JPH10145972A - Control method for power active filter - Google Patents

Control method for power active filter

Info

Publication number
JPH10145972A
JPH10145972A JP8298270A JP29827096A JPH10145972A JP H10145972 A JPH10145972 A JP H10145972A JP 8298270 A JP8298270 A JP 8298270A JP 29827096 A JP29827096 A JP 29827096A JP H10145972 A JPH10145972 A JP H10145972A
Authority
JP
Japan
Prior art keywords
harmonic
amplitude
load current
component
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8298270A
Other languages
Japanese (ja)
Other versions
JP3528475B2 (en
Inventor
Minoru Nishitoba
稔 西鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP29827096A priority Critical patent/JP3528475B2/en
Publication of JPH10145972A publication Critical patent/JPH10145972A/en
Application granted granted Critical
Publication of JP3528475B2 publication Critical patent/JP3528475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Abstract

PROBLEM TO BE SOLVED: To control a power active filter for every number of order without requiring circuits for all number of orders. SOLUTION: A load current from a current detector CTL is subjected to Fourier analysis through a fast Fourier transform operation circuit 3. A digital filter operating circuit 5 determines the amplitude and phase data of harmonics in the load current, based on the data of Fourier analysis. Subsequently, each order harmonic systhesis circuit 9 creates a compensation current command value IL* based on the amplitude and phase data of harmonics and controls an inverter 2 to supply a compensation current to the power supply S side. The amplitude and phase information of each order component can be separated perfectly through Fourier analysis and digital filter operation. The component of required number of order can be compensated through synthesis of data of perfectly separated component of required number of order.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統に生ずる
高調波を吸収する電力用アクティブフィルタの制御方式
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control system for an active power filter for absorbing harmonics generated in a power system.

【0002】[0002]

【従来の技術】電力用アクティブフィルタ(AF)は負
荷電流の高調波成分を検出してこれを電流指令として高
調波成分を打ち消すようにインバータの出力電流を制御
する。
2. Description of the Related Art An active power filter (AF) detects a harmonic component of a load current, and controls the output current of an inverter so as to cancel the harmonic component by using this as a current command.

【0003】AFの制御には図3に示すようなp−q演
算法が多く用いられている。これは電流検出器CTL
検出した3相の負荷電流ILを電源電圧位相で座標変換
する3相2相変換回路31でp−q軸電流Ip,Iqに
変換し、ハイパスフィルタ33,34でその交流分を検
出し、2相3相変換回路35で3相に変換して3相の高
調波分電流を得、これを電流指令値Ih*としてインバ
ータ2を制御している。
For controlling the AF, a pq calculation method as shown in FIG. 3 is often used. It converts the three-phase two-phase conversion circuit 31 for coordinate transformation of the load current I L of the three-phase detected by the current detector CT L by the power supply voltage phase p-q axis current Ip, the Iq, a high-pass filter 33 The two-phase / three-phase conversion circuit 35 converts the current into three phases to obtain a three-phase harmonic current, which is used as a current command value Ih * to control the inverter 2.

【0004】このp−q演算法の他に図4に示すような
バンドパスフィルタ方式がある。これは電流検出器CT
Lで検出した負荷電流ILを2次〜n次高調波をそれぞれ
通す2次〜n次バンドパスフィルタ412〜41nを用い
てそれぞれ2次〜n次高調波成分を検出し、加算器42
で加算して高調波分電流とし、これを電流指令値Ih*
としてインバータ2を制御するものである。
In addition to the pq operation method, there is a band pass filter method as shown in FIG. This is the current detector CT
The second to n-th order harmonic components are respectively detected by using the second to n-th order band-pass filters 41 2 to 41 n which pass the second to n-th order harmonics of the load current I L detected by L , respectively. 42
To obtain a harmonic component current, which is referred to as a current command value Ih *.
To control the inverter 2.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記図3の
p−q演算法は、高調波成分を一括し検出して制御する
ため各次数に分けて細かく制御することができない。ま
た、図4のバンドパスフィルタ方式は各次高調波成分を
それぞれ各バンドパスフィルタにより検出しているの
で、各次数に分離することは可能であるが、補償しよう
とする次数分のハイパスフィルタ回路が必要となり、ま
た分離した特性がフィルタの回路定数によって決まって
しまう欠点がある。
In the pq operation method shown in FIG. 3, since harmonic components are detected and controlled collectively, fine control cannot be performed for each order. Further, in the band-pass filter system shown in FIG. 4, since each higher-order harmonic component is detected by each band-pass filter, it is possible to separate each higher-order component. However, a high-pass filter circuit for the order to be compensated can be used. And there is a disadvantage that the separated characteristics are determined by the circuit constant of the filter.

【0006】本発明は、従来のこのような問題点に鑑み
てなされたものであり、その目的とするところは、次数
分の回路を用いることなく、各次高調波の振幅及び位相
を細かく制御することができるアクティブフィルタの制
御方法を提供することにある。
The present invention has been made in view of such conventional problems, and has as its object to finely control the amplitude and phase of each harmonic without using circuits of the order. An object of the present invention is to provide a control method of an active filter that can perform the control.

【0007】[0007]

【課題を解決するための手段】本発明は、負荷電流信号
を高速フーリエ変換演算回路でフーリエ解析し、その解
析データからディジタルフィルタ演算回路で負荷電流高
調波の振幅,位相データを求め、このデータを基に各次
高調波合成回路で補償電流指令値を求める。前記ディジ
タルフィルタ演算回路からのデータは各次成分の振幅及
び位相情報が完全に分離されたものとなるので、合成す
る次数成分を選択することにより負荷電流高調波を次数
ごとに補償することが可能となる。
According to the present invention, a load current signal is subjected to Fourier analysis by a fast Fourier transform operation circuit, and the amplitude and phase data of the load current harmonic are obtained from the analysis data by a digital filter operation circuit. , A compensation current command value is obtained in each of the higher harmonic synthesis circuits. Since the data from the digital filter operation circuit is obtained by completely separating the amplitude and phase information of each order component, it is possible to compensate the load current harmonic for each order by selecting the order component to be synthesized. Becomes

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1 図1にアクティブフィルタの制御ブロックを示す。同図
において、1はアクティブフィルタ(AF)、2は系統
に出力するAFのインバータ、3は負荷電流検出器CT
Lで検出した負荷電流ILをフーリエ解析するFFT(高
速フーリエ変換)演算回路、5はフーリエ解析されたデ
ータから負荷電流の各次数成分の振幅及び位相データを
得るディジタルフィルタ演算回路、9はそのデータを合
成してインバータ2へ補償電流指令値Ih*を出力する
各次高調波合成回路である。
Embodiment 1 FIG. 1 shows a control block of an active filter. In the figure, 1 is an active filter (AF), 2 is an AF inverter that outputs to the system, and 3 is a load current detector CT.
FFT (Fast Fourier Transform) arithmetic circuit for performing Fourier analysis of load current I L detected by L , digital filter arithmetic circuit 5 for obtaining amplitude and phase data of each order component of load current from data subjected to Fourier analysis, 9 Each harmonic synthesis circuit synthesizes data and outputs a compensation current command value Ih * to the inverter 2.

【0009】本発明は、負荷電流ILをFFT演算回路
3でフーリエ解析し、ディジタルフィルタ演算回路5で
フィルタ演算して負荷電流高調波の各次成分の振幅及び
位相データを求める。このため各次成分の振幅及び位相
情報は完全に分離できる。
According to the present invention, the load current IL is subjected to Fourier analysis by the FFT operation circuit 3 and the digital filter operation circuit 5 performs filter operation to obtain the amplitude and phase data of each order component of the load current harmonic. Therefore, the amplitude and phase information of each next component can be completely separated.

【0010】この分離された各次成分の振幅位相データ
を基に各次高調波合成回路9で補償しようとする各次成
分のデータを合成して補償電流指令値Ih*得る。した
がって、AFは負荷電流の高調波を次数毎にきめ細かに
抑制することが可能となる。
Based on the separated amplitude and phase data of each of the next-order components, data of each of the next-order components to be compensated by each of the higher-order harmonic synthesis circuits 9 is synthesized to obtain a compensation current command value Ih *. Therefore, the AF can finely suppress the harmonics of the load current for each order.

【0011】実施の形態2 図2アクティブフィルタ(AF)の制御ブロックの他の
例を示す。なお、前記図1に示したものと同一構成部分
は、同一符号を付してその重複する説明を省略する。
Embodiment 2 FIG. 2 shows another example of the control block of the active filter (AF). The same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.

【0012】図2において、4は電源電流検出器CTS
で検出した電源電流ISをフーリエ解析するFFT演算
回路、6はそのフーリエ解析されたデータから負荷電流
の各次数成分の振幅及び位相データを得るディジタルフ
ィルタ演算回路、7はディジタルフィルタ演算回路4及
び6からの同時検出の負荷電流IL及び電源電流ISの高
調波の振幅及び位相データを比較して負荷高調波と電源
高調波の伝達特性を求める伝達特性演算回路。
In FIG. 2, reference numeral 4 denotes a power supply current detector CT S
In FFT calculation circuit for Fourier analysis of the power current I S detected, 6 digital filter operation circuit for obtaining an amplitude and phase data of each order component of the load current from the Fourier analysis data, 7 digital filter operation circuit 4 and load current I L and the power supply current I S transfer characteristic calculation circuit harmonics by comparing the amplitude and phase data determine the transfer characteristic of the load harmonics and power harmonics of simultaneous detection of six.

【0013】8はディジタルフィルタ演算回路5からの
負荷電流高調波の振幅及び位相データを上記負荷高調波
と電源高調波の伝達特性で調整する振幅・位相調整回
路、9はこの調整された負荷電流の各次高調波の振幅及
び位相データを合成してインバータ2へ補償電流指令値
Ih*を出力する各次高調波合成回路である。
Reference numeral 8 denotes an amplitude / phase adjusting circuit for adjusting the amplitude and phase data of the load current harmonic from the digital filter operation circuit 5 by using the transfer characteristics of the load harmonic and the power supply harmonic, and 9 denotes the adjusted load current. , And outputs the compensation current command value Ih * to the inverter 2 by synthesizing the amplitude and phase data of each harmonic.

【0014】本発明は、負荷電流IL及び電源電流IS
同時に検出し、それぞれ高速フーリエ変換回路3及び5
とディジタルフィルタ演算回路4及び6で電流IL,IS
の高調波を各次数成分に分離し、伝達特性演算回路7で
比較して負荷電流高調波と電源電流高調波の伝達特性を
求め、振幅・位相調整回路8でこの伝達特性に基づいて
フィルタ演算回路5からの分離された負荷電流高調波の
各次成分の振幅及び位相データを調整する。例えば、負
荷高調波電流と電源高調波電流の振幅比(振幅特性)よ
り、電源側の成分が負荷側の成分よりも大きい場合は、
その成分がアクティブフィルタの動作にも関わらず拡大
されていることになる。(系統共振現象)従って、振
幅,位相調整回路8においてその補償成分の振幅や位相
を上記振幅特性が最小になるように調整し、後段の各次
高調波合成回路9にてその他の正常な高調波成分(振幅
特性が拡大傾向にない成分)と合成して補償電流値Ih
*を出力すれば高調波の拡大を防止することができる。
即ち、アクティブフィルタは、系統の特性に見合った最
適な補償特性を得ることが可能となる。(系統診断機
能)
According to the present invention, the load current I L and the power supply current I S are simultaneously detected, and the fast Fourier transform circuits 3 and 5 are respectively detected.
And the digital filter operation circuits 4 and 6, the currents I L and I S
Are separated into respective order components, and the transfer characteristic calculation circuit 7 compares them to obtain the transfer characteristics of the load current harmonic and the power supply current harmonic. The amplitude / phase adjustment circuit 8 calculates the filter based on the transfer characteristics. The amplitude and phase data of each component of the load current harmonic separated from the circuit 5 is adjusted. For example, according to the amplitude ratio (amplitude characteristic) of the load harmonic current and the power supply harmonic current, when the component on the power supply side is larger than the component on the load side,
That component is expanded in spite of the operation of the active filter. (System resonance phenomenon) Therefore, the amplitude and phase of the compensating component are adjusted in the amplitude and phase adjusting circuit 8 so that the amplitude characteristic is minimized, and the other normal harmonics are synthesized in each subsequent harmonic synthesizing circuit 9 in the subsequent stage. Compensating current value Ih by combining with a wave component (a component whose amplitude characteristic does not tend to expand)
If * is output, the expansion of harmonics can be prevented.
That is, the active filter can obtain an optimum compensation characteristic corresponding to the characteristic of the system. (System diagnosis function)

【0015】[0015]

【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載する効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0016】(1)補償しようとする各次高調波の振幅
及び位相を細かく制御することが可能となる。
(1) The amplitude and phase of each higher harmonic to be compensated can be finely controlled.

【0017】(2)負荷電流と電源電流の検出を同時に
行い系統の伝達特性の診断による最適な補償特性が得ら
れる。
(2) The load current and the power supply current are detected at the same time, and an optimum compensation characteristic can be obtained by diagnosing the transfer characteristic of the system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態1にかかるアクティブフィルタの制
御ブロック図。
FIG. 1 is a control block diagram of an active filter according to a first embodiment.

【図2】実施の形態2にかかるアクティブフィルタの制
御ブロック図。
FIG. 2 is a control block diagram of an active filter according to a second embodiment.

【図3】従来例にかかるアクティブフィルタの制御ブロ
ック図。
FIG. 3 is a control block diagram of an active filter according to a conventional example.

【図4】他の従来例にかかるアクティブフィルタの制御
ブロック図。
FIG. 4 is a control block diagram of an active filter according to another conventional example.

【符号の説明】[Explanation of symbols]

1…アクティブフィルタ(AF) 2…インバータ 3,5…FFT(高速フーリエ変換)演算回路 4,6…ディジタルフィルタ演算回路 7…伝達特性演算回路 8…振幅・位相調整回路 9…各次高調波合成回路 31…3相2相変換回路 33,34…ハイパスフィルタ 35…2相3相変換回路 412〜41n…2次〜n次バンドパスフィルタREFERENCE SIGNS LIST 1 Active filter (AF) 2 Inverter 3 5 FFT (fast Fourier transform) operation circuit 4 6 Digital filter operation circuit 7 Transfer characteristic operation circuit 8 Amplitude / phase adjustment circuit 9 Circuit 31 ... three-phase two-phase conversion circuit 33, 34 ... high-pass filter 35 ... two-phase three-phase conversion circuit 41 2 to 41 n ... second to n-th order band-pass filter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02M 7/48 H02M 7/48 E ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H02M 7/48 H02M 7/48 E

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負荷電流信号から補償電流指令値を求め
てインバータを制御して系統に補償電流を出力する電力
用アクティブフィルタにおいて、 負荷電流信号を高速フーリエ変換演算回路でフーリエ解
析し、 このフーリエ解析データをディジタルフィルタ演算して
負荷電流高調波各次成分の振幅,位相データを求め、 この分離された各次成分の振幅,位相データを基に補償
しようとする高調波各次成分を合成して前記補償電流指
令値を求めることを特徴とする電力用アクティブフィル
タの制御方法。
1. A power active filter for obtaining a compensation current command value from a load current signal and controlling an inverter to output a compensation current to a system, wherein a Fourier analysis of the load current signal is performed by a fast Fourier transform operation circuit. The analysis data is digitally filtered to obtain the amplitude and phase data of each component of the load current harmonic, and the harmonic components to be compensated are synthesized based on the separated amplitude and phase data of each component. A method for controlling a power active filter, wherein the compensation current command value is obtained by the following method.
【請求項2】 負荷電流信号から補償電流指令値を求め
てインバータを制御して系統に補償電流を出力する電力
用アクティブフィルタにおいて、 負荷電流信号及び電源電流信号をそれぞれ高速フーリエ
変換演算回路でフーリエ解析し、 この各フーリエ解析データをそれぞれ第1及び第2のデ
ィジタルフィルタ演算回路でフィルタ演算して負荷電流
高調波及び電源電流高調波の各次成分の振幅,位相デー
タを求め、 この分離された負荷電流高調波及び電源高調波の各次成
分の振幅,位相データを伝達特性演算回路で比較して負
荷電流高調波と電源高調波の伝達特性を求め、 第1ディジタルフィルタ演算回路で分離された負荷電流
高調波各次成分の振幅,位相データを前記伝達特性で調
整し、 この調整されたデータを基に補償しようとする負荷電流
高調波の各次成分を合成して前記補償電流指令値を求め
ることを特徴とする電力用アクティブフィルタ。
2. An active power filter for obtaining a compensation current command value from a load current signal and controlling an inverter to output a compensation current to a system, wherein the load current signal and the power supply current signal are each subjected to a Fourier transform by a fast Fourier transform operation circuit. The Fourier analysis data is filtered by first and second digital filter calculation circuits to obtain the amplitude and phase data of the respective harmonic components of the load current harmonic and the power supply current harmonic. The transfer characteristic calculation circuit compares the amplitude and phase data of each component of the load current harmonic and the power supply harmonic to determine the transfer characteristic of the load current harmonic and the power supply harmonic, and is separated by the first digital filter calculation circuit. The amplitude and phase data of each component of the load current harmonic are adjusted by the transfer characteristics, and the load to be compensated is adjusted based on the adjusted data. Active filter for power and obtaining the compensation current command value by combining the following components in the flow harmonics.
JP29827096A 1996-11-11 1996-11-11 Active filter for power Expired - Lifetime JP3528475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29827096A JP3528475B2 (en) 1996-11-11 1996-11-11 Active filter for power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29827096A JP3528475B2 (en) 1996-11-11 1996-11-11 Active filter for power

Publications (2)

Publication Number Publication Date
JPH10145972A true JPH10145972A (en) 1998-05-29
JP3528475B2 JP3528475B2 (en) 2004-05-17

Family

ID=17857471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29827096A Expired - Lifetime JP3528475B2 (en) 1996-11-11 1996-11-11 Active filter for power

Country Status (1)

Country Link
JP (1) JP3528475B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2233193A1 (en) * 2003-11-18 2005-06-01 Enertron, S.L. Active filter for use in nonlinear load network, has processor comprising block distortion analyzer, and logic block receiving output signal of current sensors for ordering features of inverter bridge
CN1305195C (en) * 2003-06-09 2007-03-14 清华大学 Active power filtering method with inversing capacitor regulation and branch impendance controlled decoupling
JP2008306829A (en) * 2007-06-07 2008-12-18 Meidensha Corp Harmonic current compensator
JP2009213322A (en) * 2008-03-06 2009-09-17 Yanmar Co Ltd Distributed power supply system
JP2010166719A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Motor drive control device, compressor, blower, air conditioner, and refrigerator or freezer
JP2010187521A (en) * 2009-01-16 2010-08-26 Mitsubishi Electric Corp Motor drive controller, compressor, blower, air conditioner and refrigerator or freezer
JP2010288437A (en) * 2009-05-13 2010-12-24 Meidensha Corp Control method for power converting device, uninterruptible power supply device, and parallel instantaneous-voltage-drop compensation device
JP2012151963A (en) * 2011-01-18 2012-08-09 Daikin Ind Ltd Power conversion device
DE102014208195A1 (en) 2013-05-01 2014-11-06 Toshiba Kikai Kabushiki Kaisha Inverter device and inverter generator
CN104635140A (en) * 2014-12-29 2015-05-20 国家电网公司 Low-voltage active power filter testing device and testing method thereof
CN104833853A (en) * 2015-05-14 2015-08-12 电子科技大学 Frequency-adaptive slide window DFT harmonic wave detection method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305195C (en) * 2003-06-09 2007-03-14 清华大学 Active power filtering method with inversing capacitor regulation and branch impendance controlled decoupling
ES2233193A1 (en) * 2003-11-18 2005-06-01 Enertron, S.L. Active filter for use in nonlinear load network, has processor comprising block distortion analyzer, and logic block receiving output signal of current sensors for ordering features of inverter bridge
JP2008306829A (en) * 2007-06-07 2008-12-18 Meidensha Corp Harmonic current compensator
JP2009213322A (en) * 2008-03-06 2009-09-17 Yanmar Co Ltd Distributed power supply system
JP2010166719A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Motor drive control device, compressor, blower, air conditioner, and refrigerator or freezer
JP2010187521A (en) * 2009-01-16 2010-08-26 Mitsubishi Electric Corp Motor drive controller, compressor, blower, air conditioner and refrigerator or freezer
JP2010288437A (en) * 2009-05-13 2010-12-24 Meidensha Corp Control method for power converting device, uninterruptible power supply device, and parallel instantaneous-voltage-drop compensation device
JP2012151963A (en) * 2011-01-18 2012-08-09 Daikin Ind Ltd Power conversion device
DE102014208195A1 (en) 2013-05-01 2014-11-06 Toshiba Kikai Kabushiki Kaisha Inverter device and inverter generator
CN104635140A (en) * 2014-12-29 2015-05-20 国家电网公司 Low-voltage active power filter testing device and testing method thereof
CN104833853A (en) * 2015-05-14 2015-08-12 电子科技大学 Frequency-adaptive slide window DFT harmonic wave detection method
CN104833853B (en) * 2015-05-14 2017-08-11 电子科技大学 A kind of adaptive sliding window DFT harmonic detecting methods of frequency

Also Published As

Publication number Publication date
JP3528475B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
EP0492396B1 (en) Parallel inverter system
JPH10145972A (en) Control method for power active filter
US4964027A (en) High efficiency power generating system
EP0597039A1 (en) Plural inverter control arrangement
US4755738A (en) Reactive power compensation apparatus
EP3544170B1 (en) Feedback control for parallel power converter synchronization
US5309353A (en) Multiple reference frame controller for active filters and power line conditioners
JP2002010686A (en) Control unit for ac motor
US4401934A (en) Adaptive control system for line-commutated inverters
JPH09322556A (en) Voltage system linkage inverter system
JP3570913B2 (en) Control device for semiconductor switch
JPH04133633A (en) Uninterruptible power unit
JPH01270771A (en) Controller for pwm inverter
JPH0783599B2 (en) Control method of circulating current type cycloconverter
JP2774246B2 (en) Control device for current source converter
JP3252634B2 (en) Inverter circuit output voltage control method
JP3110898B2 (en) Inverter device
JP2006060961A (en) Power conversion device
JPH06284731A (en) Control device of power conversion apparatus
JP3274274B2 (en) Demagnetization suppression control circuit
JPH09140164A (en) Controller for suppressing anhysteresis and power conversion system employing it
JPH11225477A (en) Sine wave converter with filtering function
JPH077960A (en) Pulse width modulation controlling method and pulse width modulation processing method
JPH07245876A (en) Controller of system inverter
JPH04352014A (en) Instantaneous reactive power compensating device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term