JP3528282B2 - Manufacturing method of single crystal thin film quartz - Google Patents

Manufacturing method of single crystal thin film quartz

Info

Publication number
JP3528282B2
JP3528282B2 JP30048294A JP30048294A JP3528282B2 JP 3528282 B2 JP3528282 B2 JP 3528282B2 JP 30048294 A JP30048294 A JP 30048294A JP 30048294 A JP30048294 A JP 30048294A JP 3528282 B2 JP3528282 B2 JP 3528282B2
Authority
JP
Japan
Prior art keywords
single crystal
thin film
crystal
quartz
crystal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30048294A
Other languages
Japanese (ja)
Other versions
JPH08157297A (en
Inventor
素之 田中
貴浩 今井
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP30048294A priority Critical patent/JP3528282B2/en
Priority to US08/567,530 priority patent/US6028020A/en
Priority to KR1019950046693A priority patent/KR100353721B1/en
Priority to DE69520196T priority patent/DE69520196T2/en
Priority to EP95119102A priority patent/EP0716167B1/en
Publication of JPH08157297A publication Critical patent/JPH08157297A/en
Application granted granted Critical
Publication of JP3528282B2 publication Critical patent/JP3528282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発振子、振動子、高周
波フィルター用表面弾性波素子、光導波路等に用いられ
る単結晶薄膜水晶、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal thin film crystal used for an oscillator, a vibrator, a surface acoustic wave device for a high frequency filter, an optical waveguide, etc., and a method for manufacturing the same.

【0002】[0002]

【従来の技術】水晶は二酸化ケイ素の低温相(<573
℃)であるが、この水晶型構造の基本となる石英型の骨
格は870℃以下でなければ安定ではない。しかし、二
酸化ケイ素の融点はこれよりもはるかに高い1730℃
であり、この融点の近傍ではクリストバライト型結晶構
造が安定であるので、単純な高温処理では水晶を合成す
ることができないとされている。
Quartz is a low temperature phase of silicon dioxide (<573
However, the skeleton of the quartz mold which is the basis of this quartz crystal structure is not stable unless it is 870 ° C. or lower. However, the melting point of silicon dioxide is much higher than this, 1730 ° C.
Since the cristobalite crystal structure is stable in the vicinity of this melting point, it is said that quartz cannot be synthesized by a simple high temperature treatment.

【0003】従来の水晶製造技術としては、高温高圧下
で温度差を設けて二酸化ケイ素のアルカリ溶液から種結
晶上に水晶単結晶を成長させる水熱合成法しかなかっ
た。この方法による水晶の製造プロセスは、例えばセラ
ミックス15(1980)、No.3、p.170〜17
5に記載されている。
As a conventional crystal manufacturing technique, there has been only a hydrothermal synthesis method in which a crystal single crystal is grown on a seed crystal from an alkaline solution of silicon dioxide by providing a temperature difference under high temperature and high pressure. The manufacturing process of the crystal by this method is, for example, Ceramics 15 (1980), No. 3, p.
5 are described.

【0004】上記文献によれば、水熱温度差法による水
晶の製造方法は、大型のオートクレーブにアルカリ水溶
液(例えば0.5〜1NのNaOH又はNa2CO3水溶
液)を充填し、容器の下部に原料の屑水晶(ラスカ)を
及び上部には対流制御板を介して種子結晶を配置し、密
閉した容器を外部ヒーターにより加熱する。その際、容
器の上部を330〜340℃及び下部を360〜370
℃として一定の温度差を与え、内部圧力を800〜15
00kg/cm2の高圧とすることによって、原料の屑
水晶が溶解して対流により上部に運ばれ、下部に比べて
低温の上部で過飽和状態となり、水晶が種子結晶上に析
出して成長する。
According to the above-mentioned document, the method for producing quartz by the hydrothermal temperature difference method is to fill a large autoclave with an alkaline aqueous solution (for example, 0.5 to 1N NaOH or Na 2 CO 3 aqueous solution) and to lower the container. A raw quartz crystal (lasker) and a seed crystal are placed in the upper part of the container through a convection control plate, and the sealed container is heated by an external heater. At that time, the upper part of the container is 330 to 340 ° C. and the lower part is 360 to 370.
℃ to give a certain temperature difference, the internal pressure 800 ~ 15
When a high pressure of 00 kg / cm 2 is used, the raw material waste quartz is melted and transported to the upper portion by convection, and becomes supersaturated in the upper portion, which is lower in temperature than the lower portion, and the quartz is deposited and grows on the seed crystal.

【0005】この水熱合成法では塊状の大型結晶か粒状
の粉末しか合成できないので、振動子、発振子、高周波
フィルター用表面弾性波素子等に用いるため薄膜化が必
要な場合には、この水熱合成法で製造された大型単結晶
の中から薄膜状に切り出して使用している現状である。
This hydrothermal synthesis method can synthesize only large lumpy crystals or granular powders. Therefore, when a thin film is required for use in vibrators, oscillators, surface acoustic wave devices for high frequency filters, etc., this water is used. At present, the large-sized single crystal produced by the thermal synthesis method is cut into a thin film and used.

【0006】しかしながら、近年の通信周波数の高周波
化に伴い水晶を更に薄くする必要があり、例えば特開平
5ー327383号で示さているように、水晶を半導体
基板上に張り付けて研磨を行い、水晶を薄膜に加工する
技術が提案されている。しかし、加工による薄膜製造に
は、加工できる膜厚に限界があり、かつコストが高くな
る問題があった。
However, with the recent increase in communication frequency, it is necessary to further reduce the thickness of the crystal. For example, as shown in JP-A-5-327383, the crystal is attached to a semiconductor substrate and polished to form the crystal. A technique for processing a thin film into a thin film has been proposed. However, the thin film manufacturing by processing has a problem that the film thickness that can be processed is limited and the cost becomes high.

【0007】[0007]

【発明が解決しようとする課題】従来の水晶の製造法で
ある水熱温度差法では、高圧を実現するためのオートク
レーブなどの大掛かりな装置が必要であり、巨大な装置
で大型の単結晶を育成しないとコストの低減が図れな
い。更に、この方法では任意の形状の水晶単結晶を形成
することは困難であるから、大型の単結晶を加工して目
的とする形状の水晶を切り出す必要がある。
The hydrothermal temperature difference method, which is a conventional method for manufacturing quartz, requires a large-scale device such as an autoclave for realizing a high pressure, and a large-sized single crystal can be produced by a huge device. Without raising it, the cost cannot be reduced. Further, since it is difficult to form a quartz single crystal having an arbitrary shape by this method, it is necessary to process a large-sized single crystal to cut out a quartz having a desired shape.

【0008】特に、水晶の主要な用途である発振子、振
動子、表面弾性波素子等では、近年の通信周波数の高周
波化に伴い、水晶をより薄くする必要がある。これに対
して、従来の大型の単結晶から薄い水晶を切り出す方法
では、得られる水晶の薄さは実用上50μmが限界があ
り、薄膜化の要望に対応することができなかった。
In particular, in the case of oscillators, vibrators, surface acoustic wave devices and the like, which are the main applications of quartz, it is necessary to make the quartz thinner as the communication frequency becomes higher in recent years. On the other hand, in the conventional method of cutting a thin crystal from a large single crystal, the thinness of the obtained crystal is practically limited to 50 μm, and it has not been possible to meet the demand for thinning.

【0009】本発明は、かかる従来の事情に鑑み、近年
の薄膜化の要求に十分対応できる薄さの単結晶薄膜水晶
を提供すること、及びかかる単結晶薄膜水晶をオートク
レーブ等の大掛かりな装置を必要とせずに、安価に製造
する方法を提供することを目的とする。
In view of the above conventional circumstances, the present invention provides a single crystal thin film crystal having a thickness that can sufficiently meet the recent demand for thinning, and a large-scale apparatus such as an autoclave for the single crystal thin film crystal. It is an object of the present invention to provide a low-cost manufacturing method without the need.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する単結晶薄膜水晶は、単結晶基板上
にゾルゲル法により形成された後該基板から剥離され
た、厚さ5nm以上50μm以下の二酸化ケイ素を主成
分とする単結晶薄膜水晶である。
In order to achieve the above object, a single crystal thin film quartz crystal provided by the present invention is formed on a single crystal substrate by a sol-gel method and then peeled off from the substrate. It is a single crystal thin film crystal having silicon dioxide of 50 μm or less as a main component.

【0011】又、本発明の単結晶薄膜水晶の製造方法
は、単結晶基板上にゾルゲル法により二酸化ゲルマニウ
ムを主成分とする水晶型結晶構造を有する酸化物単結晶
膜を形成し、この酸化物単結晶膜上にゾルゲル法により
二酸化ケイ素を主成分とする単結晶薄膜水晶を形成した
後、水溶液中において前記酸化物単結晶膜を溶解するこ
とにより単結晶基板から単結晶薄膜水晶を剥離すること
を特徴とする。
In the method for producing a single crystal thin film crystal of the present invention, an oxide single crystal film having a crystal type crystal structure containing germanium dioxide as a main component is formed on a single crystal substrate by a sol-gel method. Forming a single crystal thin film crystal containing silicon dioxide as a main component on the single crystal film by a sol-gel method, and then peeling the single crystal thin film crystal from the single crystal substrate by dissolving the oxide single crystal film in an aqueous solution. Is characterized by.

【0012】[0012]

【作用】発明者らは、ケイ素のアルコキシドなどを原料
として、これを溶媒に希釈した前駆体溶液を単結晶基板
上に塗布した後、加熱することにより結晶化させるゾル
ゲル法によって、5nm以上の任意の厚さの単結晶薄膜
水晶を合成する方法を見いだした。
The present inventors applied a precursor solution obtained by diluting a silicon alkoxide or the like as a raw material on a single crystal substrate and then heating it to crystallize it by a sol-gel method to obtain an arbitrary size of 5 nm or more. We have found a method of synthesizing a single crystal thin film crystal with a thickness of.

【0013】更に、二酸化ゲルマニウムを主成分とする
酸化物単結晶膜を形成した後に二酸化ケイ素を主成分と
する単結晶薄膜水晶を形成し、その後に二酸化ゲルマニ
ウムが水溶液、特に酸やアルカリに溶解しやすい事を利
用して、二酸化ゲルマニウムの単結晶膜を溶解させるこ
とによって、単結晶基板から二酸化ケイ素を主成分とす
る単結晶薄膜水晶を剥離させることにより、単結晶薄膜
水晶を製造できることを見いだした。
Further, after forming an oxide single crystal film containing germanium dioxide as a main component, a single crystal thin film crystal containing silicon dioxide as a main component is formed, and thereafter germanium dioxide is dissolved in an aqueous solution, particularly an acid or an alkali. It was found that it is possible to manufacture a single crystal thin film crystal by dissolving a single crystal film of germanium dioxide and peeling the single crystal thin film crystal containing silicon dioxide as a main component from the single crystal substrate by taking advantage of the ease. .

【0014】本発明方法で用いるゾルゲル法による単結
晶薄膜水晶の製造は、以下の手順で行う。まず、基板に
用いる単結晶を用意する。この単結晶は水晶や水晶型結
晶構造の二酸化ゲルマニウムの単結晶が成長しやすいも
のである必要が有り、単結晶水晶を用いるのがもっとも
好ましいが、サファイア、MgO等の酸化物単結晶を用
いることもできる。
Production of a single crystal thin film crystal by the sol-gel method used in the method of the present invention is carried out by the following procedure. First, a single crystal used for the substrate is prepared. This single crystal needs to be a crystal or a single crystal of germanium dioxide having a crystal type crystal structure that can easily grow. It is most preferable to use a single crystal, but use an oxide single crystal such as sapphire or MgO. You can also

【0015】第2に、ゲルマニウムのアルコキシドなど
溶媒に可溶なゲルマニウム化合物をアルコールなどの溶
媒で希釈し、得られた金属含有溶液に必要に応じてL
i、水、アミンなどの添加や、該溶液の還流を行い、ゾ
ルゲル法の前駆体溶液を形成する。この前駆体溶液をス
ピンコートやディップコート等により、水晶やサファイ
アなどの単結晶基板上に塗布する。
Second, a germanium compound soluble in a solvent such as germanium alkoxide is diluted with a solvent such as alcohol, and the obtained metal-containing solution is added with L if necessary.
i, water, amine, etc. are added and the solution is refluxed to form a precursor solution for the sol-gel method. This precursor solution is applied onto a single crystal substrate such as quartz or sapphire by spin coating or dip coating.

【0016】前駆体溶液を塗布した基板を昇温処理し、
溶媒等を蒸発させゲル化及び固化させ、更に結晶化させ
る。これにより二酸化ゲルマニウムの酸化物単結晶膜の
低温合成が可能となる。又、溶液状体でコーティングを
行うため、腑形性が高く、薄膜の形成が容易である。
The substrate coated with the precursor solution is heated to
The solvent and the like are evaporated to cause gelation and solidification, and further crystallized. This enables low-temperature synthesis of a germanium dioxide oxide single crystal film. In addition, since the coating is performed in the form of a solution, the shape is high and it is easy to form a thin film.

【0017】二酸化ゲルマニウムの酸化物単結晶膜の膜
厚は、前駆体溶液の粘度、基板の回転数、若しくは引き
上げ速度等のコーティングの条件で調整し、必要な厚さ
が得られるまで塗布から結晶化までを繰り返す。
The film thickness of the germanium dioxide oxide single crystal film is adjusted by coating conditions such as the viscosity of the precursor solution, the number of rotations of the substrate, or the pulling rate, and the film is crystallized from the coating until the required thickness is obtained. Repeat until the change.

【0018】第3に、ケイ素のアルコキシド等のケイ素
化合物を用いて、二酸化ゲルマニウムの場合と同様の方
法で、ゾルゲル法の前駆体溶液を調整し、二酸化ゲルマ
ニウムの酸化物単結晶膜の上に塗布し、結晶化させて単
結晶薄膜水晶を形成する。ここでも厚さを調節するため
に、コーティング条件を調整し、且つ必要なだけ塗布か
ら結晶化までを繰り返す。
Thirdly, a silicon compound such as silicon alkoxide is used to prepare a precursor solution for the sol-gel method in the same manner as in the case of germanium dioxide, and the precursor solution is applied onto the germanium dioxide oxide single crystal film. And crystallize to form a single crystal thin film crystal. Here again, in order to adjust the thickness, the coating conditions are adjusted, and coating to crystallization are repeated as many times as necessary.

【0019】最後に、二酸化ゲルマニウムの酸化物単結
晶膜を水溶液中で溶解して、単結晶薄膜水晶を基板から
剥離させる。水溶液は純水でも良いが、塩酸、王水、水
酸化ナトリウム、水酸化カリウム等を適当な濃度に希釈
したものが好ましい。必要があれば、単結晶薄膜水晶の
上に支持板を貼り付けた後、酸化物単結晶膜を溶解す
る。支持板には表面が正常で平滑なSiウエハーやガラ
ス板が適しており、単結晶薄膜水晶の層の上に圧着して
加熱するだけで強固に接着できる。
Finally, the germanium dioxide oxide single crystal film is dissolved in an aqueous solution to separate the single crystal thin film crystal from the substrate. The aqueous solution may be pure water, but is preferably diluted with hydrochloric acid, aqua regia, sodium hydroxide, potassium hydroxide or the like to an appropriate concentration. If necessary, a support plate is attached onto the single crystal thin film crystal, and then the oxide single crystal film is dissolved. A Si wafer or a glass plate having a normal surface and a smooth surface is suitable for the support plate, and it can be firmly bonded by simply pressing it on a single crystal thin film crystal layer and heating it.

【0020】単結晶薄膜水晶と二酸化ゲルマニウムの酸
化物単結晶膜は、塗布面の平滑性の問題から、均質で安
定な特性を有する膜を形成するには5nm以上が必要で
ある。又、これらの厚膜は、コーティング条件の調整
と、コ−テイングと乾燥の過程を複数回数繰り返すこと
によって制御することが可能である。しかし、各工程の
繰り返しの間に生じる欠陥、熱応力、面粗度などの積み
重なりから結晶性が劣化する可能性があるので、安定な
特性を得るためには膜厚が50μm以下であることが好
ましい。
The single crystal thin film quartz and the germanium dioxide oxide single crystal film require a thickness of 5 nm or more to form a film having a uniform and stable characteristic due to the problem of smoothness of the coated surface. Further, these thick films can be controlled by adjusting the coating conditions and repeating the coating and drying processes a plurality of times. However, the crystallinity may deteriorate due to stacking of defects, thermal stress, surface roughness, etc., which occur during repetition of each process. Therefore, in order to obtain stable characteristics, the film thickness should be 50 μm or less. preferable.

【0021】二酸化ケイ素又は二酸化ゲルマニウムの前
駆体溶液を塗布した基板の熱処理は、結晶化に必要な温
度で行う必要がある。熱処理温度が500℃より低くな
ると結晶化は起こらず、1200℃以上になると高温相
の別種の結晶構造が形成されてしまう。よって、これら
の熱処理温度は、500〜1200℃の範囲であること
が好ましい。又、この熱処理は、酸素雰囲気中か、又は
大気中等の酸素を含む雰囲気中で行うことが好ましい。
The heat treatment of the substrate coated with the precursor solution of silicon dioxide or germanium dioxide must be carried out at the temperature required for crystallization. If the heat treatment temperature is lower than 500 ° C., crystallization does not occur, and if it is 1200 ° C. or higher, another kind of crystal structure of a high temperature phase is formed. Therefore, these heat treatment temperatures are preferably in the range of 500 to 1200 ° C. Further, this heat treatment is preferably performed in an oxygen atmosphere or in an atmosphere containing oxygen such as air.

【0022】尚、ゾルゲル法の原料として用いる金属化
合物としては、Si(OCH34、Si(OC
254、Si(OC374、Ge(OCH34、Ge
(OC254、Ge(OC374のような金属アルコ
キシド、Si(COCH2COCH34のような金属ア
セチルアセテート、SiCl4のような金属塩化物等が
挙げられる。
The metal compounds used as raw materials for the sol-gel method include Si (OCH 3 ) 4 and Si (OC
2 H 5 ) 4 , Si (OC 3 H 7 ) 4 , Ge (OCH 3 ) 4 , Ge
Examples thereof include metal alkoxides such as (OC 2 H 5 ) 4 and Ge (OC 3 H 7 ) 4 , metal acetyl acetates such as Si (COCH 2 COCH 3 ) 4 and metal chlorides such as SiCl 4 .

【0023】水晶型結晶構造を有する酸化物単結晶の圧
電性や光学特性はその結晶構造に起因しているため、こ
れらの特性を充分に発揮させるためには、結晶のすべて
の軸を揃えて、結晶性の優れた単結晶を製造する必要が
ある。基板に単結晶基板を用い、基板と薄膜との界面に
おける結合を通して基板の結晶構造を薄膜の結晶構造に
反映させるエピタキシャル成長を利用すれば、結晶性の
優れた単結晶薄膜を製造することができる。
Since the piezoelectricity and optical characteristics of an oxide single crystal having a crystal type crystal structure are caused by the crystal structure, all axes of the crystal should be aligned in order to sufficiently exhibit these characteristics. It is necessary to produce a single crystal having excellent crystallinity. By using a single crystal substrate as a substrate and utilizing epitaxial growth in which the crystal structure of the substrate is reflected in the crystal structure of the thin film through bonding at the interface between the substrate and the thin film, a single crystal thin film having excellent crystallinity can be manufactured.

【0024】よって、本発明においては、基板に単結晶
基板を用いることにより、全ての結晶軸が同じ方向に揃
っている結晶性の優れた、従って特性の優れた単結晶薄
膜を製造することができる。かかる単結晶基板としては
酸化物単結晶が好ましく、水晶、サファイア、酸化マグ
ネシウムなどを用いることができる。このうちで水晶は
結晶構造、格子定数共に成長する薄膜とほぼ一致してい
るので最も好ましく、基板面とする結晶方位もいずれの
方位でも良い。
Therefore, in the present invention, by using a single crystal substrate as the substrate, it is possible to produce a single crystal thin film having all crystal axes aligned in the same direction and having excellent crystallinity, and thus excellent characteristics. it can. An oxide single crystal is preferable as such a single crystal substrate, and quartz, sapphire, magnesium oxide, or the like can be used. Of these, quartz is most preferable because both the crystal structure and the lattice constant are substantially the same as the growing thin film, and the crystal orientation for the substrate surface may be any orientation.

【0025】水晶型結晶構造を有する酸化物単結晶は低
温相であるため、単に昇温処理を施しただけでは結晶化
が起こらなかったり、結晶化しても高温相の別種の結晶
型になることがある。Li、Na、Kなどアルカリ金属
の添加は、水晶型の結晶構造が安定に存在する温度領域
を広げる効果があり、金属含有溶液中にこれらのアルカ
リ金属を微量添加することにより、水晶型結晶構造を有
する酸化物単結晶を合成することが容易になる。
Since an oxide single crystal having a crystal type crystal structure is a low temperature phase, crystallization does not occur by simply performing a temperature rise treatment, or even if it is crystallized, it becomes a different crystal type of a high temperature phase. There is. The addition of an alkali metal such as Li, Na or K has the effect of widening the temperature range in which the crystal structure of the crystal type exists stably. By adding a small amount of these alkali metals to the metal-containing solution, It becomes easy to synthesize an oxide single crystal having

【0026】しかし、アルカリ金属の混入は、水晶型結
晶構造を有する酸化物単結晶の特性を損なうことがある
ため、その量は微量であることが望まれる。本発明で
は、アルカリ金属の添加量は、金属含有溶液中の金属元
素量に対して3×10-4モル%以上5モル%以下である
ことが好ましい。
However, since the mixing of alkali metal may impair the characteristics of the oxide single crystal having a crystal type crystal structure, it is desired that the amount thereof be minute. In the present invention, the addition amount of the alkali metal is preferably 3 × 10 −4 mol% or more and 5 mol% or less with respect to the amount of metal element in the metal-containing solution.

【0027】中でもLiは、微量で水晶型の結晶構造が
安定に存在する温度領域を広げることができるので特に
好ましい。又、Liはアルカリ金属類の中で最も原子半
径が小さいため、水晶型結晶構造を有する酸化物単結晶
の特性に与える影響は、他の元素に比べて小さい。更
に、単結晶生成後に、高圧電界の印加によって金属イオ
ンを拡散させて取り除く電解拡散処理も、Liは他の元
素に比べて効果的に行うことができる。
Among them, Li is particularly preferable because it can expand the temperature region in which the crystal structure of the crystal type is stable in a small amount. Further, since Li has the smallest atomic radius among the alkali metals, its effect on the characteristics of the oxide single crystal having the crystal type crystal structure is smaller than that of other elements. Further, after the single crystal is formed, the electrolytic diffusion treatment for diffusing and removing the metal ions by applying a high-voltage electric field can be performed more effectively with Li than with other elements.

【0028】よって、金属含有溶液に添加するアルカリ
金属元素としてはLiが最も好ましい。最も好ましいL
iの添加量は3×10-2〜5モル%である。3×10-2
モル%以下になると、水晶型の結晶構造を安定に存在で
きる温度領域を広げる効果が弱く、5モル%以上になる
と水晶の特性の劣化が顕著になるからである。かかるL
i含有溶液を用いて本発明方法により製造した単結晶薄
膜水晶も、その全金属元素量に対して3×10-2モル%
以上5モル%以下のリチウムを含有することになる。
Therefore, Li is most preferable as the alkali metal element added to the metal-containing solution. Most preferred L
The amount of i added is 3 × 10 -2 to 5 mol%. 3 x 10 -2
This is because when the content is 5 mol% or less, the effect of expanding the temperature range in which the crystal structure of the crystal type can stably exist is weak, and when the content is 5 mol% or more, the characteristics of the crystal are significantly deteriorated. Such L
The single crystal thin film crystal produced by the method of the present invention using the i-containing solution also has a concentration of 3 × 10 -2 mol% with respect to the total amount of metal elements.
The lithium content is 5 mol% or less.

【0029】又、ゾルゲル法によって固体の合成を行う
には、溶液のゲル化過程を制御する必要がある。ゲル化
が不十分な場合には熱処理過程で原料が蒸発してしまう
ことがあり、逆にゲル化が進み過ぎると大きなゲル体が
集まるため、ゲル体間に隙間が生じたり結晶性に差が生
じたりして、緻密で良質な結晶膜の形成が困難になるた
めである。
In order to synthesize a solid by the sol-gel method, it is necessary to control the gelation process of the solution. If the gelation is insufficient, the raw materials may evaporate during the heat treatment process. Conversely, if the gelation proceeds too much, large gel bodies will collect, resulting in gaps between the gel bodies and differences in crystallinity. This is because it becomes difficult to form a dense and high-quality crystal film.

【0030】ゲル化過程を制御する方法には、前駆体溶
液に各種添加剤を添加する方法がある。例えば、水の添
加は、前駆体溶液中の金属化合物を加水分解して活性の
高い金属水酸化物を形成し、金属水酸化物間の重縮合に
よりゲル化を促進することができる。
As a method of controlling the gelation process, there is a method of adding various additives to the precursor solution. For example, addition of water can hydrolyze the metal compound in the precursor solution to form a highly active metal hydroxide, and promote gelation by polycondensation between the metal hydroxides.

【0031】水の添加量は他の添加剤との組み合わせに
よって異なるが、適度なゲル化には金属含有溶液中の全
金属元素量に対して0.2モル当量以上20モル等量以
下とすることが好ましい。その理由は、0.2モル等量
以下だとゲル化の促進が弱く、熱処理の際に原料が蒸発
してしまい緻密な膜の形成が困難になる。逆に、水を2
0モル等量以上添加するとゲル化が進みすぎて、均一に
塗布すことが困難になる。
The amount of water added varies depending on the combination with other additives, but for proper gelation, it should be 0.2 molar equivalent or more and 20 molar equivalents or less with respect to the total amount of metal elements in the metal-containing solution. It is preferable. The reason is that if the amount is less than 0.2 molar equivalent, the promotion of gelation is weak and the raw material is evaporated during the heat treatment, which makes it difficult to form a dense film. Conversely, water 2
If it is added in an amount of 0 mole equivalent or more, gelation will proceed too much, and it will be difficult to apply it uniformly.

【0032】他の添加剤として、ジエタノールアミン、
ジイソプロパノールアミン、トリエタノールアミン、又
はジエチレングリコールがある。これらの添加剤は、水
とは逆に、金属化合物との置換反応により金属化合物の
活性を低くし、全駆体溶液を安定にする働きがある。よ
って、これらの添加剤を添加することによりゲル化の進
み過ぎを抑制し、前駆体の経時変化を抑えることができ
る。
Other additives include diethanolamine,
There are diisopropanolamine, triethanolamine, or diethylene glycol. Contrary to water, these additives have a function of lowering the activity of the metal compound by the substitution reaction with the metal compound and stabilizing the whole precursor solution. Therefore, by adding these additives, it is possible to prevent the gelation from progressing too much and suppress the change with time of the precursor.

【0033】ジエタノールアミン、ジイソプロパノール
アミン、トリエタノールアミン、又はジエチレングリコ
ールの添加量は、他の添加剤との組み合わせによって異
なるが、金属含有溶液中の全金属元素量に対して0.5
モル当量以上6モル当量以下とすることが好ましい。
0.5モル当量未満の添加ではゲル化の進み過ぎを抑え
る効果がなく、6モル当量を越える量を添加してもその
効果に顕著な変化がない一方、CやN等の不純物が混入
しやすくなるからである。
The amount of diethanolamine, diisopropanolamine, triethanolamine, or diethylene glycol added varies depending on the combination with other additives, but is 0.5 with respect to the total amount of metal elements in the metal-containing solution.
It is preferable that the molar equivalent is 6 or more and 6 or less.
Addition of less than 0.5 molar equivalent does not have the effect of suppressing excessive progress of gelation, and addition of more than 6 molar equivalents does not significantly change the effect, while impurities such as C and N are mixed. Because it will be easier.

【0034】尚、上記したアルカリ金属、水、ジエタノ
ールアミン等の添加剤の効果を最も高めるには、これら
の添加剤を組み合わせて用いることが望ましい。
In order to maximize the effects of the above-mentioned additives such as alkali metal, water and diethanolamine, it is desirable to use these additives in combination.

【0035】[0035]

【実施例】図1〜図3を参照して、金属アルコキシドを
原料とするゾルゲル法により、本発明の単結晶薄膜水晶
の製造方法を説明する。即ち、単結晶基板1には鏡面研
磨を施した水晶のY面(20×20mm)を用い、この
単結晶基板1をアセトンに、超音波洗浄、20重量%塩
酸への浸漬処理、純粋洗浄、及び乾燥の順で前処理を施
した。
EXAMPLE A method for producing a single crystal thin film crystal of the present invention by a sol-gel method using a metal alkoxide as a raw material will be described with reference to FIGS. That is, the Y surface (20 × 20 mm) of mirror-polished quartz is used for the single crystal substrate 1, and the single crystal substrate 1 is ultrasonically cleaned in acetone, immersed in 20 wt% hydrochloric acid, and purely cleaned. Then, pretreatment was performed in the order of drying.

【0036】二酸化ゲルマニウムの前駆体溶液として、
エタノール100ml中にGe(OC254を溶解し
て濃度約0.5モル/lのGe含有エタノール溶液を作
成し、水を2.7g添加した。この前駆体溶液を、前記
水晶の単結晶基板1上に2000rpmでスピンコート
した後200℃で乾燥させ、更にスピンコートと乾燥の
過程を10回繰り返した。その後酸素雰囲気中において
10℃/分の昇温速度で800℃まで昇温し、800℃
で2時間保持することにより結晶化し、図1に示すよう
に単結晶基板1上に二酸化ゲルマニウムの酸化物単結晶
膜2を形成した。
As a precursor solution of germanium dioxide,
Ge (OC 2 H 5 ) 4 was dissolved in 100 ml of ethanol to prepare a Ge-containing ethanol solution having a concentration of about 0.5 mol / l, and 2.7 g of water was added. The precursor solution was spin-coated on the single crystal substrate 1 of quartz at 2000 rpm, dried at 200 ° C., and the process of spin coating and drying was repeated 10 times. Then, in an oxygen atmosphere, the temperature is raised to 800 ° C. at a heating rate of 10 ° C./min,
It was crystallized by holding it for 2 hours to form an oxide single crystal film 2 of germanium dioxide on the single crystal substrate 1 as shown in FIG.

【0037】次に、二酸化ケイ素の前駆体溶液として、
エタノール100ml中にSi(OC254を溶解し
て濃度約0.5モル/lのSi含有エタノール溶液を作
成し、水を2.7g、ジエタノールアミンを5.257
g、LiOC25を0.026g(Siに対して1モル
%)添加した。
Next, as a precursor solution of silicon dioxide,
Si (OC 2 H 5 ) 4 was dissolved in 100 ml of ethanol to prepare a Si-containing ethanol solution having a concentration of about 0.5 mol / l, and 2.7 g of water and 5.257 of diethanolamine were prepared.
0.026 g (1 mol% relative to Si) of LiOC 2 H 5 was added.

【0038】この前駆体溶液を、図1に示すように、単
結晶基板1上に先に作製した二酸化ゲルマニウムの酸化
物単結晶膜2上に、2000rpmでスピンコートした
後200℃で乾燥させ、更にスピンコートと乾燥の過程
を20回繰り返した。その後酸素雰囲気中において10
℃/分の昇温速度で850℃まで昇温し、850℃で2
時間保持することにより結晶化し、単結晶薄膜水晶3を
形成した。
As shown in FIG. 1, this precursor solution was spin-coated at 2000 rpm on a germanium dioxide oxide single crystal film 2 previously prepared on a single crystal substrate 1, and then dried at 200 ° C. The process of spin coating and drying was repeated 20 times. Then, in an oxygen atmosphere, 10
The temperature is raised to 850 ° C at a heating rate of ° C / min, and 2
It was crystallized by holding for a time to form a single crystal thin film crystal 3.

【0039】この単結晶薄膜水晶3の表面上に、図2に
示すように、支持板4として鏡面研磨した単結晶Siウ
エハー(直径50)をのせて加重を加え、乾燥空気中に
て500℃で10分間加熱して接着した。支持板4を接
着した試料全体を、20重量%の塩酸水溶液中で3時間
処理したところ、二酸化ゲルマニウムの酸化物単結晶膜
2が溶解し、図3に示すように、支持板4に接着してい
る単結晶薄膜水晶3が単結晶基板1から剥離した。
As shown in FIG. 2, a mirror-polished single crystal Si wafer (diameter 50) is placed on the surface of the single crystal thin film crystal 3 as shown in FIG. It was heated and adhered for 10 minutes. When the whole sample to which the supporting plate 4 was adhered was treated in a 20 wt% hydrochloric acid aqueous solution for 3 hours, the germanium dioxide oxide single crystal film 2 was dissolved and adhered to the supporting plate 4 as shown in FIG. The single crystal thin film crystal 3 that has been peeled off from the single crystal substrate 1.

【0040】得られた単結晶薄膜水晶3をX線回折によ
り評価した結果、良好な結晶性を有する単結晶薄膜水晶
のY面が得られたことが分かり、その厚みは1.8μm
であった。
The obtained single crystal thin film crystal 3 was evaluated by X-ray diffraction, and as a result, it was found that the Y surface of the single crystal thin film crystal having good crystallinity was obtained, and its thickness was 1.8 μm.
Met.

【0041】[0041]

【発明の効果】本発明によれば、5nm以上50μm以
下の任意の厚さの単結晶薄膜水晶を、大がかりな装置を
用いることなく、ゾルゲル法により製造して安価に提供
することできる。
According to the present invention, a single crystal thin film crystal having an arbitrary thickness of 5 nm or more and 50 μm or less can be manufactured by the sol-gel method and provided at a low cost without using a large-scale device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法により単結晶基板上に単結晶薄膜水
晶を形成した状態を示す概略の断面図である。
FIG. 1 is a schematic cross-sectional view showing a state in which a single crystal thin film crystal is formed on a single crystal substrate by the method of the present invention.

【図2】本発明方法により図1の単結晶薄膜水晶に支持
板を接着した状態を示す概略の断面図である。
2 is a schematic cross-sectional view showing a state in which a support plate is bonded to the single crystal thin film crystal of FIG. 1 by the method of the present invention.

【図3】本発明方法により支持板を接着した単結晶薄膜
水晶を単結晶基板から剥離した状態を示す概略の断面図
である。
FIG. 3 is a schematic cross-sectional view showing a state in which a single crystal thin film crystal having a support plate adhered thereto by the method of the present invention is separated from a single crystal substrate.

【符号の説明】[Explanation of symbols]

1 単結晶基板 2 二酸化ゲルマニウムの酸化物単結晶膜 3 単結晶薄膜水晶 4 支持板 1 Single crystal substrate 2. Germanium dioxide oxide single crystal film 3 Single crystal thin film crystal 4 Support plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−264317(JP,A) 特開 昭49−90088(JP,A) 特開 平5−327383(JP,A) 特開 昭51−93922(JP,A) 特開 昭58−190900(JP,A) 特開 昭61−110773(JP,A) 特開 平4−264304(JP,A) 特開 平8−213871(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 C01B 33/12 CAplus(STN) JSTPlus(JOIS) WPI(DIALOG)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-4-264317 (JP, A) JP-A-49-90088 (JP, A) JP-A-5-327383 (JP, A) JP-A 51- 93922 (JP, A) JP 58-190900 (JP, A) JP 61-110773 (JP, A) JP 4-264304 (JP, A) JP 8-213871 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C30B 1/00-35/00 C01B 33/12 CAplus (STN) JSTPlus (JOIS) WPI (DIALOG)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単結晶基板上にゾルゲル法により二酸化
ゲルマニウムを主成分とする水晶型結晶構造を有する酸
化物単結晶膜を形成し、この酸化物単結晶膜上にゾルゲ
ル法により二酸化ケイ素を主成分とする単結晶薄膜水晶
を形成した後、水溶液中において前記酸化物単結晶膜を
溶解することにより単結晶基板から単結晶薄膜水晶を剥
離することを特徴とする、単結晶薄膜水晶の製造方法
1. A sol-gel method for oxidization on a single crystal substrate.
An acid having a quartz crystal structure containing germanium as a main component
Oxide single crystal film is formed on the oxide single crystal film.
Single crystal thin film quartz containing silicon dioxide as the main component
After forming the above, the oxide single crystal film is formed in an aqueous solution.
Peel the single crystal thin film crystal from the single crystal substrate by melting
A method for producing a single crystal thin film crystal, characterized by separating .
【請求項2】 単結晶基板が水晶からなることを特徴と
する、請求項1に記載の単結晶薄膜水晶の製造方法
2. The single crystal substrate is made of quartz.
The method for producing a single crystal thin film crystal according to claim 1 .
【請求項3】 ゲルマニウム又はケイ素を含有する金属
含有溶液に、全金属元素量に対して0 . 2モル当量以上
20モル当量以下の水を添加してゾルゲル法の前駆体溶
液を調整することを特徴とする、請求項1又は2に記載
の単結晶薄膜水晶の製造方法
3. A metal containing germanium or silicon
In a solution containing 0.2 molar equivalents or more relative to the total amount of metal element
Add 20 mol equivalent or less of water to dissolve the precursor in the sol-gel method.
The liquid is adjusted, The claim 1 or 2 characterized by the above-mentioned.
Method for producing single crystal thin film crystal of .
【請求項4】 ゲルマニウム又はケイ素を含有する金属
含有溶液に、全金属元素量に対して3×10 −2 モル%
以上5モル%以下のリチウムを添加して前駆体溶液を調
整することを特徴とする、請求項1〜3のいずれかに記
載の単結晶薄膜水晶の製造方法
4. A metal containing germanium or silicon
3 × 10 −2 mol% based on the total amount of metal elements in the contained solution
The precursor solution is prepared by adding not less than 5 mol% of lithium.
4. The method according to any one of claims 1 to 3, characterized in that
Method for manufacturing single crystal thin film quartz crystal .
【請求項5】 ゲルマニウム又はケイ素を含有する金属
含有溶液に、全金属元素量に対して0 . 5モル当量以上
6モル当量以下のジエタノールアミン、ジイソプロパノ
ールアミン、トリエタノールアミン、又はジエチレング
リコールを添加して前駆体溶液を調整することを特徴と
する、請求項1〜4のいずれかに記載の単結晶薄膜水晶
の製造方法
5. A metal containing germanium or silicon
In a solution containing 0.5 molar equivalents or more relative to the total amount of metal element
Diethanolamine and diisopropano of 6 molar equivalents or less
Alcohol, triethanolamine, or diethylene glycol
Characterized by adding a recall to prepare a precursor solution
The single crystal thin film crystal according to any one of claims 1 to 4.
Manufacturing method .
JP30048294A 1994-12-05 1994-12-05 Manufacturing method of single crystal thin film quartz Expired - Fee Related JP3528282B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP30048294A JP3528282B2 (en) 1994-12-05 1994-12-05 Manufacturing method of single crystal thin film quartz
US08/567,530 US6028020A (en) 1994-12-05 1995-12-05 Single crystal quartz thin film and preparation thereof
KR1019950046693A KR100353721B1 (en) 1994-12-05 1995-12-05 Monocrystalline Crystal Thin Film and Its Manufacturing Method
DE69520196T DE69520196T2 (en) 1994-12-05 1995-12-05 Single-crystal thin film made of quartz and process for its production
EP95119102A EP0716167B1 (en) 1994-12-05 1995-12-05 Single crystal quartz thin film and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30048294A JP3528282B2 (en) 1994-12-05 1994-12-05 Manufacturing method of single crystal thin film quartz

