eliminated, a phase control pulse with an appropriate phase according to the synchronization point of the AC system can be issued. Furthermore, when the AC voltage is recovered by the removal of the accident, an appropriate phase pulse synchronized with the AC system can be output at high speed, so that the operation recovery of the power converter can be performed quickly. Thereby, the power converter can be operated stably at the time of AC system imbalance accident and at the time of accident elimination.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の制御装置を直流送電制御装置に適用し
た場合の実施例である。
FIG. 1 shows an embodiment in which the control device of the present invention is applied to a DC power transmission control device.

【図2】同期信号検出回路61の動作説明図である。FIG. 2 is an operation explanatory diagram of a synchronization signal detection circuit 61.

【図3】演算回路603の演算内容を示すベクトル図で
ある。
FIG. 3 is a vector diagram showing calculation contents of a calculation circuit 603;

【図4】同期信号検出回路61の正常時の動作説明図で
ある。
FIG. 4 is an explanatory diagram of an operation of the synchronization signal detection circuit 61 in a normal state.

【図5】同期信号検出回路61の1線地絡時の動作説明
図である。
FIG. 5 is an operation explanatory diagram of the synchronization signal detection circuit 61 at the time of one-line ground fault.

【図6】同期信号検出回路61の2線地絡時の動作説明
図である。
FIG. 6 is a diagram illustrating the operation of the synchronization signal detection circuit 61 when a two-wire ground fault occurs.

【図7】本発明の制御装置をサイリスタ制御直列コンデ
ンサの制御装置に適用した場合の実施例である。
FIG. 7 shows an embodiment in which the control device of the present invention is applied to a control device for a thyristor controlled series capacitor.

【符号の説明】[Explanation of symbols]

11,12…交流系統、31〜34…電力変換装置、5
1,52…直流送電線、61…同期信号検出回路、62
…制御回路、63…移相回路、81,82,83…直列
コンデンサ、91…サイリスタ制御直列コンデンサの制
御回路、601…交流電圧変成器、602…バンドパスフ
ィルタ、603…演算回路、604…位相差検出回路、
605…平滑化回路、606…電圧パルス発振回路、6
07…カウンタ、608…デコーダ、609…鋸歯状波
発生回路、821〜826…サイリスタ、901〜90
3…交流電圧変成器。
11, 12 ... AC system, 31 to 34 ... power conversion device, 5
1, 52: DC transmission line, 61: synchronous signal detection circuit, 62
... Control circuit, 63 ... Phase shift circuit, 81, 82, 83 ... Series capacitor, 91 ... Thyristor controlled series capacitor control circuit, 601 ... AC voltage transformer, 602 ... Band pass filter, 603 ... Calculation circuit, 604 ... Phase difference detection circuit,
605: smoothing circuit, 606: voltage pulse oscillation circuit, 6
07 ... Counter, 608 ... Decoder, 609 ... Sawtooth wave generation circuit, 821-826 ... Thyristor, 901-90
3: AC voltage transformer.

フロントページの続き (56)参考文献 特開 昭56−46660(JP,A) 特開 昭52−42216(JP,A) 特開 昭60−109760(JP,A) 特開 昭59−162767(JP,A) 特開 昭60−9369(JP,A) 特開 平5−122940(JP,A) 特開 平6−165501(JP,A) 特開 平6−90597(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/19 H02M 7/155 Continuation of front page (56) References JP-A-56-46660 (JP, A) JP-A-52-42216 (JP, A) JP-A-60-109760 (JP, A) JP-A-59-162767 (JP) JP-A-60-9369 (JP, A) JP-A-5-122940 (JP, A) JP-A-6-165501 (JP, A) JP-A-6-90597 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) H02M 7/19 H02M 7/155

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電力用半導体素子で構成される電力変換装
置をこの電力変換装置に入出力する3相交流電圧の基準
同期点に同期した制御パルスに基づいて制御する制御装
置を備えた電力変換装置において前記制御装置が、 前記3相交流電圧を入力して前記3相
交流電圧の相電圧ベクトルをベクトル変換して求めた新
たな3相電圧ベクトルを用いて基準同期点を作成する同
期信号検出手段と、位相指令に応じた制御信号を出力す
る制御回路と、前記制御信号に基づいて前記基準同期点
からシフトした前記制御パルスを出力する移相手段と
備え前記同期信号検出手段は、前記3相交流電圧の大きさを
検出する交流電圧検出手段と、 前記3相交流電圧を入力して前記3相交流電圧の3相の
電圧ベクトルをベクトル変換して新たな3相電圧ベクト
ルを求め、前記3相交流電圧から3相各相の電圧零点を
演算する演算手段と、 前記演算された電圧零点と別途形成された分周手段から
の基準位相との差を検出しかつ3相を合算し出力する位
相差検出手段と、前記位相差検出手段出力を平均する平
滑化手段と、 前記平滑化手段の出力に応じた周波数を持つ電圧パルス
を出力する電圧パルス発振手段と、 前記電圧パルスをカウントするカウンタ手段と、 前記電圧パルスを3相に分周して前記基準位相を出力す
る前記分周手段と、 からなることを特徴とする電力変換装置
1. A control device for controlling a power converter constituted by a power semiconductor element based on a control pulse synchronized with a reference synchronization point of a three-phase AC voltage input / output to / from the power converter.
In the power converter provided with a three-phase AC voltage , the control device inputs the three-phase AC voltage and converts the phase voltage vector of the three-phase AC voltage into a vector by using a new three-phase voltage vector. a synchronization signal detection means for producing a point, and a control circuit for outputting a control signal corresponding to the phase instruction, and a phase shifting means for outputting the control pulse is shifted from the reference synchronization point based on the control signal
The synchronization signal detecting means detects the magnitude of the three-phase AC voltage.
An AC voltage detecting means for detecting the three-phase AC voltage,
Transform the voltage vector into a new three-phase voltage vector
From the three-phase AC voltage and calculate the voltage zero point of each of the three phases.
A calculating means for calculating, and a dividing means separately formed from the calculated voltage zero point.
To detect the difference from the reference phase and sum and output the three phases
Phase difference detection means, and a mean for averaging the output of the phase difference detection means.
Voltage pulse having a smoothing means, a frequency corresponding to an output of said smoothing means
A voltage pulse oscillating means for outputting the reference pulse; a counter means for counting the voltage pulse; and dividing the voltage pulse into three phases to output the reference phase.
It said dividing unit that, the power conversion device characterized by comprising the.
【請求項2】請求項において、 下式に基づいて新たな3相ベクトルA,B,Cを求める
前記演算手段を設けた制御装置を有することを特徴とす
る電力変換装置。 A={Vu−(Vv+Vw)}/2 B={Vv−(Vw+Vu)}/2 C={Vw−(Vu+Vv)}/2 Vu,Vv,Vw:電力変換装置に入出力する3相交流
電圧ベクトル
2. A power converter according to claim 1 , further comprising a control device provided with said calculating means for obtaining new three-phase vectors A, B and C based on the following equation. A = {Vu- (Vv + Vw)} / 2 B = {Vv- (Vw + Vu)} / 2 C = {Vw- (Vu + Vv)} / 2 Vu, Vv, Vw: Three-phase AC voltage input / output to the power converter Vector .
【請求項3】請求項において、 前記分周手段から出力される位相と、3相電圧が健全時
に前記演算手段から出力される位相との差を60度以上
に設定することを特徴とする電力変換装置。
3. The apparatus according to claim 1 , wherein a difference between a phase outputted from said frequency dividing means and a phase outputted from said calculating means when a three-phase voltage is sound is set to 60 degrees or more. Power converter.
【請求項4】電力用半導体素子で構成される電力変換装
置をこの電力変換装置に入出力する3相交流電圧の基準
同期点に同期した制御パルスに基づいて制御する前記電
力変換装置の制御方法において、 前記3相交流電圧を入力して前記3相交流電圧の3相の
電圧ベクトルをベクトル変換して新たな3相交流電圧ベ
クトルを求め、該3相交流電圧から3相各層の電圧零点
を演算し、該電圧零点と別途形成された分周手段からの
基準位相との差を検出しかつ3相を合算し、該3相の合
算値を平均化し、該平均値に応じた周波数の電圧パルス
を生成し、該電圧パルスを3相に分周して前記基準位相
を出力することを特徴とする電力変換装置の制御方法。
4. A control method for a power conversion device, comprising: controlling a power conversion device including a power semiconductor element based on a control pulse synchronized with a reference synchronization point of a three-phase AC voltage input to and output from the power conversion device. In the above, the three-phase AC voltage is input and the three-phase AC voltage
Convert the voltage vector into a new three-phase AC voltage
The voltage zero point of each layer of the three phases is obtained from the three-phase AC voltage.
From the voltage zero and the frequency dividing means formed separately.
The difference from the reference phase is detected, and the three phases are summed up.
Averaging the calculated values, a voltage pulse having a frequency corresponding to the average value
And divides the voltage pulse into three phases to produce the reference phase
A method for controlling a power conversion device, comprising:
JP15328994A 1994-07-05 1994-07-05 Power conversion device and control method Expired - Fee Related JP3232885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15328994A JP3232885B2 (en) 1994-07-05 1994-07-05 Power conversion device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15328994A JP3232885B2 (en) 1994-07-05 1994-07-05 Power conversion device and control method

Publications (2)

Publication Number Publication Date
JPH0823677A JPH0823677A (en) 1996-01-23
JP3232885B2 true JP3232885B2 (en) 2001-11-26

Family

ID=15559228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15328994A Expired - Fee Related JP3232885B2 (en) 1994-07-05 1994-07-05 Power conversion device and control method

Country Status (1)

Country Link
JP (1) JP3232885B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3254999B2 (en) * 1996-01-26 2002-02-12 富士電機株式会社 PWM control self-excited rectifier
CN103149847B (en) * 2013-01-25 2015-09-02 四川电力科学研究院 A kind of reactive power/voltage control Efficiency testing method based on RTDS
CN105720584B (en) * 2016-04-13 2018-06-29 国电南瑞科技股份有限公司 A kind of AVC saves ground and coordinates the optimum allocation method that the province based on integer programming during controlling adjusts reactive command

Also Published As

Publication number Publication date
JPH0823677A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
CA2066490C (en) Parallel operation system of ac output inverters
US5212630A (en) Parallel inverter system
US5400240A (en) Power converter apparatus
EP1394948B1 (en) Synchronised sinusoidal signal controller
JP4560993B2 (en) Power converter control device and power converter
US5065304A (en) Controller for AC power converter
JP3232885B2 (en) Power conversion device and control method
JP3488320B2 (en) Inverter synchronous switching circuit
JP2887013B2 (en) Parallel operation control device for three-phase AC output converter
JP2674402B2 (en) Parallel operation control device for AC output converter
KR100635717B1 (en) Phase Locked Loop
JP3696306B2 (en) Phase detector
JPS60113663A (en) Phase detector
JP3505626B2 (en) Power converter and power converter controller
JPH08140268A (en) Controller of reactive power compensator
JP3374685B2 (en) Phase synchronization controller
JP3264612B2 (en) Phase detector
JPH04368429A (en) Controller for inverter
JP3198212B2 (en) Hybrid phase control device and its control device
JPH1094262A (en) Voltage-type self-excited converter
JP3220206B2 (en) Phase control circuit
JPH08111937A (en) General purpose compensating apparatus
JPH11178322A (en) Controller for phase synchronization
JPH0819261A (en) Controller of current converter
JPS61221533A (en) Controller for reactive power compensator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees