JPH0244749A - Dielectric isolation substrate and manufacture thereof - Google Patents

Dielectric isolation substrate and manufacture thereof

Info

Publication number
JPH0244749A
JPH0244749A JP19443488A JP19443488A JPH0244749A JP H0244749 A JPH0244749 A JP H0244749A JP 19443488 A JP19443488 A JP 19443488A JP 19443488 A JP19443488 A JP 19443488A JP H0244749 A JPH0244749 A JP H0244749A
Authority
JP
Japan
Prior art keywords
substrate
polycrystalline
fine particles
film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19443488A
Other languages
Japanese (ja)
Other versions
JP2624791B2 (en
Inventor
Minoru Tanaka
実 田中
Hironori Inoue
洋典 井上
Yasuhiro Mochizuki
康弘 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19443488A priority Critical patent/JP2624791B2/en
Publication of JPH0244749A publication Critical patent/JPH0244749A/en
Application granted granted Critical
Publication of JP2624791B2 publication Critical patent/JP2624791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To so deposit a polycrystalline Si film that the polished face becomes flat by depositing a polycrystalline film in which the sizes of crystalline grains are substantially uniform and crystal orientation and shape are not directed in specific directions on a semiconductor substrate formed with grooves. CONSTITUTION:Isolating grooves 2 are formed on an Si single crystal substrate 1 having an N-type plane (100), and an SiO2 film 3 is formed by steam oxidation. A polycrystalline Si film 4 is deposited by a chemical vapor growth method. In this case, high concentration material gas is used to deposit fine particles generated in the gas above the substrate are deposited on the board in a reaction vessel, and the gaps of the particles are filled with Si grown by the surface reaction. Thus, homogeneous polycrystalline Si is grown on the flat face and in the grooves. Thus, the grooves are filled with the polycrystalline layer in which the shape and direction of the grains are not directed in specific directions thereby to improve the flatness of the polished face of the surface of the layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘電体分離基板及びその製法に係り、特に大
口径で低湾曲の誘電体分離基板の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dielectric isolation substrate and a method for manufacturing the same, and particularly to a method for producing a dielectric isolation substrate with a large diameter and low curvature.

〔従来の技術〕[Conventional technology]

誘電体分離基板の製法としては、従来、単結晶Siを支
持体として接合した単結晶支持体方式が知られている。
As a method for manufacturing a dielectric isolation substrate, a single crystal support method in which single crystal Si is used as a support and bonded together is conventionally known.

単結晶支持体方式の誘電体分離基板の製法は、素子間分
離溝の形成に関して二つに大別される。素子間分離溝を
形成して支持体と接合する方法と、支持体と接合してか
ら素子間分離溝を形成する方法である。以下、前者を光
分離方式、後者を後分離方式と呼ぶ。
Methods for manufacturing single-crystal support type dielectric isolation substrates are roughly divided into two with respect to the formation of isolation grooves between elements. There are two methods: a method in which an isolation groove between elements is formed and then bonded to a support; and a method in which an isolation groove is formed after bonding to a support. Hereinafter, the former will be referred to as the optical separation method, and the latter will be referred to as the post-separation method.

なお、光分離方式に関連するものには特開昭61−29
2934号、後分離方式に関連するものには特開昭62
−226640号、特開昭62−229855号等があ
る。
For information related to the optical separation method, see Japanese Patent Application Laid-Open No. 61-29.
No. 2934, and JP-A No. 62 for those related to the post-separation method.
-226640, JP-A No. 62-229855, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術において、後分離方式は、半導体基板と支
持体との接合は容易であり、接合の歩留り及び接合強度
の信頼性は高いが、基板表面での′a幅が広くなるため
集積度が低下する欠点がある。
In the above-mentioned conventional technology, the post-separation method allows easy bonding of the semiconductor substrate and the support, and has high bonding yield and bonding strength reliability. There is a drawback that it decreases.

一方、光分離方式は、基板表面での溝幅は狭くでき集積
度は高いが、多結晶で溝を充填した基板と支持体との接
合は歩留りや接合強度、信頼性に問題がある。これは、
素子間分離溝を充填する多結晶Siの均一性については
配慮がされておらず、分離溝の形状によっては多結晶S
iの研磨面の平坦性が悪いためである。研磨面の平坦性
について第2図を用いて説明する。第2図は光分離方式
の工程の一部の断面図を示す。第2図(a)は半導体基
板1に凹溝2を形成し、表面に絶縁膜3を形成し、更に
多結晶Si4を堆積した状態を示す。
On the other hand, in the optical separation method, the groove width on the substrate surface can be narrowed and the degree of integration is high, but the bonding between the substrate and the support body whose grooves are filled with polycrystalline has problems in yield, bonding strength, and reliability. this is,
No consideration was given to the uniformity of the polycrystalline Si filling the isolation trench, and depending on the shape of the isolation trench, the polycrystalline Si
This is because the flatness of the polished surface of i is poor. The flatness of the polished surface will be explained using FIG. 2. FIG. 2 shows a cross-sectional view of a part of the optical separation method process. FIG. 2(a) shows a state in which a groove 2 is formed in a semiconductor substrate 1, an insulating film 3 is formed on the surface, and polycrystalline Si4 is further deposited.

第2図(b)は多結晶Si4の表面を研磨した状態を示
す。通常の熱CVD法により多結晶Si4を堆積させる
場合、まず基板表面に成長核が発生し、これを起点とし
て結晶粒が堆積面に垂直方向に逆円錐状に成長する。こ
のため多結晶Si層は厚み方向にいくに従って結晶粒径
が大きくなる。
FIG. 2(b) shows the polished surface of polycrystalline Si4. When polycrystalline Si4 is deposited by a normal thermal CVD method, growth nuclei are first generated on the substrate surface, and crystal grains grow from these nuclei in an inverted conical shape in a direction perpendicular to the deposition surface. Therefore, the crystal grain size of the polycrystalline Si layer increases as it goes in the thickness direction.

また1通常の熱CVD法では、堆積膜は何らかの配向性
を持つ。例えば、1〜リクロロシランを原料ガスとして
基板温度1200 ’Cで堆積した膜は、(110)方
向に強く配向する。また結晶粒の成長速度が面方位によ
って異るため、膜厚によって配向性は変化する更に溝2
の内面と、半導体基板1の元の表面5は互いに傾いてい
るため、堆積された多結晶Siの配向性は面領域間で異
ってくる。
Further, 1. In the normal thermal CVD method, the deposited film has some kind of orientation. For example, a film deposited at a substrate temperature of 1200'C using 1-lichlorosilane as a source gas is strongly oriented in the (110) direction. In addition, since the growth rate of crystal grains differs depending on the plane orientation, the orientation changes depending on the film thickness.
Since the inner surface of the semiconductor substrate 1 and the original surface 5 of the semiconductor substrate 1 are inclined with respect to each other, the orientation of the deposited polycrystalline Si differs between the surface regions.

すなわち、第2図(b)に示した研磨面6は、結晶粒径
及び配向性が不均一な多結晶Si4を研磨して得られる
面である。
That is, the polished surface 6 shown in FIG. 2(b) is a surface obtained by polishing polycrystalline Si4 having non-uniform crystal grain size and orientation.

また、半導体材料を研磨する際の加工速度は、結晶粒径
や面方位に依存する。(例えば、アルカリ系の研磨液に
よりSiを研磨すると(111)面の加工速度が他の面
に比べ遅いことが知られている。)このため、第2図(
b)における研磨面において、溝2の上部と半導体基板
1の元の表面6上の間に段差が生ずる。本発明者の実験
によれば、溝深さが50μmのとき、最大600人程度
の段差が生ずることが観察された。
Furthermore, the processing speed when polishing a semiconductor material depends on the crystal grain size and surface orientation. (For example, it is known that when Si is polished with an alkaline polishing liquid, the processing speed of the (111) plane is slower than that of other planes.) For this reason, as shown in Fig. 2 (
On the polished surface in b), a step is created between the top of the groove 2 and the original surface 6 of the semiconductor substrate 1. According to experiments conducted by the present inventors, it was observed that when the groove depth was 50 μm, a level difference of about 600 at most occurred.

本発明は、研磨面が平坦となる様に多結晶Si膜を堆積
させ歩留りや信頼性の優れた誘電体分離基板及びその製
法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dielectric isolation substrate with excellent yield and reliability by depositing a polycrystalline Si film so that the polished surface is flat, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、溝が形成された半導体基板上に、結晶粒の
大きさがほぼ均一で結晶方位及び、形状が、特定の方向
に配向していない多結晶膜を堆積させることにより達成
される。具体的には、高濃度反応ガスを用いた気相成長
により微粒子を基板上に堆積し、基板上の微粒子の周囲
を表面反応で充填する。
The above object is achieved by depositing a polycrystalline film in which the crystal grain size is substantially uniform and the crystal orientation and shape are not oriented in a particular direction on a semiconductor substrate in which grooves are formed. Specifically, fine particles are deposited on a substrate by vapor phase growth using a highly concentrated reactive gas, and the area around the fine particles on the substrate is filled with a surface reaction.

[作用〕 本発明によれば、基板上に無配向の微粒子を降り積らせ
る様に堆積させると同時に、堆積した微粒子の結晶成長
で充填させるため、多結晶が柱状に配向成長してしまう
のを防ぐことができる。
[Function] According to the present invention, non-oriented fine particles are deposited on the substrate, and at the same time, they are filled with crystal growth of the deposited fine particles, which prevents polycrystals from growing oriented in a columnar manner. can be prevented.

この作用について第6図を用いて説明する。第6図は、
従来法および本発明により得られる多結晶膜の断面図で
ある。第6図(a)は、従来の熱CVD法により基板1
上に堆積した多結晶Si膜4を示す、概述した様に、結
晶粒21は基板1に対して垂直方向に逆円錐状に成長し
、(110)方向50に配向している。これに対し本発
明では。
This effect will be explained using FIG. 6. Figure 6 shows
FIG. 2 is a cross-sectional view of a polycrystalline film obtained by a conventional method and the present invention. FIG. 6(a) shows the substrate 1 formed by the conventional thermal CVD method.
The polycrystalline Si film 4 deposited thereon is shown, and as outlined, the crystal grains 21 grow perpendicularly to the substrate 1 in an inverted conical shape and are oriented in the (110) direction 50. In contrast, in the present invention.

第6図(b)の様に基板と離れた空間で発生させ。It is generated in a space away from the substrate as shown in FIG. 6(b).

基板1表面に無配向に降下させた微粒子10を核として
結晶粒21が成長するので、微粒子だけでなく膜全体が
第6図(Q)の様な無配向の膜となる。また結晶粒の成
長が、次々と降下してくる微粒子により遮断されるため
、膜を厚くしても粒径が増大せずほぼ一定である。
Since the crystal grains 21 grow using the fine particles 10 dropped in a non-oriented manner onto the surface of the substrate 1 as nuclei, not only the fine particles but also the entire film becomes a non-oriented film as shown in FIG. 6(Q). Furthermore, since the growth of crystal grains is blocked by fine particles falling one after another, the grain size does not increase and remains almost constant even if the film is thickened.

このため、分離溝を形成した基板に膜を堆積しても素子
高部及び溝部の間で結晶粒の粒径及び配向性に差がない
均質な多結晶膜となる。その結果、研磨加工を施した場
合研磨面の平坦性が飛躍的に向上する。
Therefore, even if a film is deposited on a substrate with separation grooves formed therein, a homogeneous polycrystalline film with no difference in crystal grain size and orientation between the element height portion and the groove portion can be obtained. As a result, when polishing is performed, the flatness of the polished surface is dramatically improved.

従来の気相成長技術においては、基板表面で原料ガスを
反応させ、多結晶もしくは単結晶を成長させるのが一般
的であった。このため、気相で発生した微粒子が基板表
面に降り積り堆積するのは、異物としてしか見られなか
った。特に素子の能動領域を形成するエビタキシャル工
程においては、素子特性を著しく損う不良の原因であっ
た。しかし、本発明の如く、気相成長堆積層を支持体の
1部として用いる場合には問題とならない。逆に原料ガ
スの濃度を従来の1〜2%から数10%に飛躍的に増や
すことにより、高速に堆積できるという利点を持つ。
In conventional vapor phase growth techniques, it has been common to cause raw material gases to react on the surface of a substrate to grow polycrystals or single crystals. For this reason, fine particles generated in the gas phase that fall and accumulate on the substrate surface can only be seen as foreign matter. Particularly in the epitaxial process for forming the active region of a device, this has been a cause of defects that significantly impair device characteristics. However, this does not pose a problem when the vapor-deposited layer is used as a part of the support as in the present invention. On the other hand, by dramatically increasing the concentration of the raw material gas from the conventional 1 to 2% to several tens of percent, there is an advantage that high-speed deposition can be achieved.

なお、無配向の材料としては、本発明の多結晶以外に、
アモルファス材料が考えられるが、堆積スピードが低く
、かつその後の素子形成工程の熱処理により収縮し、基
板を湾曲させる等の欠点があり、実用的でない。
In addition to the polycrystalline material of the present invention, non-oriented materials include
An amorphous material can be considered, but it is impractical because its deposition speed is low and it shrinks during heat treatment in the subsequent element formation process, causing the substrate to curve.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図に示す工程毎の断面図を
用いて説明する。まず第1図(a)はn型(100)面
、直径6″′φのSi単結晶基板1に分離溝2を形成し
スチーム酸化により膜厚2μmのS i Oz膜3を形
成した状態を示す。第1図(b)は多結晶Si膜4を気
相成長法のひとつである化学気相成長(CVD)法によ
り堆積した状態を示す。多結晶Si膜4の堆積条件は、
基板温度が1100℃、原料ガスはH2ベースの20%
濃度のSiH4ガスとした。高濃度の原料ガスを用いて
いるため、反応容器内において基板上方の気相で発生し
た微粒子が基板表面に堆積し、この微粒子のすき間は表
面反応で成長したSiで充填される。このため平面上で
も溝内でも均質な多結晶Siが成長する。電子顕微鏡に
よるM察では微粒子は0.1μm程度の粒径であった。
An embodiment of the present invention will be described below using cross-sectional views of each step shown in FIG. First, Fig. 1(a) shows a state in which a separation groove 2 is formed in a Si single crystal substrate 1 with an n-type (100) plane and a diameter of 6''', and a SiOz film 3 with a thickness of 2 μm is formed by steam oxidation. FIG. 1(b) shows a state in which a polycrystalline Si film 4 is deposited by chemical vapor deposition (CVD), which is one of the vapor phase growth methods.The deposition conditions for the polycrystalline Si film 4 are as follows.
Substrate temperature is 1100℃, source gas is 20% H2 base
The concentration of SiH4 gas was set to 1. Since a highly concentrated raw material gas is used, fine particles generated in the gas phase above the substrate in the reaction vessel are deposited on the substrate surface, and gaps between the fine particles are filled with Si grown by surface reaction. Therefore, homogeneous polycrystalline Si grows both on the plane and within the groove. M observation using an electron microscope showed that the fine particles had a particle size of about 0.1 μm.

堆積速度は、10μm/minである。なおデポ時の原
料ガス1度が10%以下では、微粒子の量が少なく、既
述した効果が低下する傾向があった。また30%以上で
は微粒子間の充填が不充分で、機械的強度が減少する傾
向が見られた。第1図(c)は堆積した多結晶Si膜4
を研磨し平坦化した状態を示す。研磨はp HI Oの
KOH系の水溶液に0.3μmのシリカ粉を混合した研
磨液と、スェード型の研磨パフを用いた。多結晶Si膜
4の品質が、平面5上と溝2上の間で異なっていないた
め、研磨面6の平坦度は、触針計の感度の50Å以下で
ある。第1図(d)はこの研磨面6を介して、単結晶S
iの支持体7と接合した状態を示す。接合は1両者を密
着させて酸素雰囲気中で1200℃に加熱する直接接合
法による。接合面の平坦度が向上したため、基板の周囲
2mmを除いて完全に接合できたことが超音波探傷法及
び赤外線透過型顕微鏡で確認できた。第1図(e)は接
合した基板1を、分離溝2の底部が露出するまで研磨し
単結晶を複数の島に相互に分離した状態を示す。その後
、酸化、拡散等により単結晶島に素子を形成したが、こ
の工程においても接合面のはくり等の異常は、wl察さ
れなかった。また湾曲高さは120μmである。接合面
を電子顕微鏡でR察した結果、多結晶層4と支持体7と
の間は、約100人の酸化膜によって完全に充填、接合
されていた。
The deposition rate is 10 μm/min. Note that when the raw material gas concentration at the time of deposition is 10% or less, the amount of fine particles is small, and the above-mentioned effects tend to decrease. Moreover, when the content exceeds 30%, the filling between the fine particles becomes insufficient, and mechanical strength tends to decrease. FIG. 1(c) shows the deposited polycrystalline Si film 4.
This shows the polished and flattened state. For polishing, a polishing liquid prepared by mixing a KOH-based aqueous solution of pHIO with 0.3 μm silica powder and a suede-type polishing puff were used. Since the quality of the polycrystalline Si film 4 is not different between the plane 5 and the groove 2, the flatness of the polished surface 6 is 50 Å or less, which is the sensitivity of the stylus meter. FIG. 1(d) shows that the single crystal S
It shows the state in which it is joined to the support body 7 of i. The bonding is performed by a direct bonding method in which the two are brought into close contact and heated to 1200° C. in an oxygen atmosphere. Because the flatness of the bonding surface was improved, it was confirmed by ultrasonic flaw detection and an infrared transmission microscope that the bonding was complete except for 2 mm around the substrate. FIG. 1(e) shows a state in which the bonded substrate 1 is polished until the bottom of the separation groove 2 is exposed, and the single crystal is separated into a plurality of islands. Thereafter, elements were formed on the single crystal islands by oxidation, diffusion, etc., but no abnormalities such as peeling of the bonding surface were observed during this process. Further, the bending height is 120 μm. As a result of R observation of the bonding surface with an electron microscope, it was found that the space between the polycrystalline layer 4 and the support body 7 was completely filled and bonded with an oxide film of about 100 layers.

第3図は上記実施例に用いた多結晶Si膜4の堆積装置
の模式図である。溝2及び絶縁膜3を形成した基板1を
SiCコートしたカーボンサセプタ14に載置し、高周
波誘導加熱装置15により1100℃に加熱する。H2
ベースの20%モノシラン原料ガス11を毎分50Qの
流量で反応炉13内に導入する。高濃度の原料ガスが、
高温の反応炉13導入されると、一部が基板上方の気相
中で反応を始め、Siの微粒子10が発生する。
FIG. 3 is a schematic diagram of a deposition apparatus for polycrystalline Si film 4 used in the above embodiment. The substrate 1 with the grooves 2 and the insulating film 3 formed thereon is placed on a SiC-coated carbon susceptor 14 and heated to 1100° C. by a high frequency induction heating device 15. H2
A base 20% monosilane raw material gas 11 is introduced into the reactor 13 at a flow rate of 50Q per minute. Highly concentrated raw material gas
When introduced into the high-temperature reactor 13, a portion of the substrate begins to react in the gas phase above the substrate, and Si fine particles 10 are generated.

基板1には、この微粒子10が堆積し、その粒子間には
、基板表面での反応により生じたSiが充填され、多結
晶Si膜4が形成される。
The fine particles 10 are deposited on the substrate 1, and the spaces between the particles are filled with Si produced by a reaction on the substrate surface, forming a polycrystalline Si film 4.

なお、前記実施例においては、原料ガスをSiH4とし
たが、その他のシラン系、グロロシラン系ガスを用いて
も本発明の主旨を損わない。
In the above embodiments, SiH4 was used as the raw material gas, but other silane-based or glorosilane-based gases may be used without detracting from the spirit of the present invention.

また、多結晶Siを堆積させる際、原料ガス濃度を必ず
しも常に高くしておく必要はない。−たび高濃度ガスを
導入して生じた微粒子は、ガス流量の条件によっては、
数十分間浮遊している。
Further, when depositing polycrystalline Si, it is not necessary to always keep the raw material gas concentration high. -Depending on the conditions of gas flow rate, fine particles generated by introducing high concentration gas may
It floats for several minutes.

このため、堆積の初期、もしくは繰り返しパルス状に高
濃度ガスを導入し、その他の時は通常のCVDと同様に
反応ガスを供給しても良い。
For this reason, a high concentration gas may be introduced in the initial stage of deposition or in repeated pulses, and at other times, a reactive gas may be supplied in the same manner as in normal CVD.

また、原料ガス中に反応の初期に微量の不純物ガスを導
入して微粒子の発生量を制御することも可能である。例
えば数モル%以下の微量の亜酸化窒素NZ○や二酸化炭
素CO2ガスを導入すると、5IOXの微粒が発生する
。得られる多結晶膜は、ち密な膜となる。
It is also possible to control the amount of fine particles generated by introducing a small amount of impurity gas into the raw material gas at the beginning of the reaction. For example, when a trace amount of nitrous oxide NZ○ or carbon dioxide CO2 gas of several mol % or less is introduced, fine particles of 5IOX are generated. The resulting polycrystalline film becomes a dense film.

また、多結晶膜の堆積時の、基板表面温度及び供給量を
調整することによる反応ガスの温度を制御することによ
り、多結晶膜の品質の制御が可能である。例えば、第4
図(a)は基板温度を740〜860℃と低くし、反応
ガスとしてSiH4に0.1%のNzOを初期に添加し
て堆積させた膜で、SiOxの微粒子10が極微多結晶
20中に埋もれた様な形になる。第4図(b)は、基板
温度を1200 ’Cと高くし、堆積速度を14〜18
μm/minと大きくして堆積させた膜で、研磨前の表
面の凹凸は大きいが、気相で析出して降り積った微粒子
を核にしてモザイク状の比較的大きな結晶粒21が成長
している。無配向に降り積った微粒子を核として成長す
るので結晶粒も無配向となる。
Furthermore, the quality of the polycrystalline film can be controlled by controlling the temperature of the reaction gas by adjusting the substrate surface temperature and the supply amount during deposition of the polycrystalline film. For example, the fourth
Figure (a) shows a film deposited by lowering the substrate temperature to 740 to 860°C and initially adding 0.1% NzO to SiH4 as a reaction gas, in which fine SiOx particles 10 are contained in ultrafine polycrystals 20. It will look like it is buried. Figure 4(b) shows that the substrate temperature is as high as 1200'C and the deposition rate is 14~18'C.
The film was deposited with a size of μm/min, and although the surface roughness before polishing is large, mosaic-like relatively large crystal grains 21 grow with fine particles precipitated and deposited in the vapor phase as nuclei. ing. Since the crystal grains grow using fine particles that have fallen in a non-oriented manner as nuclei, the crystal grains also become non-oriented.

微粒子を発生させる空間と、基板表面との間に反応条件
の差をつける方法としては、上記の様な反応温度やガス
濃度の制御、不純物ガス添加の他に気相に光やプラズマ
等の電磁エネルギを照射して気相中での析出を発生させ
る方法がある。以下本発明の他の実施例として、光CV
D法による堆積法を第5図により説明する。溝形成済の
基板1をサセプタ14に載置し、加熱装置15により1
100℃に加熱する。反応炉13中に濃度4%のモノシ
ランガス11を導入し、現前ガスレーザからの高強度の
励起光31を光学窓30を通して照射する。照射領域で
は、原料ガスが反応し、微粒子10が発生する。基板1
にはこの微粒子1゜が堆積し、その粒子間には基板表面
での反応により生じたSiが充填され多結晶膜4が形成
される。
In addition to controlling the reaction temperature and gas concentration as described above, and adding impurity gases, methods for creating a difference in reaction conditions between the space where fine particles are generated and the substrate surface include electromagnetic stimulation such as light or plasma in the gas phase. There is a method of generating precipitation in the gas phase by irradiating energy. Below, as other embodiments of the present invention, optical CV
The deposition method using the D method will be explained with reference to FIG. The substrate 1 with grooves formed thereon is placed on the susceptor 14, and heated by the heating device 15.
Heat to 100°C. Monosilane gas 11 with a concentration of 4% is introduced into the reactor 13, and high-intensity excitation light 31 from a gas laser is irradiated through the optical window 30. In the irradiation region, the raw material gas reacts and fine particles 10 are generated. Board 1
These fine particles of 1° are deposited, and the spaces between the particles are filled with Si produced by a reaction on the substrate surface to form a polycrystalline film 4.

励起位置、励起強度、励起周波数等の励起条件によって
、得られる多結晶膜の結晶性を制御することができる。
The crystallinity of the resulting polycrystalline film can be controlled by excitation conditions such as excitation position, excitation intensity, and excitation frequency.

なお、微粒子の発生と表面反応による結晶粒成長とを更
に精密に制御するため、基板への堆積が行なわれる反応
炉とは別に、微粒子を発生させる炉を設け、両便を管に
より連結しても良い。
In addition, in order to more precisely control the generation of fine particles and the growth of crystal grains due to surface reactions, a furnace for generating fine particles was installed separately from the reactor in which deposition was performed on the substrate, and both were connected by a pipe. Also good.

また、研磨後の支持体との接合は、直接4合のみならず
、アノiデイクボンデイング法も適用できる。
Further, for bonding to the support after polishing, not only the direct bonding method but also the anodic bonding method can be applied.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溝を形成した基板上に均質な多結晶材
料を充填することができる。このため、多結晶層表面の
研磨面の平坦性が良好となり、支持台との接合の歩留り
及び接合強度が向上できる。
According to the present invention, a substrate in which a groove is formed can be filled with a homogeneous polycrystalline material. Therefore, the flatness of the polished surface of the polycrystalline layer surface becomes good, and the yield and bonding strength of bonding with the support base can be improved.

このため大口径(例えば、6′φの)基板を製造でき、
誘電体分離基板の製造歩留まり、製造コストダウン及び
信頼性大幅に向上させる効果がある。
Therefore, it is possible to manufacture large diameter (for example, 6'φ) substrates,
This has the effect of significantly improving the manufacturing yield, manufacturing cost, and reliability of dielectric isolation substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の誘電体分離基板の製造工程
を示す断面図、第2図は従来法による誘電体分離基板製
造工程の一部の断面図である。第3図は本発明に用いた
多結晶Si堆積装置、第4図は本発明による多結晶Si
を堆積した基板の断面図、第5図は、本発明の他の実施
例に用いた光励起多結晶Si堆積装置、第6図は1本発
明の詳細な説明するための基板断面図である。 1・・・半導体基板、2・・・溝、3・・・絶縁膜、4
・・・多結晶層、6・・・研磨面、7・・・支持体、1
0・・・微粒子、茶 図 第 茶4 日 Y乙 図
FIG. 1 is a sectional view showing the manufacturing process of a dielectric isolation substrate according to an embodiment of the present invention, and FIG. 2 is a sectional view of a part of the manufacturing process of a dielectric isolation substrate according to a conventional method. Figure 3 shows the polycrystalline Si deposition apparatus used in the present invention, and Figure 4 shows the polycrystalline Si deposition apparatus used in the present invention.
FIG. 5 is a cross-sectional view of a substrate deposited with a photoexcited polycrystalline Si deposition apparatus used in another embodiment of the present invention, and FIG. 6 is a cross-sectional view of a substrate for explaining the present invention in detail. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Groove, 3... Insulating film, 4
... Polycrystalline layer, 6... Polished surface, 7... Support, 1
0...Fine particles, Tea diagram No. 4 Day Y Otsu diagram

Claims (1)

【特許請求の範囲】 1、(a)半導体基板の表面から所定の深さの凹溝を形
成する工程、 (b)上記基板の表面及び凹溝の内面に絶縁膜を形成す
る工程、 (c)上記絶縁膜上に多結晶膜を堆積して溝を充填する
工程、 (d)上記多結晶層の表面を平坦化する工程、(e)上
記平坦化した面に支持体を接合する工程、 (f)上記凹溝の底部まで基板を薄片化する工程により
形成した誘電体分離基板において、結晶粒の形状及び方
位が特定の方向に配向していない多結晶層で凹溝を充填
したことを特徴とする誘電体分離基板。 2、(a)半導体基板の表面から所定の深さの凹状の溝
を形成する工程、 (b)上記基板の表面及び溝の内面に絶縁膜を形成する
工程、 (c)上記絶縁膜上に気相成長法により多結晶材料を堆
積して溝を充填する工程、 (d)上記多結晶層の表面を平坦化する工程、(e)上
記平坦化した面に支持体を接合する工程、 (f)上記溝の底部まで基板を研磨する工程から成る誘
電体分離基板の製法において、上記気相成長工程におい
て、微粒子を基板表面に堆積させながら多結晶膜を形成
することを特徴とする誘電体分離基板の製造方法。 3、特許請求の範囲第1項において、前記半導体基板が
単結晶Si、かつ前記充填層がSiを主成分とする多結
晶材料であることを特徴とする誘電体分離基板。 4、特許請求の範囲第2項において、前記気相成長工程
で反応容器の気相中で微粒子が発生する程高濃度の原料
ガスを用いることを特徴とする誘電体分離基板の製造方
法。 5、特許請求の範囲第2項において、前記気相成長工程
における原料ガスに不純物ガスを混入し、微粒子を発生
させることを特徴とする誘電体分離基板の製造方法。 6、特許請求の範囲第2項において、前記気相成長工程
における原料ガスを、電磁波により励起して微粒子を発
生させることを特徴とする誘電体分離基板の製造方法。 7、特許請求の範囲第4項乃至第6項において、気相成
長工程における微粒子の発生量を、初期に、もしくは周
期的に高くしたことを特徴とする誘電体分離基板の製造
方法。 8、特許請求の範囲第4項乃至第7項において、CVD
工程における多結晶層形成は反応炉内における微粒子発
生量と基板表面反応による膜堆積速度を独立に制御する
ことを特徴とする誘電体分離基板の製造方法。 9、特許請求の範囲第2項において、前記気相成長工程
で、反応炉外で発生させた微粒子を前記炉内に導入する
ことを特徴とする誘電体分離基板の製造方法。 10、特許請求の範囲第2項において、多結晶層表面の
平坦性は鏡面研磨仕上げとし、支持体との接合は直接々
合又はアノーデイツクボンデイング法であることを特徴
とする誘電体分離基板の製造方法。
[Claims] 1. (a) Step of forming a groove having a predetermined depth from the surface of the semiconductor substrate; (b) Step of forming an insulating film on the surface of the substrate and the inner surface of the groove; (c) ) depositing a polycrystalline film on the insulating film to fill the groove; (d) planarizing the surface of the polycrystalline layer; (e) bonding a support to the planarized surface; (f) In the dielectric separation substrate formed by the process of thinning the substrate to the bottom of the groove, the groove is filled with a polycrystalline layer in which the shape and orientation of crystal grains are not oriented in a specific direction. Features a dielectric isolation substrate. 2. (a) Forming a concave groove with a predetermined depth from the surface of the semiconductor substrate; (b) Forming an insulating film on the surface of the substrate and the inner surface of the groove; (c) On the insulating film. (d) flattening the surface of the polycrystalline layer; (e) bonding a support to the flattened surface; f) A method for manufacturing a dielectric separated substrate comprising the step of polishing the substrate to the bottom of the groove, characterized in that in the vapor phase growth step, a polycrystalline film is formed while depositing fine particles on the surface of the substrate. A method for manufacturing a separation substrate. 3. A dielectric isolation substrate according to claim 1, wherein the semiconductor substrate is made of single crystal Si, and the filling layer is made of a polycrystalline material containing Si as a main component. 4. A method for manufacturing a dielectrically separated substrate according to claim 2, characterized in that the vapor phase growth step uses a raw material gas at such a high concentration that fine particles are generated in the gas phase of the reaction vessel. 5. The method of manufacturing a dielectrically separated substrate according to claim 2, characterized in that an impurity gas is mixed into the source gas in the vapor phase growth step to generate fine particles. 6. A method for manufacturing a dielectrically separated substrate according to claim 2, characterized in that the raw material gas in the vapor phase growth step is excited by electromagnetic waves to generate fine particles. 7. A method for manufacturing a dielectric isolation substrate according to claims 4 to 6, characterized in that the amount of fine particles generated in the vapor phase growth step is increased initially or periodically. 8. In claims 4 to 7, CVD
A method for manufacturing a dielectrically separated substrate, characterized in that the formation of a polycrystalline layer in the process involves independently controlling the amount of fine particles generated in a reactor and the film deposition rate due to a reaction on the substrate surface. 9. A method for manufacturing a dielectrically separated substrate according to claim 2, characterized in that, in the vapor phase growth step, fine particles generated outside the reactor are introduced into the reactor. 10. The dielectric separation substrate according to claim 2, wherein the surface of the polycrystalline layer has a mirror-polished flatness and is bonded to the support by direct bonding or an anodic bonding method. manufacturing method.
JP19443488A 1988-08-05 1988-08-05 Dielectric separation substrate and method of manufacturing the same Expired - Lifetime JP2624791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19443488A JP2624791B2 (en) 1988-08-05 1988-08-05 Dielectric separation substrate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19443488A JP2624791B2 (en) 1988-08-05 1988-08-05 Dielectric separation substrate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0244749A true JPH0244749A (en) 1990-02-14
JP2624791B2 JP2624791B2 (en) 1997-06-25

Family

ID=16324537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19443488A Expired - Lifetime JP2624791B2 (en) 1988-08-05 1988-08-05 Dielectric separation substrate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2624791B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252154A (en) * 1990-02-28 1991-11-11 Hitachi Ltd Dielectric isolated substrate and its manufacture
US5686364A (en) * 1994-09-19 1997-11-11 Shin-Etsu Handotai Co., Ltd. Method for producing substrate to achieve semiconductor integrated circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252154A (en) * 1990-02-28 1991-11-11 Hitachi Ltd Dielectric isolated substrate and its manufacture
US5686364A (en) * 1994-09-19 1997-11-11 Shin-Etsu Handotai Co., Ltd. Method for producing substrate to achieve semiconductor integrated circuits

Also Published As

Publication number Publication date
JP2624791B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
US4742020A (en) Multilayering process for stress accommodation in deposited polysilicon
KR100829879B1 (en) Method for producing epitaxially coated silicon wafers
US7922813B2 (en) Epitaxially coated silicon wafer and method for producing epitaxially coated silicon wafers
JP5719815B2 (en) Manufacturing method of epitaxy coated silicon wafer
JP7161158B2 (en) Method for manufacturing diamond substrate layer
Bornand et al. Deposition of LiTaO3 thin films by pyrosol process
EP0241204B1 (en) Method for forming crystalline deposited film
JP2002080296A (en) Thin film rock crystal and its manufacturing method
JPH0244749A (en) Dielectric isolation substrate and manufacture thereof
US5233216A (en) Dielectric isolated substrate and process for producing the same
WO1992022689A1 (en) Process for making large-area single crystal diamond films
KR100353721B1 (en) Monocrystalline Crystal Thin Film and Its Manufacturing Method
JPH01132116A (en) Crystal product, preparation thereof, and semiconductor device prepared thereby
JP2577090B2 (en) Method for forming crystalline semiconductor film
JP4414249B2 (en) Manufacturing method of artificial quartz
JP2003197547A (en) Method of manufacturing silicon epitaxial wafer
JPH02105517A (en) Manufacture of semiconductor device
JPS61264720A (en) Manufacture of polycrystalline silicon
JP2804959B2 (en) Method for epitaxial growth of Ш-V compound semiconductor
JPH07326719A (en) Forming method of bonded semiconductor substrate
JPH107492A (en) Formation of single crystal diamond film
JPH08268718A (en) Oxide thin film having orientation property, vibrator and their production
JPH04219392A (en) Formation of crystal
JPH0574720A (en) Manufacture of semiconductor particulate dispersed film
JPS62238618A (en) Semiconductor wafer