JP3528379B2 - Heat treatment furnace - Google Patents

Heat treatment furnace

Info

Publication number
JP3528379B2
JP3528379B2 JP32230495A JP32230495A JP3528379B2 JP 3528379 B2 JP3528379 B2 JP 3528379B2 JP 32230495 A JP32230495 A JP 32230495A JP 32230495 A JP32230495 A JP 32230495A JP 3528379 B2 JP3528379 B2 JP 3528379B2
Authority
JP
Japan
Prior art keywords
exhaust
heat treatment
pressure
header
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32230495A
Other languages
Japanese (ja)
Other versions
JPH09138074A (en
Inventor
信一郎 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP32230495A priority Critical patent/JP3528379B2/en
Publication of JPH09138074A publication Critical patent/JPH09138074A/en
Application granted granted Critical
Publication of JP3528379B2 publication Critical patent/JP3528379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、熱処理炉に関し、
詳しくは、電子部品用のセラミック素体などを熱処理す
る場合に用いられる、熱処理時に被熱処理物から発生す
る分解ガスや燃焼ガスなどを排気するための排気機構を
備えた熱処理炉に関する。 【0002】 【従来の技術】セラミック電子部品などを製造する工程
において用いられる熱処理炉の一つとして、例えば、図
3に示すような熱処理炉が知られている。この熱処理炉
は、被熱処理物51(バインダーを含むセラミック素体
など)を通過させながらその熱処理を行う炉本体52
と、炉本体52に、その長手方向(被熱処理物51の移
動方向)に所定の間隔をおいて配設された、被熱処理物
51から発生する分解ガスや燃焼ガスを排気するための
複数の排気ダクト53(53a,53b,53c,53
d)と、複数の排気ダクト53が接続される排気ヘッダ
54とを備えて構成されている。 【0003】そして、各排気ダクト53には、内部の温
度を検出するための熱電対55、及び各排気ダクト53
からの排気量を制御するための手動弁56が配設されて
いる。また、排気ヘッダ54には弁57を備えた排気管
58が接続されている。 【0004】そして、上記従来の熱処理炉においては、
各排気ダクト53に配設された熱電対55により検出さ
れる温度が所定の範囲(例えば、100℃±20℃)に
なるように手動弁56を操作することにより、各排気ダ
クト53からの排気量に偏りが生じないようにしてい
る。 【0005】 【発明が解決しようとする課題】しかし、上記従来の熱
処理炉においては、例えば、排気ダクト53dの詰りの
程度が大きくなった場合、排気ダクト53a,53b,
53cからの排気量が変動するが、排気ダクト53dの
手動弁56を操作して排気ダクト53dからの排気量を
調整すると、他の排気ダクト53a,53b,53cか
らの排気量が変動するため、排気量の全量のばらつきや
各排気ダクト53a,53b,53c,53dからの排
気量の偏りを、手動弁56を操作することにより調整す
ることは容易でないという問題点がある。 【0006】また、手動弁56を自動弁に代える方法も
考えられるが、各排気ダクト53が一つの排気ヘッダ5
4につながっているため、各排気ダクト53に設けた弁
を自動で作動させた場合、パラメータが多く、実際に精
度よく排気量を制御することは困難であるのが実情であ
る。 【0007】本発明は、上記問題点を解決するものであ
り、排気量の全量のばらつきや複数の排気ダクトのそれ
ぞれからの排気量の偏りを少なくして、熱処理時の分解
ガスを安定して効率よく系外に排気しながら良好な熱処
理を行うことが可能な熱処理炉を提供することを目的と
する。 【0008】 【課題を解決するための手段】上記目的を達成するため
に、本発明の熱処理炉は、熱処理時に被熱処理物から発
生する分解ガスや燃焼ガスなどを排気するための排気機
構を備えた熱処理炉において、被熱処理物の熱処理を行
う炉本体と、前記炉本体の所定の複数の位置に接続さ
れ、該所定の位置から排気を行う複数の排気ダクトと、
前記複数の排気ダクトが接続される排気ヘッダと、前記
排気ヘッダ内の圧力と大気圧との差圧を検出する微差圧
計と、前記排気ヘッダに外気を取り込む外気取込弁と、
前記微差圧計により検出される排気ヘッダ内の圧力と大
気圧との差圧に応じて前記外気取込弁の開度を調整し、
前記排気ヘッダ内の圧力と大気圧との差圧を所定の範囲
に保持するヘッダ圧コントローラと、前記複数の排気ダ
クト内の温度を検出するための温度検出手段と、前記複
数の排気ダクトに配設された、各排気ダクトからの排気
量を制御するための排気量制御弁と、前記温度検出手段
により検出される各排気ダクト内の温度に応じて前記排
気量制御弁の開度を所定の範囲内で変化させ、各排気ダ
クトからの排気量を調整することにより、前記複数の排
気ダクト内の温度を所定の範囲に保持する出力制限付き
温度コントローラとを具備することを特徴としている。 【0009】 【作用】本発明の熱処理炉においては、微差圧計によ
り検出される圧力差に応じてヘッダ圧コントローラによ
り外気取込弁の開度を調整し、外気取込弁から排気ヘッ
ダに適量の外気を取り込むことにより排気ヘッダ内の圧
力を制御するとともに、各排気ダクトからの排気量を
制御するための排気量制御弁の開度を、出力制限付き温
度コントローラにより所定の範囲内で制御することによ
り、排気量の全量のばらつきや複数の排気ダクトのそれ
ぞれからの排気量の偏りを少なくして、熱処理時の分解
ガスを安定して効率よく系外に排気しながら良好な熱処
理を行うことが可能になる。 【0010】なお、出力制限付き温度コントローラと
は、設定値と測定値との間に大きな差がある場合には、
出力を0〜100%の範囲で変化させ、排気量制御弁の
開度も0〜100%(全閉〜全開)の範囲で変化させる
ようにした一般的な温度コントローラとは異なる特殊な
仕様のもので、排気量の大幅な変動を避けるために、温
度コントローラの出力を制限し、排気量制御弁の開度を
所定の制限された範囲内で変化させるようにした温度コ
ントローラを意味する概念である。すなわち、この出力
制限付き温度コントローラによれば、排気量制御弁の開
を、例えば、Hiで20%、Loで10%の範囲とな
るように制限することができる。 【0011】 【発明の実施の形態】以下、本発明の実施の形態を示し
てその特徴とするところをさらに詳しく説明する。 【0012】図1及び図2は、本発明の一実施の形態に
かかる熱処理炉の構成を示す図である。この熱処理炉
は、被熱処理物1(バインダーを含むセラミック素体な
ど)を通過させながらその熱処理を行う炉本体2と、炉
本体2の所定の複数の位置から排気を行うための複数の
排気ダクト3(3a,3b,3c,3d)と、複数の排
気ダクト3が接続される排気ヘッダ4と、排気ヘッダ内
4の圧力と大気圧との差圧を検出する微差圧計9(図
1)と、排気ヘッダ4内の圧力と大気圧との差圧を所定
の範囲に保持するために排気ヘッダ4に外気を取り込む
ための外気取込弁10と、微差圧計9により検出される
圧力差に応じて外気取込弁の開度を調整して排気ヘッダ
4内の圧力を制御するヘッダ圧コントローラ11(図
1)と、複数の排気ダクト3内の温度を検出する熱電対
(温度検出手段)5と、複数の排気ダクト3に配設され
た排気量制御弁(自動弁)12(図2)と、熱電対5に
より検出される各排気ダクト3内の温度に応じて排気量
制御弁12の開度を制御し、各排気ダクト3からの排気
量を調整することにより、各排気ダクト3内の温度を所
定の範囲に保持する出力制限付き温度コントローラ13
(図2)とを備えて構成されている。また、排気ヘッダ
4には弁7を備えた排気管8が接続されている。 【0013】なお、上記の実施の形態にかかる熱処理炉
においては、出力制限付き温度コントローラ13とし
て、排気量制御弁12の開度をHiで20%、Loで1
0%とするような温度コントローラが用いられている。 【0014】上記のように構成された熱処理炉におい
て、排気量を調整する場合、まず、各排気ダクト3に配
設された熱電対5により検出される温度が所定の範囲に
なるように(例えば、100℃±20℃になるよう
に)、手動弁6を操作し、各排気ダクト3からの排気量
を粗調整する。その後、微差圧計9で検出した圧力差に
応じてヘッダ圧コントローラ11により外気取込弁10
の開度を調整し、外気取込弁10から排気ヘッダ4に外
気を取り込んで排気ヘッダ4内の圧力を制御するととも
に、各排気ダクト3からの排気量を制御するための排気
量制御弁12の開度を、出力制限付き温度コントローラ
13により適度に調整する。 【0015】これにより、排気量の全量のばらつきや複
数の排気ダクト3のそれぞれからの排気量の偏りを抑
制、防止することが可能になり、熱処理時に発生する分
解ガスなどを安定して効率よく系外に排気しながら良好
な熱処理を行うことが可能になる。 【0016】また、以下の条件で10日間の実炉テスト
を行った結果、安定した排気を継続して行うことがで
き、管理外れをゼロにすることができた。 排気ヘッダの圧力と大気圧との差圧 :10mmH2O 各排気ダクトの温度管理幅 :100℃±20℃ 各出力制限付き温度コントローラの出力制限 :Hi=20% :Lo=10% 【0017】なお、上記の実施の形態においては、温度
コントローラの出力制限をHiで20%、Loで10%
とした場合について説明したが、本発明の熱処理炉にお
いては出力制限の値に特別の制約はないが、通常は、H
iで20〜50%、Loで0〜20%の範囲とすること
が好ましい。 【0018】また、上記の実施の形態においては、排気
ヘッダの圧力と大気圧の差圧を10mmH2Oとした場合
について説明したが、通常は、排気ヘッダの圧力と大気
圧の差圧を5〜15mm程度とすることが好ましい。 【0019】また、本発明の熱処理炉においては、排気
ダクトの配設位置や配設本数などに関しても特別の制約
はなく、熱処理炉の仕様や被熱処理物の種類などを考慮
して、任意に定めることが可能である。 【0020】本発明はさらにその他の点においても、上
記実施の形態に限定されるものではなく、炉本体の構
造、ヘッダ圧コントローラや出力制限付き温度コントロ
ーラの具体的な構成、あるいは排気ヘッダ内の圧力と大
気圧との差圧を検出するための微差圧計、排気ヘッダに
外気を取り込む外気取込弁、複数の排気ダクト内の温度
を検出するための温度検出手段、各排気ダクトからの排
気量を制御するための排気量制御弁などの種類や具体的
な構成に関し、発明の要旨の範囲内において種々の応
用、変形を加えることが可能である。 【0021】 【発明の効果】上述のように、本発明の熱処理炉は、微
差圧計により検出される圧力差に応じてヘッダ圧コント
ローラにより外気取込弁の開度を調整し、外気取込弁か
ら排気ヘッダに外気を取り込むことにより排気ヘッダ内
の圧力を制御するとともに、各排気ダクトからの排気量
を制御するための排気量制御弁の開度を、出力制限付き
温度コントローラにより所定の範囲内で制御するように
しているので、排気量の全量のばらつきや複数の排気ダ
クトのそれぞれからの排気量の偏りを少なくして、熱処
理時の分解ガスを安定して効率よく系外に排気しながら
良好な熱処理を行うことができる。 【0022】すなわち、従来は、排気ダクトを掃除した
後2〜3日間で、被処理物に含まれるバインダーやその
分解物などが各排気ダクトに凝縮したり付着したりする
ため、手動弁の開度を微調整することが必要となり、そ
の後は、1日当たり1時間程度の調整作業が必要となっ
ていたが、本発明の熱処理炉によれば、従来の熱処理炉
と同様にバインダーやその分解物などが凝縮したり付着
したりした場合にも、自動で排気量調整を行うことが可
能になり、人手による弁の開度の調整が不要になる。ま
た、例えば、寸法の大きい誘電体セラミック素体を焼成
する際に、従来の熱処理炉では約0.5%程度のひび割
れ(不良)が発生していたが、本発明の熱処理炉を用い
た場合、排気量が安定するため、ひび割れによる不良を
ほぼ0%にすることができる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a heat treatment furnace,
More specifically, the present invention relates to a heat treatment furnace having an exhaust mechanism for exhausting decomposition gas, combustion gas, and the like generated from an object to be heat-treated at the time of heat treatment, which is used when heat-treating a ceramic body for an electronic component. 2. Description of the Related Art As one of the heat treatment furnaces used in the process of manufacturing ceramic electronic parts and the like, for example, a heat treatment furnace as shown in FIG. 3 is known. In this heat treatment furnace, a furnace body 52 for performing heat treatment while passing a heat-treated object 51 (such as a ceramic body containing a binder) is passed.
And a plurality of gas treatment units, which are disposed at predetermined intervals in the longitudinal direction (moving direction of the heat treatment target 51) in the furnace main body 52, for exhausting decomposition gas and combustion gas generated from the heat treatment target 51. Exhaust duct 53 (53a, 53b, 53c, 53
d), and an exhaust header 54 to which a plurality of exhaust ducts 53 are connected. [0003] Each exhaust duct 53 has a thermocouple 55 for detecting an internal temperature and each exhaust duct 53.
A manual valve 56 for controlling the amount of exhaust air from the air conditioner is provided. An exhaust pipe 58 having a valve 57 is connected to the exhaust header 54. [0004] In the above conventional heat treatment furnace,
By operating the manual valve 56 so that the temperature detected by the thermocouple 55 disposed in each exhaust duct 53 is within a predetermined range (for example, 100 ° C. ± 20 ° C.), the exhaust from each exhaust duct 53 is performed. The amount is not biased. [0005] However, in the above-mentioned conventional heat treatment furnace, for example, when the degree of clogging of the exhaust duct 53d increases, the exhaust ducts 53a, 53b,
Although the amount of exhaust from the exhaust duct 53c fluctuates, if the amount of exhaust from the exhaust duct 53d is adjusted by operating the manual valve 56 of the exhaust duct 53d, the amount of exhaust from the other exhaust ducts 53a, 53b, 53c fluctuates. There is a problem that it is not easy to adjust the variation in the total amount of exhaust gas and the deviation in the amount of exhaust gas from each exhaust duct 53a, 53b, 53c, 53d by operating the manual valve 56. It is also conceivable to replace the manual valve 56 with an automatic valve. However, each exhaust duct 53 has one exhaust header 5.
4, when the valves provided in each exhaust duct 53 are automatically operated, there are many parameters, and it is actually difficult to accurately control the exhaust amount. The present invention has been made to solve the above problems, and reduces the variation in the total amount of exhaust gas and the unevenness in the amount of exhaust gas from each of a plurality of exhaust ducts, thereby stabilizing the decomposition gas during heat treatment. An object of the present invention is to provide a heat treatment furnace capable of performing a good heat treatment while efficiently exhausting the gas to the outside of the system. [0008] In order to achieve the above object, the heat treatment furnace of the present invention has an exhaust mechanism for exhausting decomposition gas, combustion gas, and the like generated from an object to be heat-treated during heat treatment. In the heat treatment furnace, a furnace body for performing heat treatment of the object to be heat-treated, and a plurality of exhaust ducts connected to a plurality of predetermined positions of the furnace body and exhausting from the predetermined position,
An exhaust header to which the plurality of exhaust ducts are connected, a fine differential pressure gauge that detects a pressure difference between the pressure in the exhaust header and the atmospheric pressure, and an outside air intake valve that takes in outside air into the exhaust header,
Adjusting the opening of the outside air intake valve according to the pressure difference between the pressure in the exhaust header and the atmospheric pressure detected by the fine differential pressure gauge,
A header pressure controller for maintaining a differential pressure between the pressure in the exhaust header and the atmospheric pressure within a predetermined range; a temperature detecting means for detecting a temperature in the plurality of exhaust ducts; An exhaust amount control valve for controlling an exhaust amount from each exhaust duct, and an opening degree of the exhaust amount control valve according to a temperature in each exhaust duct detected by the temperature detecting means. The temperature controller is provided with a temperature controller with an output limit that keeps the temperatures in the plurality of exhaust ducts within a predetermined range by changing the exhaust amount from each exhaust duct within a range. In the heat treatment furnace according to the present invention, the opening degree of the outside air intake valve is adjusted by the header pressure controller in accordance with the pressure difference detected by the differential pressure gauge, and an appropriate amount is supplied from the outside air intake valve to the exhaust header. In addition to controlling the pressure in the exhaust header by taking in the outside air, the opening degree of an exhaust amount control valve for controlling the amount of exhaust from each exhaust duct is controlled within a predetermined range by a temperature controller with output limitation. As a result, it is possible to reduce the variation in the total amount of exhaust gas and the deviation in the amount of exhaust gas from each of the plurality of exhaust ducts, and perform good heat treatment while stably and efficiently exhausting the decomposition gas during heat treatment to the outside of the system. Becomes possible. In the case where there is a large difference between the set value and the measured value, the temperature controller with output limitation
The output is changed in the range of 0 to 100%, and the opening of the displacement control valve is also changed in the range of 0 to 100% (fully closed to fully open). This is a concept that means a temperature controller that limits the output of the temperature controller and changes the opening of the displacement control valve within a predetermined limited range in order to avoid large fluctuations in the displacement. is there. That is, according to the temperature controller with output limitation, the opening degree of the displacement control valve is, for example, 20% for Hi and 10% for Lo.
Can be limited to: DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be shown and the features thereof will be described in more detail. FIGS. 1 and 2 are views showing the configuration of a heat treatment furnace according to an embodiment of the present invention. The heat treatment furnace includes a furnace main body 2 for performing heat treatment while allowing a heat treatment target 1 (such as a ceramic body containing a binder) to pass therethrough, and a plurality of exhaust ducts for exhausting gas from a plurality of predetermined positions of the furnace main body 2. 3 (3a, 3b, 3c, 3d), an exhaust header 4 to which a plurality of exhaust ducts 3 are connected, and a fine differential pressure gauge 9 for detecting a differential pressure between the pressure in the exhaust header 4 and the atmospheric pressure (FIG. 1). An outside air intake valve 10 for taking outside air into the exhaust header 4 to maintain a pressure difference between the pressure in the exhaust header 4 and the atmospheric pressure within a predetermined range, and a pressure difference detected by the fine differential pressure gauge 9. A header pressure controller 11 (FIG. 1) for controlling the pressure in the exhaust header 4 by adjusting the opening of the outside air intake valve according to the temperature, and a thermocouple (temperature detecting means) for detecting the temperature in the plurality of exhaust ducts 3 5) and the displacements arranged in the plurality of exhaust ducts 3 The opening degree of the displacement control valve 12 is controlled in accordance with the control valve (automatic valve) 12 (FIG. 2) and the temperature in each exhaust duct 3 detected by the thermocouple 5, and the amount of exhaust from each exhaust duct 3 , The temperature controller 13 with an output limit that keeps the temperature in each exhaust duct 3 within a predetermined range.
(FIG. 2). Further, an exhaust pipe 8 having a valve 7 is connected to the exhaust header 4. In the heat treatment furnace according to the above-described embodiment, as the temperature controller 13 with output limitation, the opening degree of the displacement control valve 12 is 20% for Hi and 1 for Lo.
A temperature controller that sets the temperature to 0% is used. In the heat treatment furnace configured as described above, when adjusting the amount of exhaust gas, first, the temperature detected by the thermocouple 5 provided in each exhaust duct 3 is set to a predetermined range (for example, , 100 ° C. ± 20 ° C.), the manual valve 6 is operated, and the amount of exhaust from each exhaust duct 3 is roughly adjusted. Thereafter, the header pressure controller 11 controls the outside air intake valve 10 according to the pressure difference detected by the differential pressure gauge 9.
, The outside air is taken into the exhaust header 4 from the outside air intake valve 10 to control the pressure in the exhaust header 4, and the exhaust amount control valve 12 for controlling the amount of exhaust from each exhaust duct 3. Is appropriately adjusted by the temperature controller 13 with output restriction. This makes it possible to suppress and prevent variations in the total amount of exhaust gas and deviations in the amount of exhaust gas from each of the plurality of exhaust ducts 3 and stably and efficiently decompose gas generated during heat treatment. Good heat treatment can be performed while evacuating the system. In addition, as a result of performing an actual furnace test for 10 days under the following conditions, stable exhaust was able to be performed continuously, and uncontrollability could be reduced to zero. Differential pressure between exhaust header pressure and atmospheric pressure: 10 mmH 2 O Temperature control width of each exhaust duct: 100 ° C. ± 20 ° C. Output limit of temperature controller with each output limit: Hi = 20%: Lo = 10% In the above embodiment, the output limit of the temperature controller is set to 20% for Hi and 10% for Lo.
As described above, in the heat treatment furnace of the present invention, there is no particular restriction on the value of the power limit.
It is preferable that i is in the range of 20 to 50% and Lo is in the range of 0 to 20%. Further, in the above embodiment, the case where the pressure difference between the pressure of the exhaust header and the atmospheric pressure is set to 10 mmH 2 O has been described. It is preferably about 15 mm. Further, in the heat treatment furnace of the present invention, there is no particular restriction on the arrangement position and the number of the exhaust ducts, and the heat treatment furnace is arbitrarily selected in consideration of the specifications of the heat treatment furnace and the type of the heat treatment object. It is possible to determine. In other respects, the present invention is not limited to the above-described embodiment. The structure of the furnace main body, the specific configuration of the header pressure controller and the temperature controller with output restriction, or the structure of the exhaust header A fine differential pressure gauge for detecting a pressure difference between the pressure and the atmospheric pressure, an outside air intake valve for taking in outside air into an exhaust header, temperature detecting means for detecting temperatures in a plurality of exhaust ducts, and exhaust from each exhaust duct With respect to the type and specific configuration of the displacement control valve and the like for controlling the amount, various applications and modifications can be made within the scope of the invention. As described above, in the heat treatment furnace of the present invention, the opening degree of the outside air intake valve is adjusted by the header pressure controller in accordance with the pressure difference detected by the differential pressure gauge, and the outside air intake The pressure inside the exhaust header is controlled by taking in the outside air from the valve to the exhaust header, and the opening of the exhaust volume control valve for controlling the exhaust volume from each exhaust duct is controlled by a temperature controller with an output limit within a predetermined range. Control within the chamber, reducing variations in the total amount of exhaust and unevenness in the amount of exhaust from each of the multiple exhaust ducts, and stably and efficiently exhausts the decomposition gas during heat treatment to the outside of the system. However, a good heat treatment can be performed. That is, conventionally, within two to three days after the exhaust duct is cleaned, the binder contained in the object to be treated and its decomposed substances are condensed or adhere to each exhaust duct. However, according to the heat treatment furnace of the present invention, the binder and the decomposed product thereof were used similarly to the conventional heat treatment furnace. Even when condensation or the like is condensed or attached, it becomes possible to automatically adjust the displacement, and it is not necessary to manually adjust the opening degree of the valve. Further, for example, when firing a dielectric ceramic body having a large size, cracks (defectives) of about 0.5% occur in a conventional heat treatment furnace, but when the heat treatment furnace of the present invention is used. Since the displacement is stable, defects due to cracks can be reduced to almost 0%.

【図面の簡単な説明】 【図1】本発明の実施の形態にかかる熱処理炉の構成を
示す正面図である。 【図2】本発明の実施の形態にかかる熱処理炉の要部を
示す側面図である。 【図3】従来の熱処理炉の構成を示す図である。 【符号の説明】 1 被熱処理物 2 炉本体 3(3a,3b,3c,3d) 排気ダクト 4 排気ヘッダ 5 熱電対 6 手動弁 7 弁 8 排気管 9 微差圧計 10 外気取込弁 11 ヘッダ圧コントローラ 12 排気量制御弁 13 出力制限付き温度コン
トローラ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view showing a configuration of a heat treatment furnace according to an embodiment of the present invention. FIG. 2 is a side view showing a main part of the heat treatment furnace according to the embodiment of the present invention. FIG. 3 is a diagram showing a configuration of a conventional heat treatment furnace. [Description of Signs] 1 Heat treatment target 2 Furnace main body 3 (3a, 3b, 3c, 3d) Exhaust duct 4 Exhaust header 5 Thermocouple 6 Manual valve 7 Valve 8 Exhaust pipe 9 Micro differential pressure gauge 10 Outside air intake valve 11 Header pressure Controller 12 Displacement control valve 13 Temperature controller with output restriction

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−127977(JP,A) 特開 平1−119615(JP,A) 特開 昭51−63031(JP,A) 特開 昭63−183372(JP,A) 特開 平3−148714(JP,A) 特開 平1−281508(JP,A) 特開 平2−69807(JP,A) (58)調査した分野(Int.Cl.7,DB名) F27B 9/40 F27B 9/30 F27D 19/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-127977 (JP, A) JP-A-1-119615 (JP, A) JP-A-51-63031 (JP, A) JP-A-63- 183372 (JP, A) JP-A-3-148714 (JP, A) JP-A-1-281508 (JP, A) JP-A-2-69807 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F27B 9/40 F27B 9/30 F27D 19/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 熱処理時に被熱処理物から発生する分解
ガスや燃焼ガスなどを排気するための排気機構を備えた
熱処理炉において、 被熱処理物の熱処理を行う炉本体と、 前記炉本体の所定の複数の位置に接続され、該所定の位
置から排気を行う複数の排気ダクトと、 前記複数の排気ダクトが接続される排気ヘッダと、 前記排気ヘッダ内の圧力と大気圧との差圧を検出する微
差圧計と、 前記排気ヘッダに外気を取り込む外気取込弁と、 前記微差圧計により検出される排気ヘッダ内の圧力と大
気圧との差圧に応じて前記外気取込弁の開度を調整し、
前記排気ヘッダ内の圧力と大気圧との差圧を所定の範囲
に保持するヘッダ圧コントローラと、 前記複数の排気ダクト内の温度を検出するための温度検
出手段と、 前記複数の排気ダクトに配設された、各排気ダクトから
の排気量を制御するための排気量制御弁と、 前記温度検出手段により検出される各排気ダクト内の温
度に応じて前記排気量制御弁の開度を所定の範囲内で変
化させ、各排気ダクトからの排気量を調整することによ
り、前記複数の排気ダクト内の温度を所定の範囲に保持
する出力制限付き温度コントローラとを具備することを
特徴とする熱処理炉。
(57) [Claim 1] A heat treatment furnace provided with an exhaust mechanism for exhausting decomposition gas, combustion gas, and the like generated from an object to be heat-treated during heat treatment, wherein the furnace performs heat treatment of the object to be heat-treated. A main body, a plurality of exhaust ducts connected to a plurality of predetermined positions of the furnace main body, and exhaust from the predetermined position, an exhaust header to which the plurality of exhaust ducts are connected, and a pressure in the exhaust header. A slight differential pressure gauge for detecting a differential pressure from the atmospheric pressure, an outside air intake valve for taking outside air into the exhaust header, and a differential pressure between the pressure in the exhaust header and the atmospheric pressure detected by the fine differential pressure gauge. Adjusting the opening degree of the outside air intake valve,
A header pressure controller for maintaining a pressure difference between the pressure in the exhaust header and the atmospheric pressure within a predetermined range; a temperature detecting means for detecting a temperature in the plurality of exhaust ducts; An exhaust amount control valve for controlling an exhaust amount from each exhaust duct, and an opening degree of the exhaust amount control valve according to a temperature in each exhaust duct detected by the temperature detecting means. A heat controller having an output-limited temperature controller that keeps the temperature in the plurality of exhaust ducts within a predetermined range by changing the exhaust amount from each exhaust duct within a range. .
JP32230495A 1995-11-15 1995-11-15 Heat treatment furnace Expired - Lifetime JP3528379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32230495A JP3528379B2 (en) 1995-11-15 1995-11-15 Heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32230495A JP3528379B2 (en) 1995-11-15 1995-11-15 Heat treatment furnace

Publications (2)

Publication Number Publication Date
JPH09138074A JPH09138074A (en) 1997-05-27
JP3528379B2 true JP3528379B2 (en) 2004-05-17

Family

ID=18142140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32230495A Expired - Lifetime JP3528379B2 (en) 1995-11-15 1995-11-15 Heat treatment furnace

Country Status (1)

Country Link
JP (1) JP3528379B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161594B1 (en) 2021-10-27 2022-10-26 株式会社ノリタケカンパニーリミテド heating furnace

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348990B2 (en) * 2003-04-15 2009-10-21 セイコーエプソン株式会社 Droplet discharge device
JP2014066466A (en) * 2012-09-27 2014-04-17 Ngk Insulators Ltd Continuous heating furnace
CN108931145A (en) * 2018-04-20 2018-12-04 杭州电子科技大学 A kind of method of ceramic kiln air door automatic adjustment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161594B1 (en) 2021-10-27 2022-10-26 株式会社ノリタケカンパニーリミテド heating furnace

Also Published As

Publication number Publication date
JPH09138074A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JPS6078285A (en) Tunnel kiln
JP2006518445A (en) Method and system for uniform heat treatment of materials
JP3528379B2 (en) Heat treatment furnace
US7575643B2 (en) Carburization treatment method
WO2007126340A1 (en) Tunnel kiln for firing ceramic items
JP3571759B2 (en) Drying oven for raw ceramic products
JP3023184B2 (en) Continuous tunnel furnace
JP3307697B2 (en) Batch type firing furnace
CN106766970A (en) A kind of recuperation of heat ducting system for kiln
JPH10197166A (en) Heating device
JP3187991B2 (en) Furnace atmosphere control device
JP3254747B2 (en) Vertical heat treatment furnace and heat treatment method
JP4239335B2 (en) Heating furnace atmosphere control device
JPS61119987A (en) Method of controlling furnace pressure of continuous type heating furnace
JPH085255A (en) Continuous kiln
JP5432665B2 (en) Hot air drying method for inorganic materials
JPH01203888A (en) Heat treating furnace
JP2592727B2 (en) Green substrate drying equipment with continuous drying oven
JPH02157591A (en) Cooling control method for tunnel type continuous firing furnace
JPH01316417A (en) Device for controlling dew point in atmospheric furnace
JPS60256785A (en) Control method in continuous type calciner
JPH0643133Y2 (en) Continuous sintering furnace
JP2001263949A (en) Method and apparatus for controlling supply and discharge of air in drying device
RU2232959C2 (en) Control system of material roasting process in rotating furnace
JPH10259996A (en) Roller hearth kiln and its operation method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term