Publications (2)

Publication Number Publication Date
JPH08157297A JPH08157297A (en) 1996-06-18
JP3528282B2 true JP3528282B2 (en) 2004-05-17

Family

ID=17885341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30048294A Expired - Fee Related JP3528282B2 (en) 1994-12-05 1994-12-05 Manufacturing method of single crystal thin film quartz

Country Status (1)

Country Link
JP (1) JP3528282B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3592218B2 (en) * 2000-09-06 2004-11-24 株式会社ヒューモラボラトリー Manufacturing method of crystal thin film
JP3703773B2 (en) * 2002-03-28 2005-10-05 株式会社ヒューモラボラトリー Manufacturing method of crystal unit
JP4567357B2 (en) * 2004-03-31 2010-10-20 京セラキンセキ株式会社 Method for manufacturing quartz diaphragm
JP4130182B2 (en) * 2004-07-12 2008-08-06 株式会社ヒューモラボラトリー Crystal thin film
JP2006069838A (en) * 2004-09-01 2006-03-16 Kyocera Kinseki Corp Method of manufacturing artificial quartz crystal
JP2006216891A (en) * 2005-02-07 2006-08-17 Tokyo Univ Of Agriculture & Technology Manufacturing method of thin-film element structure, and functional base substance therefor
JP5103607B2 (en) * 2005-11-04 2012-12-19 国立大学法人東京農工大学 Release layer removal method
WO2023008453A1 (en) * 2021-07-30 2023-02-02 株式会社Flosfia Oxide crystal, crystalline oxide film, crystalline laminated structure, and semiconductor device

Also Published As

Publication number Publication date
JPH08157297A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
JP3528282B2 (en) Manufacturing method of single crystal thin film quartz
US5879811A (en) Oxide thin film having quartz crystal structure
JP3446368B2 (en) Quartz crystal resonator and manufacturing method thereof
KR100353721B1 (en) Monocrystalline Crystal Thin Film and Its Manufacturing Method
US3341361A (en) Process for providing a silicon sheet
JP2004315342A (en) HIGH-DENSITY COLUMNAR ZnO CRYSTAL FILM AND PROCESS FOR PRODUCING THE SAME
JP3689934B2 (en) Oxide thin film having quartz crystal structure and method for producing the same
JP3800635B2 (en) Oriented oxide thin film and vibrator and manufacturing method thereof
Neves et al. Synthesis and Characterization of the β-BaB 2 O 4 Phase Obtained by the Polymeric Precursor Method
JPH09315897A (en) Single crystal oxide thin film having rock crystal type crystal structure and its production
JPH0329037B2 (en)
US20150176149A1 (en) Process for preparing an epitaxial alpha-quartz layer on a solid support, material obtained and uses thereof
JPH08225398A (en) Oxide thin film having rock crystal structure and its production
JP3188541B2 (en) Method for producing single crystal thin film by liquid phase epitaxy
CN113463199B (en) High-quality single crystal aluminum nitride film and preparation method and application thereof
US4169755A (en) Growth of crystalline rods of gallium arsenide in a crucible of specially treated fibrous silicon dioxide
JP2739546B2 (en) Method for producing lithium borate single crystal
CN116536749A (en) Two-dimensional ultrathin organic monocrystalline film and preparation method thereof
JP2003226599A (en) Method of manufacturing single crystal
JPH0244749A (en) Dielectric isolation substrate and manufacture thereof
JPS643815B2 (en)
JP2640615B2 (en) Method for manufacturing piezoelectric crystal
JP4414249B2 (en) Manufacturing method of artificial quartz
JP2002326894A (en) Quartz film and manufacturing method of the same
JPS6325209A (en) Production of polycrystalline silicon wafer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees