JP4567357B2 - Method for manufacturing quartz diaphragm - Google Patents

Method for manufacturing quartz diaphragm Download PDF

Info

Publication number
JP4567357B2
JP4567357B2 JP2004104726A JP2004104726A JP4567357B2 JP 4567357 B2 JP4567357 B2 JP 4567357B2 JP 2004104726 A JP2004104726 A JP 2004104726A JP 2004104726 A JP2004104726 A JP 2004104726A JP 4567357 B2 JP4567357 B2 JP 4567357B2
Authority
JP
Japan
Prior art keywords
film
crystal
thin film
quartz
crystal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004104726A
Other languages
Japanese (ja)
Other versions
JP2005295042A (en
Inventor
学 石川
Original Assignee
京セラキンセキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラキンセキ株式会社 filed Critical 京セラキンセキ株式会社
Priority to JP2004104726A priority Critical patent/JP4567357B2/en
Publication of JP2005295042A publication Critical patent/JP2005295042A/en
Application granted granted Critical
Publication of JP4567357B2 publication Critical patent/JP4567357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水晶振動板の製造方法に関し、特に高周波数で励振する高周波水晶振動板の製造方法に関する。   The present invention relates to a method for manufacturing a crystal diaphragm, and more particularly to a method for manufacturing a high-frequency crystal diaphragm that excites at a high frequency.
従来、水晶振動子や水晶発振器等には、水晶振動板と呼ばれる水晶素板と各種電極膜から成る薄い板が用いられることが一般的であった。この水晶から成る水晶素板について、最近の傾向では通信分野の伝送系装置等を中核として、その搭載部品についての非常に急激な小型化、薄片化及び高周波化が要求されている。   Conventionally, a quartz plate, a quartz oscillator, and the like generally use a quartz plate called a quartz plate and a thin plate made of various electrode films. With regard to the crystal base plate made of this crystal, the recent trend is demanding extremely rapid miniaturization, thinning, and high frequency of the mounted components with the transmission system device in the communication field as the core.
従来において、水晶素板はオートクレーブと呼ばれる耐圧容器を炭酸ナトリウム、水酸化ナトリウム等のアルカリ水溶液で充填した容器内で、先のオートクレーブ内の状態を高温高圧状態とした水熱育成法と呼ばれる育成法により育成された人工水晶を板状に切り出して、更に所望の厚みとなるように研磨加工をして最終的に小さな薄い水晶素板とすることが一般的であった。   Conventionally, the quartz plate is a growth method called a hydrothermal growth method in which a pressure-resistant vessel called an autoclave is filled with an alkaline aqueous solution such as sodium carbonate or sodium hydroxide, and the state in the previous autoclave is set to a high temperature and high pressure state. In general, the artificial quartz grown by the above method is cut into a plate shape and further polished to a desired thickness to finally form a small thin quartz base plate.
又、水晶素板は厚みすべり振動モードにおいて、水晶素板の厚みが薄くなるにつれその励振周波数が高くなる特性がある。しかし水晶素板が薄くなるにつれ素板強度が弱くなり、更に研磨手段による薄加工限界のため、水晶素板の補強部を研磨加工で形成し、その水晶素板の励振振動領域をエッチング加工で所望の周波数を励振する厚さ(数μm以下)に形成し、各種電極膜を形成した図4のような水晶振動板が用いられている。   Further, the quartz base plate has a characteristic that in the thickness shear vibration mode, the excitation frequency increases as the thickness of the quartz base plate decreases. However, as the quartz base plate becomes thinner, the strength of the base plate becomes weaker, and due to the thin processing limit by the polishing means, the reinforcement part of the quartz base plate is formed by polishing, and the excitation vibration region of the quartz base plate is etched. A quartz crystal diaphragm as shown in FIG. 4 is used which is formed to have a thickness (several μm or less) for exciting a desired frequency and on which various electrode films are formed.
前述のような水晶振動板の製造方法については、以下のような文献が開示されている。   The following literature is disclosed about the manufacturing method of the above-mentioned crystal diaphragm.
特開平10−145179号公報JP-A-10-145179
尚、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。   In addition, the applicant has not found any prior art documents related to the present invention by the time of filing of the present application other than the prior art documents specified by the above prior art document information.
しかしながら、前記の水熱育成法では、人工水晶結晶の育成に少なくとも2〜3ヶ月の期間を必要とし、またその人工水晶から所望の形状の水晶素板を作り出すまでの切断研磨加工工程の経過においては、元の人工水晶の重量のおよそ90%以上に至る量の水晶を切断研磨屑として廃棄してしまい、非常に非効率である問題があった。   However, in the hydrothermal growth method described above, a period of at least 2 to 3 months is required for the growth of the artificial quartz crystal, and in the course of the cutting and polishing process until a quartz base plate having a desired shape is produced from the artificial quartz crystal. Has a problem that it is very inefficient because a quantity of quartz that reaches approximately 90% or more of the weight of the original artificial quartz is discarded as cutting scraps.
又、水晶素板の補強部を研磨加工で形成し、その水晶素板の励振振動領域をエッチング加工で所望の高周波数を励振する厚さに形成し、その表面に各種電極を設けるような製造方法で作成された図4のような水晶振動板では、図4(b)に開示のように、水晶結晶の結晶軸毎によるエッチング異方性のため、エッチング箇所(特に励振振動領域41と補強部42との間の補強部内側壁面部分)を所望の形状に加工することが難しく、所望の形状を得られないことから生じる励振特性の不具合も問題であった。特に水晶素板の形状が小型になるにつれ、エッチング加工時に生じる結晶軸方向による加工形状の差違による特性への影響が大きくなる。   In addition, the reinforcing part of the quartz base plate is formed by polishing, the excitation vibration region of the quartz base plate is formed to a thickness that excites a desired high frequency by etching, and various electrodes are provided on the surface. In the quartz crystal diaphragm as shown in FIG. 4 produced by the method, as disclosed in FIG. 4B, the etching location (particularly the excitation vibration region 41 and the reinforcement) due to the etching anisotropy for each crystal axis of the quartz crystal. It is difficult to process the reinforcing portion inner wall surface portion between the portion 42 and a desired shape, and the problem of excitation characteristics resulting from the failure to obtain the desired shape is also a problem. In particular, as the shape of the quartz base plate becomes smaller, the influence on the characteristics due to the difference in the processing shape depending on the crystal axis direction generated during the etching processing increases.
更にエッチング加工による励振振動領域の厚み加工においても、その加工が可能な薄さに限界があり、更なる高周波化の妨げとなる可能性がある。   Furthermore, even in the thickness processing of the excitation vibration region by etching processing, there is a limit to the thinness that can be processed, which may hinder further high frequency.
本発明は前述した問題点を解決するために成されたものであり、所望する周波数を励振する矩形状の励振振動領域と、該励振振動領域の周囲に該励振振動領域の厚さよりも厚い補強部とを一体の水晶材で形成し、且つ該励振振動領域の表裏主面上に励振用電極と、該励振用電極から該補強部に至る引出電極と、該補強部の主面上に引出電極と導通した外部接続用電極膜とを具備することを特徴とする水晶振動板の製造方法において、
気相成長法で基板上に複数個の水晶素板となる水晶薄膜をエピタキシャル成長させる製造装置を用い、基板上にバッファ層を形成し、バッファ層の上に第1の水晶薄膜を所望の周波数で励振する厚みでエピタキシャル成長させる工程と、第1の水晶薄膜の上全面にレジスト膜を形成し、このレジスト膜の上全面に透明な保護膜を形成する工程と、レジスト膜をフォトリソグラフィ法により加工し、レジスト膜及び保護膜を、第1の水晶薄膜における個々の水晶素板の励振振動領域となる複数の箇所に、レジスト膜及び保護膜が残る膜パターンを形成する工程と、励振振動領域となる部分にレジスト膜及び保護膜が残る膜パターンの上、及び膜パターンで被膜されていない第1の水晶薄膜の上に、第2の水晶薄膜を所望の強度が生じる厚さまでエピタキシャル育成させる工程と、レジスト膜を保護膜及び保護膜上に育成した第2の水晶薄膜ごと第1の水晶薄膜上から除去する工程と、基板及びバッファ層を第1の水晶薄膜から剥離し、第1の水晶薄膜及び該第2の水晶薄膜から構成される水晶薄膜シートを形成する工程と、この水晶薄膜シートに、個々の水晶素板に合うよう励振用電極膜、引出電極膜及び外部接続用電極膜を形成し、その後所望の切断位置で切断し、複数個の水晶振動板とする工程とを備えたことを特徴とする水晶振動板の製造方法である。
The present invention has been made to solve the above-described problems, and includes a rectangular excitation vibration region for exciting a desired frequency, and a reinforcement thicker than the thickness of the excitation vibration region around the excitation vibration region. And an excitation electrode on the front and back main surfaces of the excitation vibration region, an extraction electrode extending from the excitation electrode to the reinforcement portion, and an extraction on the main surface of the reinforcement portion. In the method for manufacturing a crystal diaphragm , comprising an electrode film for external connection conducted with an electrode,
A buffer layer is formed on the substrate using a manufacturing apparatus that epitaxially grows a plurality of crystal thin films on a substrate by vapor phase growth, and the first crystal thin film is formed on the buffer layer at a desired frequency. A process of epitaxial growth with a thickness to be excited, a process of forming a resist film on the entire surface of the first quartz thin film, a process of forming a transparent protective film on the entire surface of the resist film, and processing the resist film by photolithography Forming a film pattern in which the resist film and the protective film remain in a plurality of locations in the first quartz crystal thin film where the resist film and the protective film are provided in a plurality of locations serving as excitation vibration areas; On the film pattern in which the resist film and the protective film remain in the portion, and on the first crystal thin film not coated with the film pattern, the second crystal thin film is formed to a thickness that produces a desired strength. Removing the substrate and the buffer layer from the first crystal thin film, removing the substrate and the buffer layer from the first crystal thin film, the step of growing the resist film, the resist film and the second crystal thin film grown on the protective film. A step of forming a crystal thin film sheet composed of the first crystal thin film and the second crystal thin film, and an excitation electrode film, an extraction electrode film, and an external connection on the crystal thin film sheet so as to fit each crystal base plate use the electrode film is formed, which is then cut at the desired cutting position, the production method of the crystal plate, characterized in that a step of a plurality of the quartz plate.
本発明開示の水晶振動板の製造方法を用いることにより、所望の形状の水晶素板を得るために研磨及びエッチングなどで加工すること無く、切断加工も最小限の工数であるため、水晶の加工時に生じていた加工屑の発生を著しく減少させることができ生産効率が著しく高まる。 By using the method for manufacturing a crystal diaphragm disclosed in the present invention, the processing of the crystal can be performed because the cutting process is a minimum man-hour without processing by polishing and etching to obtain a crystal base plate having a desired shape. Occurrence of processing waste that has sometimes occurred can be significantly reduced, and production efficiency is significantly increased.
また、高周波振動に対応した外形の水晶振動板を製造する際に、本発明では励振振動領域を作成する手段としてエッチング加工を用いていないため、エッチング加工時に生じていた結晶軸方向による加工形状の差違がなく、所望の形状に高精度で形成できるので、励振振動領域の振動特性が良好である。また水晶振動板の小型化による振動特性の悪化も極めて小さくできる。   In addition, when manufacturing a crystal diaphragm having an outer shape corresponding to high-frequency vibration, the present invention does not use etching processing as a means for creating an excitation vibration region. Since there is no difference and the desired shape can be formed with high accuracy, the vibration characteristics in the excitation vibration region are good. Further, the deterioration of the vibration characteristics due to the miniaturization of the quartz diaphragm can be extremely reduced.
因って、本発明は生産効率が高く且つ励振特性の優れた高周波化に適した水晶振動板を提供できる効果を奏する。   Therefore, the present invention has an effect of providing a quartz diaphragm that is high in production efficiency and excellent in excitation characteristics and suitable for high frequency operation.
以下に図面を参照しながら本発明の実施の一形態について説明する。図1は本発明に係わる水晶振動板の製造方法の一部を水晶振動板の部分断面図を用いて例示した工程図である。図2(a)は図1開示の工程により製造した水晶振動板の一実施例を示した平面図である。図2(b)は図2(a)に記載した切断線A1−A2により切断した場合の断面図である。図3は、本発明に係る水晶振動板の製造方法の一部で使用される、水晶薄膜のエピタキシャル成長を内部に載置されたサファイヤ、シリコン、またはガリウム砒素(GaAs)等の基板11上に行うための装置の概略の模式図である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram illustrating a part of a method of manufacturing a quartz crystal plate according to the present invention using a partial cross-sectional view of the crystal plate. FIG. 2A is a plan view showing an embodiment of a quartz crystal plate manufactured by the process disclosed in FIG. FIG. 2B is a cross-sectional view taken along the cutting line A1-A2 shown in FIG. FIG. 3 shows an epitaxial growth of a crystal thin film used in a part of the method for manufacturing a crystal diaphragm according to the present invention on a substrate 11 made of sapphire, silicon, gallium arsenide (GaAs) or the like. It is a schematic schematic diagram of the apparatus for this.
尚、各図では、説明を明りょうにするため構造体の一部を図示していない。又、各寸法も一部誇張して図示しており、特に水晶エピタキシャル薄膜や電極膜などの厚みは著しく誇張して図示している。更に、各図においての同一の符号は同じ対象を示すものとする。   In each figure, a part of the structure is not shown for the sake of clarity. Each dimension is also partially exaggerated, and in particular, the thickness of a crystal epitaxial thin film, an electrode film, etc. is remarkably exaggerated. Furthermore, the same reference numerals in the drawings indicate the same objects.
図1(a)工程において、まずサファイヤ、シリコン、またはガリウム砒素(GaAs)等の基板11の上にバッファ層12を形成する。このバッファ層12は後工程において第1の水晶薄膜を基板11から容易に剥離させるために形成している。   In the step of FIG. 1A, a buffer layer 12 is first formed on a substrate 11 such as sapphire, silicon, or gallium arsenide (GaAs). This buffer layer 12 is formed in order to easily peel the first crystal thin film from the substrate 11 in a later step.
次の図1(b)工程において、バッファ層12の上に、第1の水晶薄膜13を図3に開示の装置を用いて、所望する基本波の周波数を励振する厚みとなるまでエピタキシャル成長する。例えば、所謂ATカットで切り出した従来の水晶素板と同じ結晶方向で成長させた水晶薄膜の場合、厚みすべり振動モードで600MHzの高周波基本波振動を励振するためには、水晶薄膜の厚みは約2μmとなる。   In the next step shown in FIG. 1B, the first crystal thin film 13 is epitaxially grown on the buffer layer 12 to a thickness that excites a desired fundamental frequency using the apparatus disclosed in FIG. For example, in the case of a quartz thin film grown in the same crystal direction as a conventional quartz base plate cut out by so-called AT-cut, in order to excite a high frequency fundamental wave vibration of 600 MHz in a thickness shear vibration mode, the thickness of the quartz thin film is about 2 μm.
次の図1(c)工程において、所望する厚みに形成した第1の水晶薄膜13の上にレジスト膜14を、更にそのレジスト膜14の上に透明な保護膜15を形成する。   In the next step of FIG. 1C, a resist film 14 is formed on the first crystal thin film 13 formed to have a desired thickness, and a transparent protective film 15 is further formed on the resist film 14.
次の図1(d)工程において、レジスト膜14の上に形成した保護膜15の上に、レジスト膜14を所望のパターンで露光するためのマスク(図示せず)を配置し、マスクの上方より露光する。露光後現像し不用なレジスト膜と保護膜を除去する。図1(d)は、除去後、水晶振動板の励振振動領域となる部分にレジスト膜及び保護膜が残っている状態を図示している。   In the next step of FIG. 1D, a mask (not shown) for exposing the resist film 14 in a desired pattern is disposed on the protective film 15 formed on the resist film 14, and above the mask. More exposure. After the exposure, development is performed to remove unnecessary resist film and protective film. FIG. 1D illustrates a state in which the resist film and the protective film remain in the portion that becomes the excitation vibration region of the quartz plate after the removal.
次の図1(e)工程において、残っている保護膜15の上、及びレジスト膜14と保護膜15が除去され露出した第1の水晶薄膜13の上に、第2の水晶薄膜16を、図3に開示の装置を用いてエピタキシャル成長する。この第2の水晶薄膜16の厚みは、後の工程で個々の水晶振動板に切断形成したときに、第1の水晶薄膜13で形成される励振振動領域を保持し且つ水晶振動板単体時に必要とされる強度を生じるだけの厚みとする。   In the next step of FIG. 1E, a second crystal thin film 16 is formed on the remaining protective film 15 and on the first crystal thin film 13 exposed by removing the resist film 14 and the protective film 15. Epitaxial growth is performed using the apparatus disclosed in FIG. The thickness of the second crystal thin film 16 is necessary for holding the excitation vibration region formed by the first crystal thin film 13 and cutting the crystal diaphragm alone when it is cut into individual crystal diaphragms in a later process. The thickness is sufficient to produce the required strength.
次の図1(f)工程において、第1の水晶薄膜13の上に残っていたレジスト膜14、保護膜15及び保護膜上に形成した第2の水晶薄膜16を第1の水晶薄膜13上から除去する。除去後には基板11−バッファ層12上に第1の水晶薄膜13と第1の水晶薄膜13の励振振動領域以外の部分上に第2の水晶薄膜16が形成されたものが残る。   In the next step of FIG. 1 (f), the resist film 14 remaining on the first crystal thin film 13, the protective film 15, and the second crystal thin film 16 formed on the protective film are formed on the first crystal thin film 13. Remove from. After the removal, the first crystal thin film 13 and the second crystal thin film 16 formed on the portion other than the excitation vibration region of the first crystal thin film 13 remain on the substrate 11 and the buffer layer 12.
次の図1(g)工程において、基板11及びバッファ層12を第1の水晶薄膜13から剥離し、第1の水晶薄膜13及び該第2の水晶薄膜16から構成される水晶薄膜シートを形成する。本発明では基板上に第1の水晶薄膜が直接形成されていないので、容易に基板11等を剥離ができる。尚、基板11は再利用され別の水晶薄膜育成に使用される。この水晶薄膜シートには、第1の水晶薄膜13の励振振動領域表裏両主面上、第1の水晶薄膜13の裏面上及び第2の水晶薄膜16表面上に、励振用電極膜17、引出電極18及び水晶振動板を搭載する容器側の素子接続用電極パッドと電気的に接続する外部接続用電極膜19が、個々の水晶振動板に対応する位置に所望の形状で形成される。   In the next step of FIG. 1G, the substrate 11 and the buffer layer 12 are peeled from the first crystal thin film 13 to form a crystal thin film sheet composed of the first crystal thin film 13 and the second crystal thin film 16. To do. In the present invention, since the first crystal thin film is not directly formed on the substrate, the substrate 11 and the like can be easily peeled off. The substrate 11 is reused and used for growing another crystal thin film. The crystal thin film sheet includes an excitation electrode film 17 and a lead on the excitation vibration region front and back main surfaces of the first crystal thin film 13, the back surface of the first crystal thin film 13, and the surface of the second crystal thin film 16. An external connection electrode film 19 that is electrically connected to the electrode connection pads on the container side on which the electrodes 18 and the crystal diaphragm are mounted is formed in a desired shape at a position corresponding to each crystal diaphragm.
次に図1(h)工程おいて、図1(g)に記載した切断線Cで第1の水晶薄膜13及び第2の水晶薄膜16で構成された水晶薄膜シートを切断し、複数個の高周波基本波の水晶振動板10を形成する。切断にはダイシングソー等が使用される。   Next, in the step of FIG. 1 (h), the crystal thin film sheet composed of the first crystal thin film 13 and the second crystal thin film 16 is cut along the cutting line C shown in FIG. A crystal diaphragm 10 having a high frequency fundamental wave is formed. A dicing saw or the like is used for cutting.
図2には上記工程で製造された高周波基本波の水晶振動10の一実施形態を示す。図2(b)は図2(a)に記載された切断線A1−A2で切断した場合の断面図であるが、第1の水晶薄膜で形成された励振振動領域21と、第1の水晶薄膜の一部と第2の水晶薄膜で形成された補強部22との境界部分は、左右対称形状であり、更に、補強部22の励振振動領域側側面形状は平面で且つ励振振動領域21に対しに垂直に形成されているので、励振振動領域21の振動特性に悪影響を与え難い。 FIG. 2 shows an embodiment of the high-frequency fundamental quartz crystal plate 10 manufactured in the above process. FIG. 2B is a cross-sectional view taken along the cutting line A1-A2 shown in FIG. 2A. The excitation vibration region 21 formed of the first crystal thin film and the first crystal The boundary portion between the part of the thin film and the reinforcing part 22 formed of the second crystal thin film has a symmetrical shape, and the side shape of the reinforcing part 22 on the side of the excitation vibration region is flat and is in the excitation vibration region 21. On the other hand, since it is formed vertically, it is difficult to adversely affect the vibration characteristics of the excitation vibration region 21.
尚、上記実施例では、水晶振動板10の励振振動領域が励振する厚みすべり振動の振動次数を基本波(1次)とした例を開示したが、他の次数(例えば3次、5次等)の所謂オーバトーン振動を励振振動領域に励振させる水晶振動板の製造方法においても、本発明の作用効果を実施例と同様に奏することができる。   In the above-described embodiment, the example in which the vibration order of the thickness shear vibration excited by the excitation vibration region of the crystal plate 10 is the fundamental wave (first order) is disclosed, but other orders (for example, third order, fifth order, etc.) are disclosed. The so-called overtone vibration in the method for manufacturing a crystal diaphragm that excites the excitation vibration region in the excitation vibration region can provide the same effects as the embodiment.
図1は、本発明に係わる水晶振動板の製造方法の一部を水晶振動板の部分断面図を用いて例示した工程図である。FIG. 1 is a process diagram illustrating a part of a method of manufacturing a quartz crystal plate according to the present invention using a partial cross-sectional view of the crystal plate. 図2は、図1に開示した工程において製造した水晶振動板の形態を図示しており、図2(a)は上方よりの平面図、図2(b)は図2(a)に記載の切断線A1−A2で切断した場合の断面図である。FIG. 2 illustrates the form of a quartz crystal plate manufactured in the process disclosed in FIG. 1, FIG. 2 (a) is a plan view from above, and FIG. 2 (b) is illustrated in FIG. 2 (a). It is sectional drawing at the time of cut | disconnecting by cutting line A1-A2. 図3は、本発明に係る水晶振動板の製造方法のうち、水晶薄膜のエピタキシャル成長を内部に載置されたサファイヤ、シリコン、またはガリウム砒素(GaAs)等の基板上に行う工程のための装置の略模式図である。FIG. 3 shows an apparatus for a process for performing epitaxial growth of a crystal thin film on a substrate such as sapphire, silicon, or gallium arsenide (GaAs) mounted therein, in the method for manufacturing a crystal diaphragm according to the present invention. It is a schematic diagram. 図4は、従来の製造方法を用いて製造した水晶振動板の形態を図示しており、図4(a)は上方よりの平面図、図4(b)は図4(a)に記載の切断線B1−B2で切断した場合の断面図である。4A and 4B show the form of a quartz crystal plate manufactured using a conventional manufacturing method. FIG. 4A is a plan view from above, and FIG. 4B is a diagram shown in FIG. It is sectional drawing at the time of cut | disconnecting by cutting line B1-B2.
符号の説明Explanation of symbols
10,水晶振動板
11,基板
12,バッファ層
13,第1の水晶薄膜
14,レジスト膜
15,保護膜
16,第2の水晶薄膜
17,励振用電極膜
18,引出電極膜
19,外部接続用電極膜
21,励振振動領域
22,補強部
DESCRIPTION OF SYMBOLS 10, Quartz diaphragm 11, Substrate 12, Buffer layer 13, 1st quartz thin film 14, Resist film 15, Protective film 16, 2nd quartz thin film 17, Excitation electrode film 18, Extraction electrode film 19, For external connection Electrode film 21, excitation vibration region 22, reinforcement

Claims (1)

  1. 所望する周波数を励振する矩形状の励振振動領域と、該励振振動領域の周囲に該励振振動領域の厚さよりも厚い補強部とを一体の水晶材で形成し、且つ該励振振動領域の表裏主面上に励振用電極と、該励振用電極から該補強部に至る引出電極と、該補強部の主面上に引出電極と導通した外部接続用電極膜とを具備することを特徴とする水晶振動板の製造方法において、
    気相成長法で基板上に複数個の水晶素板となる水晶薄膜を成長させる製造装置を用い、
    該基板上にバッファ層を形成し、該バッファ層の上に第1の水晶薄膜を所望の周波数で励振する厚みでエピタキシャル成長させる工程と、
    該第1の水晶薄膜の上全面にレジスト膜を形成し、該レジスト膜の上全面に透明な保護膜を形成する工程と、
    該レジスト膜をフォトリソグラフィ法により加工し、該レジスト膜及び該保護膜を、第1の水晶薄膜における個々の水晶素板の励振振動領域となる複数の箇所に、該レジスト膜及び保護膜が残る膜パターンを形成する工程と、
    該励振振動領域となる部分に該レジスト膜及び該保護膜が残る該膜パターンの上、及び該膜パターンで被膜されていない第1の水晶薄膜の上に、第2の水晶薄膜を所望の強度が生じる厚さまでエピタキシャル育成させる工程と、
    該レジスト膜を該保護膜及び該保護膜上に育成した第2の水晶薄膜ごと該第1の水晶薄膜上から除去する工程と、
    該基板及び該バッファ層を該第1の水晶薄膜から剥離し、該第1の水晶薄膜及び該第2の水晶薄膜から構成される水晶薄膜シートを形成する工程と、
    該水晶薄膜シートに、個々の水晶素板に合うよう励振用電極膜、引出電極膜及び外部接続用電極膜を形成し、その後所望の切断位置で切断し、複数個の水晶振動板とする工程と
    を備えたことを特徴とする水晶振動板の製造方法。
    A rectangular excitation vibration region for exciting a desired frequency, and a reinforcing portion thicker than the excitation vibration region around the excitation vibration region are formed of a single crystal material, and the front and back sides of the excitation vibration region A quartz crystal comprising: an excitation electrode on a surface; an extraction electrode extending from the excitation electrode to the reinforcement portion; and an external connection electrode film electrically connected to the extraction electrode on a main surface of the reinforcement portion. In the manufacturing method of the diaphragm ,
    Using a manufacturing apparatus that grows a crystal thin film that becomes a plurality of quartz base plates on a substrate by vapor phase growth,
    Forming a buffer layer on the substrate, and epitaxially growing a first crystal thin film on the buffer layer to a thickness that excites at a desired frequency;
    Forming a resist film on the entire upper surface of the first crystal thin film, and forming a transparent protective film on the entire upper surface of the resist film;
    The resist film is processed by a photolithography method, and the resist film and the protective film remain at a plurality of locations serving as excitation vibration regions of the individual crystal element plates in the first crystal thin film. Forming a film pattern;
    The second crystal thin film has a desired strength on the film pattern in which the resist film and the protective film remain in the excitation vibration region, and on the first crystal thin film not coated with the film pattern. A process of epitaxial growth to a thickness at which
    Removing the resist film from the first crystal thin film together with the protective film and the second crystal thin film grown on the protective film;
    Peeling the substrate and the buffer layer from the first quartz thin film to form a quartz thin film sheet comprising the first quartz thin film and the second quartz thin film;
    Forming an excitation electrode film, an extraction electrode film, and an external connection electrode film on the crystal thin film sheet so as to match each crystal element plate, and then cutting at a desired cutting position to form a plurality of crystal vibration plates A method of manufacturing a quartz diaphragm , comprising:
JP2004104726A 2004-03-31 2004-03-31 Method for manufacturing quartz diaphragm Expired - Fee Related JP4567357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004104726A JP4567357B2 (en) 2004-03-31 2004-03-31 Method for manufacturing quartz diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004104726A JP4567357B2 (en) 2004-03-31 2004-03-31 Method for manufacturing quartz diaphragm

Publications (2)

Publication Number Publication Date
JP2005295042A JP2005295042A (en) 2005-10-20
JP4567357B2 true JP4567357B2 (en) 2010-10-20

Family

ID=35327521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004104726A Expired - Fee Related JP4567357B2 (en) 2004-03-31 2004-03-31 Method for manufacturing quartz diaphragm

Country Status (1)

Country Link
JP (1) JP4567357B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599231B2 (en) * 2005-05-31 2010-12-15 京セラキンセキ株式会社 Quartz crystal manufacturing method and crystal resonator
JP4890912B2 (en) * 2006-03-31 2012-03-07 京セラキンセキ株式会社 Method for manufacturing a lame mode crystal resonator
JP4938368B2 (en) * 2006-06-30 2012-05-23 京セラキンセキ株式会社 Thin-film quartz plate manufacturing method and its transport tray

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774569A (en) * 1993-07-22 1995-03-17 Nippon Dempa Kogyo Co Ltd Crystal oscillator and manufacture therefor
JPH08157297A (en) * 1994-12-05 1996-06-18 Sumitomo Electric Ind Ltd Thin single crystal film-shaped rock crystal and its production
JPH08213871A (en) * 1995-02-03 1996-08-20 Sumitomo Electric Ind Ltd Crystal vibrator and its manufacture
JP2003289236A (en) * 2002-03-28 2003-10-10 Humo Laboratory Ltd Quartz oscillator and manufacturing method therefor
JP2005213080A (en) * 2004-01-28 2005-08-11 Kyocera Kinseki Corp Method for producing crystallized quartz thin film
JP2005239495A (en) * 2004-02-27 2005-09-08 Kyocera Kinseki Corp Planoconvex-shaped quartz epitaxial thin film and its producing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774569A (en) * 1993-07-22 1995-03-17 Nippon Dempa Kogyo Co Ltd Crystal oscillator and manufacture therefor
JPH08157297A (en) * 1994-12-05 1996-06-18 Sumitomo Electric Ind Ltd Thin single crystal film-shaped rock crystal and its production
JPH08213871A (en) * 1995-02-03 1996-08-20 Sumitomo Electric Ind Ltd Crystal vibrator and its manufacture
JP2003289236A (en) * 2002-03-28 2003-10-10 Humo Laboratory Ltd Quartz oscillator and manufacturing method therefor
JP2005213080A (en) * 2004-01-28 2005-08-11 Kyocera Kinseki Corp Method for producing crystallized quartz thin film
JP2005239495A (en) * 2004-02-27 2005-09-08 Kyocera Kinseki Corp Planoconvex-shaped quartz epitaxial thin film and its producing method

Also Published As

Publication number Publication date
JP2005295042A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
KR100737088B1 (en) Acoustic resonator
JP4313874B2 (en) Substrate manufacturing method
US7965015B2 (en) Lamb wave device
TW589786B (en) Quartz oscillator and manufacturing method of the same
US8084926B2 (en) At cut quartz crystal resonator element and method for manufacturing the same
JP4930595B2 (en) Piezoelectric resonator
EP1974465B1 (en) A mems resonator, a method of manufacturing thereof, and a mems oscillator
US7501068B2 (en) Method for manufacturing resonator
US5882988A (en) Semiconductor chip-making without scribing
DE60036988T2 (en) Thin film resonator and method of making the same
JP5218047B2 (en) Method for producing gallium nitride crystal and gallium nitride wafer
EP2051139B1 (en) Pellicle and method for manufacturing the same
KR101860948B1 (en) Piezoelectric resonator element and piezoelectric resonator
JP4694953B2 (en) Piezoelectric vibrating piece manufacturing method, piezoelectric vibrating piece, piezoelectric vibrator, oscillator, electronic device, and radio timepiece
TW587332B (en) Semiconductor substrate and process for its production
JP5059897B2 (en) Method for manufacturing piezoelectric vibrating piece
US8581476B2 (en) Quartz-crystal devices and methods for manufacturing same
US10601391B2 (en) Film bulk acoustic resonator with spurious resonance suppression
EP1467483B1 (en) Method for manufacturing a surface acoustic wave device
JP5367612B2 (en) Lamb wave device
JP2008263387A (en) Mesa piezoelectric vibration chip
JP2009164777A (en) Piezoelectric vibration piece and piezoelectric device, and manufacturing method thereof
JP5059399B2 (en) Method for manufacturing piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric device
EP3035372A1 (en) Group iii-nitride layers with patterned surfaces
JP5559411B2 (en) Separation method for acoustic resonance devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Ref document number: 4567357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees