JP3524652B2 - Exhaust gas denitration method - Google Patents

Exhaust gas denitration method

Info

Publication number
JP3524652B2
JP3524652B2 JP24408195A JP24408195A JP3524652B2 JP 3524652 B2 JP3524652 B2 JP 3524652B2 JP 24408195 A JP24408195 A JP 24408195A JP 24408195 A JP24408195 A JP 24408195A JP 3524652 B2 JP3524652 B2 JP 3524652B2
Authority
JP
Japan
Prior art keywords
catalyst layer
denitration
exhaust gas
gas flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24408195A
Other languages
Japanese (ja)
Other versions
JPH0985041A (en
Inventor
敬古 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24408195A priority Critical patent/JP3524652B2/en
Publication of JPH0985041A publication Critical patent/JPH0985041A/en
Application granted granted Critical
Publication of JP3524652B2 publication Critical patent/JP3524652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は排ガス中の窒素酸化
物(NOx)を高い効率で除去することのできる排ガス
の脱硝方法に関する。
TECHNICAL FIELD The present invention relates to an exhaust gas denitration method capable of removing nitrogen oxides (NOx) in exhaust gas with high efficiency.

【0002】[0002]

【従来の技術】従来、排ガス中の窒素酸化物の処理方法
として排ガス流れの上流側に脱硝触媒を設置してアンモ
ニアによる接触還元により窒素酸化物を還元除去し、そ
の後流側にNH3 分解触媒を設置して過剰のNH3 を分
解する脱硝方法及び前記NH3分解触媒の後流にさらに
脱硝触媒を設置してNH3 分解工程で生じる窒素酸化物
を還元する方法が提案されている。これらの方法におけ
る脱硝装置の1例を図4及び図5に示す。図4の装置に
おいては脱硝装置5は排ガス6が導入される上流側から
順にNH3 注入ノズル1、脱硝触媒が充填された脱硝触
媒層2及びNH3分解触媒が充填されたNH3 分解触媒
層で構成されており、図5の装置においては、さらに後
流側に第2脱硝触媒層7が設置されている。
2. Description of the Related Art Conventionally, as a method of treating nitrogen oxides in exhaust gas, a NOx removal catalyst is installed upstream of the exhaust gas flow to reduce and remove nitrogen oxides by catalytic reduction with ammonia, and then an NH 3 decomposition catalyst on the flow side. A denitration method for decomposing excess NH 3 by disposing a catalyst and a method for further denitrification catalyst installed downstream of the NH 3 decomposition catalyst to reduce nitrogen oxides generated in the NH 3 decomposition step are proposed. An example of the denitration apparatus in these methods is shown in FIGS. 4 and 5. FIG NH 3 decomposing catalyst layer NH 3 injection nozzle 1 in order from the upstream side, the denitration catalyst layer denitration catalyst-filled 2 and NH 3 decomposing catalyst is filled denitration apparatus 5 which exhaust gas 6 is introduced in the apparatus 4 In the apparatus of FIG. 5, the second denitration catalyst layer 7 is further provided on the downstream side.

【0003】前者の方法は除去するNOxに対して反応
当量以上のNH3 を添加して、上流の脱硝触媒層で高効
率脱硝を行い、NH3 分解触媒層で未反応のNH3 を分
解させ、目標のNOx及びNH3 濃度とするものであ
り、後者は前者よりも更に多量のNH3 を添加して、上
流の脱硝触媒層において100%に近い高効率で脱硝を
行い、NH3 分解触媒層において未反応のNH3 を分解
させる。NH3 分解触媒によりNH3 を分解する際には
次の反応式により一部NOが発生する。
In the former method, more than the reaction equivalent of NH 3 is added to the NOx to be removed, high-efficiency denitration is performed in the upstream denitration catalyst layer, and unreacted NH 3 is decomposed in the NH 3 decomposition catalyst layer. It is intended to NOx and NH 3 concentrations of target, the latter with the addition of NH 3 addition of a large amount than the former, perform denitration at a high efficiency close to 100% in the upstream of the denitration catalyst layer, NH 3 decomposition catalyst Unreacted NH 3 is decomposed in the layer. When decomposing the NH 3 by NH 3 decomposition catalyst some NO is produced by the following reaction formula.

【化1】4NH3 +5O2 →4NO+6H2 O この方法では、発生したNOとNH3 分解触媒層で残留
しているNH3 を反応させ、NOxを処理するためにN
3 分解触媒層の下流側に第2脱硝触媒層を設置してい
る。
## STR1 ## 4NH 3 + 5O 2 → 4NO + 6H 2 O In this method, the generated NO is reacted with NH 3 remaining in the NH 3 decomposition catalyst layer to treat NOx.
A second denitration catalyst layer is installed on the downstream side of the H 3 decomposition catalyst layer.

【0004】前記方法において脱硝触媒としては従来使
用されているバナジウム、タングステン、モリブデンな
どを活性成分としたTiO2 系の脱硝触媒を用いること
ができる。
As the denitration catalyst in the above method, a conventionally used TiO 2 -based denitration catalyst containing vanadium, tungsten, molybdenum or the like as an active component can be used.

【0005】NH3 分解触媒としては、脱水された状態
で(1.0±0.6)R2 O・〔aM2 3 ・bAl2
3 〕・cMeO・ySiO2 (式中、R:アルカリ金
属イオン及び/又は水素イオン、M:周期律表のVII
I族元素、希土類元素、チタン、バナジウム、クロム、
ニオブ、アンチモン及びガリウムからなる群から選ばれ
る1種以上の元素、Me:アルカリ土類元素、a+b=
1.0、a≧0、b≧0、c≧0、y/c>12、y>
12)の化学組成を有し、かつ後述の表1に示されるX
線回折パターンを有する結晶性シリケート、γ−Al2
3 、θ−Al 2 3 、TiO2 、ZrO2 、TiO2
・ZrO2 、SiO2 ・Al2 3 、Al2 3 ・Ti
2 、SO4 /ZrO2 、SO4 /ZrO2 ・Ti
2 、Y型ゼオライト、X型ゼオライト、A型ゼオライ
ト、モルデナイト及びシリカライトからなる群から選ば
れる1種以上の多孔体を担体とし、活性金属として白
金、パラジウム、ロジウム、ルテニウム及びイリジウム
からなる群から選ばれる1種以上の貴金属を有する触媒
を使用することができる。
NH3Decomposition catalyst is dehydrated
At (1.0 ± 0.6) R2O ・ [aM2O3・ BAl2
O3] ・ CMeO ・ ySiO2(In the formula, R: Alkali gold
Group ion and / or hydrogen ion, M: VII of the periodic table
Group I elements, rare earth elements, titanium, vanadium, chromium,
Selected from the group consisting of niobium, antimony and gallium
One or more elements, Me: alkaline earth element, a + b =
1.0, a ≧ 0, b ≧ 0, c ≧ 0, y / c> 12, y>
X) having the chemical composition of 12) and shown in Table 1 below.
Crystalline silicate with line diffraction pattern, γ-Al2
O3, Θ-Al 2O3, TiO2, ZrO2, TiO2
・ ZrO2, SiO2・ Al2O3, Al2O3・ Ti
O2, SOFour/ ZrO2, SOFour/ ZrO2・ Ti
O2, Y-type zeolite, X-type zeolite, A-type zeolite
, Mordenite and silicalite
One or more types of porous materials used as carriers and white as the active metal
Gold, palladium, rhodium, ruthenium and iridium
A catalyst having at least one noble metal selected from the group consisting of
Can be used.

【0006】[0006]

【表1】 [Table 1]

【0007】[0007]

【発明が解決しようとする課題】前記の脱硝装置で使用
するNH3 分解触媒は図2に示すSV値とNH3 分解触
媒層出口NOx、NH3 濃度との関係からわかるとお
り、SV値が小さくなるとNH3 の分解率は向上する
が、NOxの生成量が増加することになり、排出NOx
が要求値をオーバーすることになるか又はNH3 分解触
媒層の出口でNOx濃度>>NH3 濃度となり、NH3
分解触媒層の出口に脱硝触媒層を設置する意味がなくな
ってしまう。ボイラプラントやガスタービンプラントに
おいては負荷が低下するに従ってガス量が低下し、SV
値が小となる。通常、ボイラプラントやガスタービンプ
ラントにおける脱硝装置はガス量が最大となる100%
負荷が設計点となっているので、NH3 分解触媒を使用
する場合は低負荷時には排出NOxが増加する可能性が
あり、対策が必要である。
As can be seen from the relationship between the SV value and the NH 3 decomposition catalyst layer outlet NOx and NH 3 concentrations shown in FIG. 2, the NH 3 decomposition catalyst used in the above-mentioned denitration device has a small SV value. If so, the decomposition rate of NH 3 is improved, but the amount of NOx produced is increased, and the exhausted NOx is discharged.
Will exceed the required value, or NOx concentration >> NH 3 concentration at the outlet of the NH 3 decomposition catalyst layer, and NH 3
There is no point in installing a denitration catalyst layer at the outlet of the decomposition catalyst layer. In a boiler plant or gas turbine plant, the amount of gas decreases as the load decreases, and SV
The value becomes small. Normally, the maximum amount of gas is 100% at the denitration equipment in boiler plants and gas turbine plants.
Since the load is the design point, when an NH 3 decomposition catalyst is used, the exhausted NOx may increase at low load, and measures must be taken.

【0008】本発明は前記従来技術に鑑み、ボイラプラ
ントやガスタービンプラントにおいて低負荷状態となっ
ても、脱硝装置出口におけるNOx濃度が上昇する恐れ
のない脱硝方法を提供しようとするものである。
In view of the above-mentioned prior art, the present invention is to provide a denitration method in which the NOx concentration at the outlet of the denitration device does not increase even when the boiler plant or the gas turbine plant is in a low load state.

【0009】[0009]

【課題を解決するための手段】本発明は、次の(1)乃
至(3)の発明を含むものである。 (1)窒素酸化物を含有する排ガスを、上流側から順に
NH3 注入ノズルと、NH3 を還元剤として窒素酸化物
を接触的に還元する脱硝触媒を充填した脱硝触媒層と、
NH3 分解触媒を充填したNH3 分解触媒層とを設けた
脱硝装置に通して窒素酸化物を還元除去する脱硝方法に
おいて、前記脱硝触媒層とNH3 分解触媒層との間にガ
ス流路の断面積の大きさを調整するガス流通面積制御手
段を設け、ガス流路の一部を遮断することによってNH
3 分解触媒層の排ガスが通過する部分の容積を排ガスの
負荷に応じて制御することを特徴とする排ガスの脱硝方
法。
The present invention includes the following inventions (1) to (3). (1) An exhaust gas containing nitrogen oxides, an NH 3 injection nozzle in order from the upstream side, a denitration catalyst layer filled with a denitration catalyst for catalytically reducing nitrogen oxides using NH 3 as a reducing agent,
In NH 3 decomposing catalyst denitration method in which nitrogen oxides are reduced and removed through a denitration apparatus provided with the NH 3 decomposing catalyst layer filled with, a gas flow path between the denitration catalyst layer and the NH 3 decomposing catalyst layer By providing a gas flow area control means for adjusting the size of the cross-sectional area and cutting off a part of the gas flow path, NH
3 A method for denitration of exhaust gas, characterized in that the volume of a portion of the decomposition catalyst layer through which exhaust gas passes is controlled according to the load of exhaust gas.

【0010】(2)窒素酸化物を含有する排ガスを、上
流側から順にNH3 注入ノズルと、NH3 を還元剤とし
て窒素酸化物を接触的に還元する脱硝触媒を充填した脱
硝触媒層と、NH3 分解触媒を充填したNH3 分解触媒
層と、NH3 を還元剤として窒素酸化物を接触的に還元
する脱硝触媒を充填した第2脱硝触媒層とを設けた脱硝
装置に通して窒素酸化物を還元除去する脱硝方法におい
て、前記上流側の脱硝触媒層とNH3 分解触媒層との間
にガス流路の断面積の大きさを調整するガス流通面積制
御手段を設け、ガス流路の一部を遮断することによって
NH3 分解触媒層の排ガスが通過する部分の容積を排ガ
スの負荷に応じて制御することを特徴とする排ガスの脱
硝方法。
(2) An exhaust gas containing nitrogen oxides, in order from the upstream side, an NH 3 injection nozzle, a NOx removal catalyst layer filled with a NOx removal catalyst for catalytically reducing nitrogen oxides using NH 3 as a reducing agent, NH 3 decomposing catalyst and NH 3 decomposing catalyst layer filled with nitrogen oxides catalytically reducing denitration catalyst through a denitration apparatus provided with a second denitration catalyst layer filled NOx and NH 3 as a reducing agent In the denitration method for reducing and removing substances, a gas flow area control means for adjusting the size of the cross-sectional area of the gas passage is provided between the upstream denitration catalyst layer and the NH 3 decomposition catalyst layer, A method for denitration of exhaust gas, which comprises controlling the volume of a portion of the NH 3 decomposition catalyst layer through which the exhaust gas passes according to the load of the exhaust gas by shutting off a part.

【0011】(3)前記ガス流通面積制御手段によるガ
ス流路の遮断割合が下記の式(1)で表されるγとなる
ように制御することを特徴とする前記(1)又は(2)
の排ガスの脱硝方法。
(3) The above-mentioned (1) or (2) is characterized in that the gas flow area control means controls the cutoff ratio of the gas passage to be γ represented by the following equation (1).
Exhaust gas denitration method.

【数2】 1−γ=G(x)/(VCA×SVL ) ・・・(1) SVL :NH3 分解触媒使用上の限界SV値(NH3
解触媒層の出口でNH3 濃度がNOx濃度以上である限
界SV値 G(x):排ガス負荷(x)での単位時間当たりの処理
ガス量 VCA:NH3 分解触媒層容量 γ :ガス流路遮断割合
## EQU2 ## 1-γ = G (x) / (V CA × SV L ) ... (1) SV L : NH 3 decomposition catalyst limit SV value (NH 3 at the outlet of the NH 3 decomposition catalyst layer) Limit SV value where the concentration is equal to or higher than the NOx concentration G (x): amount of treated gas per unit time at exhaust gas load (x) V CA : NH 3 decomposition catalyst layer capacity γ: gas flow path cutoff ratio

【0012】[0012]

【発明の実施の形態】本発明の排ガス脱硝方法では、各
種ボイラプラントやガスタービンプラント等において発
生する窒素酸化物を含有する排ガスを脱硝触媒層とNH
3 分解触媒層あるいはさらに第2脱硝触媒層を有する脱
硝装置を用いて脱硝処理するに際し、脱硝触媒層とNH
3 分解触媒層との間にガスの流通面積を調整するガス流
通面積制御手段を設け、ボイラプラントやガスタービン
プラントの運転状況、すなわち、処理ガス量の増減に応
じてガスの流通面積を調整するようにしている。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas denitration method of the present invention, exhaust gas containing nitrogen oxides generated in various boiler plants, gas turbine plants, etc. is passed through a denitration catalyst layer and NH.
3 When performing denitration processing using a denitration device having a decomposition catalyst layer or a second denitration catalyst layer, the denitration catalyst layer and NH
3 provided gas flow area control means for adjusting the flow area of the gas between the decomposition catalyst layer, operating conditions of the boiler plant and gas turbine plants, i.e., for adjusting the flow area of the gas in accordance with the increase or decrease of the process gas volume I am trying.

【0013】ガス流通面積制御手段としてはガス遮断ダ
ンパが一般的であり、複数個のダンパをガス流路に垂直
な形で設置し、ガス流量の変動に応じて必要個数のダン
パを開に、残りを閉にすることによって、ガスの流速が
一定になるように制御する。
A gas cut-off damper is generally used as a means for controlling the gas flow area. A plurality of dampers are installed vertically to the gas flow path, and a required number of dampers are opened according to the fluctuation of the gas flow rate. By closing the rest, the flow velocity of the gas is controlled to be constant.

【0014】(作用)NH3 分解触媒層の入口部にダン
パを設置することにより、ガスの流速とNH 3 分解触媒
層内の処理ガスが通過する部分の容量を制御することが
できる。すなわち、ボイラプラントやガスタービンプラ
ントが低負荷運転となりガス量が減少した場合にもNH
3 分解触媒層におけるガスのSV値を所定の大きさ以上
に保持することができる。これによって、図3に示すよ
うに負荷が低下し、ガス量が減少してもNH3 分解触媒
層出口のNOx濃度をNH3 濃度と同等以下に保持する
ことができる。
(Function) NH3At the inlet of the decomposition catalyst layer
The gas flow rate and NH 3Decomposition catalyst
It is possible to control the volume of the portion of the bed through which the processing gas passes.
it can. That is, boiler plant and gas turbine
Even if the amount of gas decreases due to low load operation
3SV value of gas in the decomposition catalyst layer is not less than a predetermined value
Can be held at. This will show you in Figure 3.
As the load decreases and the gas amount decreases, NH3Decomposition catalyst
The NOx concentration at the layer outlet is NH3Keep below the same concentration
be able to.

【0015】[0015]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。この実施例では図1に示す構成の脱硝装
置を使用し、脱硝触媒としては酸化チタンに活性金属と
してバナジウム及びタングステンを担持させた触媒を、
また、NH3 分解触媒としては結晶性シリケートに活性
金属として白金を担持させたものを使用した。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples. In this example, a denitration apparatus having the configuration shown in FIG. 1 is used, and as the denitration catalyst, a catalyst in which vanadium and tungsten are supported as active metals on titanium oxide,
As the NH 3 decomposition catalyst, a crystalline silicate supported with platinum as an active metal was used.

【0016】図1の脱硝装置には排ガス6が導入される
上流側から順にNH3 注入ノズル1、脱硝触媒層2、ガ
ス遮断ダンパ4、NH3 分解触媒層3、第2脱硝触媒層
7が設置されている。この装置ではガス遮断ダンパ4と
してガス流通面積を自由に制御できるルーバーダンパを
使用している。このダンパは個別に開閉自在な複数個の
ルーバーを組み合わせてガス流路に垂直な形で設置した
もので、各ルーバーの開閉を調整することによりガス流
通面積を制御することができる。遮断ダンパ4によるガ
ス流通面積の遮断割合γは前記式(1)によって決定す
る。
In the denitration apparatus of FIG. 1, an NH 3 injection nozzle 1, a denitration catalyst layer 2, a gas blocking damper 4, an NH 3 decomposition catalyst layer 3 and a second denitration catalyst layer 7 are arranged in this order from the upstream side where the exhaust gas 6 is introduced. is set up. In this device, a louver damper that can freely control the gas distribution area is used as the gas cutoff damper 4. This damper is a combination of a plurality of louvers that can be opened and closed individually, and is installed in a shape perpendicular to the gas flow path. The gas distribution area can be controlled by adjusting the opening and closing of each louver. The cutoff ratio γ of the gas flow area by the cutoff damper 4 is determined by the equation (1).

【0017】この構成の試験装置により、NOxを含む
排ガスの脱硝試験を行った。排ガス6の流量を変え、ガ
ス遮断ダンパ4を使用した場合と使用しない場合につい
て、NH3 分解触媒層3の出口におけるNH3 及びNO
xの濃度を測定した結果を図3に示す。図3から、ガス
遮断ダンパ4を使用しない場合には、ガスの負荷が約7
5%以下になるとNOx濃度がNH3 濃度を上回るよう
になるが、ガス遮断ダンパ4を使用してガス流通面積を
調整することにより、NH3 分解触媒層3出口のNOx
濃度をNH3 濃度と同等以下に抑えられることがわか
る。なお、試験条件は表2に示すとおりであり、遮断ダ
ンパ4の遮断割合は表2の条件に基づき、前記式(1)
から計算した値により定めた。
A denitration test of exhaust gas containing NOx was conducted by using the test apparatus having this structure. Changing the flow rate of the exhaust gas 6, for the case with and without using the gas blocking damper 4, NH 3 and NO at the outlet of the NH 3 decomposing catalyst layer 3
The result of measuring the concentration of x is shown in FIG. From FIG. 3, when the gas shut-off damper 4 is not used, the gas load is about 7
When the concentration becomes 5% or less, the NOx concentration exceeds the NH 3 concentration, but by adjusting the gas flow area using the gas blocking damper 4, the NOx concentration at the outlet of the NH 3 decomposition catalyst layer 3 is adjusted.
It can be seen that the concentration can be suppressed to be equal to or lower than the NH 3 concentration. The test conditions are as shown in Table 2, and the shutoff ratio of the shutoff damper 4 is based on the conditions in Table 2 and the above formula (1) is used.
It was determined by the value calculated from.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明の方法によれば、ボイラ、ガスタ
ービンなどの排ガス発生源が100%負荷の場合だけで
はなく、部分負荷状態においてもNH3 分解触媒を有効
に機能させることができ、脱硝装置の効率向上が可能と
なり脱硝装置出口におけるNOx濃度が上昇する恐れを
なくすことができる。
According to the method of the present invention, the NH 3 decomposition catalyst can be made to function effectively not only when the exhaust gas source such as a boiler or a gas turbine is at 100% load but also under a partial load condition. It is possible to improve the efficiency of the denitration device, and it is possible to eliminate the risk that the NOx concentration at the outlet of the denitration device will rise.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る脱硝装置の構成を示す説
明図。
FIG. 1 is an explanatory diagram showing a configuration of a denitration device according to an embodiment of the present invention.

【図2】NH3 分解触媒層におけるSV値と出口NO
x、NH3 濃度との関係を示すグラフ。
FIG. 2 SV value and outlet NO in the NH 3 decomposition catalyst layer
3 is a graph showing the relationship between x and NH 3 concentration.

【図3】実施例におけるNH3 分解触媒層の出口におけ
るNH3 及びNOxの濃度の測定結果を示すグラフ。
FIG. 3 is a graph showing the measurement results of the concentrations of NH 3 and NOx at the outlet of the NH 3 decomposition catalyst layer in the example.

【図4】従来の脱硝装置の1例についてその構成を示す
説明図。
FIG. 4 is an explanatory diagram showing the configuration of an example of a conventional denitration device.

【図5】従来の脱硝装置の他の例についてその構成を示
す説明図。
FIG. 5 is an explanatory diagram showing the configuration of another example of the conventional denitration device.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒素酸化物を含有する排ガスを、上流側
から順にNH3 注入ノズルと、NH3 を還元剤として窒
素酸化物を接触的に還元する脱硝触媒を充填した脱硝触
媒層と、NH3 分解触媒を充填したNH3 分解触媒層と
を設けた脱硝装置に通して窒素酸化物を還元除去する脱
硝方法において、前記脱硝触媒層とNH3 分解触媒層と
の間にガス流路の断面積の大きさを調整するガス流通面
積制御手段を設け、ガス流路の一部を遮断することによ
ってNH3 分解触媒層の排ガスが通過する部分の容積を
排ガスの負荷に応じて制御することを特徴とする排ガス
の脱硝方法。
1. An NH 3 injection nozzle for exhaust gas containing nitrogen oxides from the upstream side, a NOx removal catalyst layer filled with a NOx removal catalyst for catalytically reducing nitrogen oxides using NH 3 as a reducing agent, and an NH 3. In a denitration method of reducing and removing nitrogen oxides by passing through a denitration device provided with an NH 3 decomposition catalyst layer filled with a 3 decomposition catalyst, a gas flow path is disconnected between the denitration catalyst layer and the NH 3 decomposition catalyst layer. It is possible to control the volume of the portion of the NH 3 decomposition catalyst layer through which the exhaust gas passes according to the load of the exhaust gas by providing a gas flow area control means for adjusting the size of the area and blocking a part of the gas flow path. Characteristic exhaust gas denitration method.
【請求項2】 窒素酸化物を含有する排ガスを、上流側
から順にNH3 注入ノズルと、NH3 を還元剤として窒
素酸化物を接触的に還元する脱硝触媒を充填した脱硝触
媒層と、NH3 分解触媒を充填したNH3 分解触媒層
と、NH3 を還元剤として窒素酸化物を接触的に還元す
る脱硝触媒を充填した第2脱硝触媒層とを設けた脱硝装
置に通して窒素酸化物を還元除去する脱硝方法におい
て、前記上流側の脱硝触媒層とNH3 分解触媒層との間
にガス流路の断面積の大きさを調整するガス流通面積制
御手段を設け、ガス流路の一部を遮断することによって
NH 3 分解触媒層の排ガスが通過する部分の容積を排ガ
スの負荷に応じて制御することを特徴とする排ガスの脱
硝方法。
2. The exhaust gas containing nitrogen oxides is supplied to the upstream side.
NH in order3Injection nozzle and NH3As a reducing agent
Denitrification catalyst packed with denitrification catalyst for catalytically reducing elemental oxides
Medium layer, NH3NH filled with decomposition catalyst3Decomposition catalyst layer
And NH3Is used as a reducing agent to catalytically reduce nitrogen oxides
Denitration equipment provided with a second denitration catalyst layer filled with denitration catalyst
The denitration method of reducing and removing nitrogen oxides through a storage
And the denitration catalyst layer on the upstream side and NH3Between cracking catalyst layer
Gas flow area control to adjust the cross-sectional area of the gas flow path
By providing a control means and blocking a part of the gas flow path
NH 3Exhaust the volume of the portion of the decomposition catalyst layer through which the exhaust gas passes.
Of exhaust gas, which is characterized by controlling according to the load of the exhaust gas.
Glass method.
【請求項3】 前記ガス流通面積制御手段によるガス流
路の遮断割合が下記の式(1)で表されるγとなるよう
に制御することを特徴とする請求項1又は2に記載の排
ガスの脱硝方法。 【数1】 1−γ=G(x)/(VCA×SVL ) ・・・(1) SVL :NH3 分解触媒使用上の限界SV値(NH3
解触媒層の出口でNH3 濃度がNOx濃度以上である限
界SV値 G(x):排ガス負荷(x)での単位時間当たりの処理
ガス量 VCA:NH3 分解触媒層容量 γ :ガス流路遮断割合
3. The exhaust gas according to claim 1 or 2, wherein the gas flow area control unit controls the gas flow path cutoff ratio to be γ represented by the following formula (1). Denitration method. [Number 1] 1-γ = G (x) / (V CA × SV L) ··· (1) SV L: NH 3 in the exit of the NH 3 decomposing catalyst usage limit SV value (NH 3 decomposing catalyst layer Limit SV value where the concentration is equal to or higher than the NOx concentration G (x): amount of treated gas per unit time at exhaust gas load (x) V CA : NH 3 decomposition catalyst layer capacity γ: gas flow path cutoff ratio
JP24408195A 1995-09-22 1995-09-22 Exhaust gas denitration method Expired - Fee Related JP3524652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24408195A JP3524652B2 (en) 1995-09-22 1995-09-22 Exhaust gas denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24408195A JP3524652B2 (en) 1995-09-22 1995-09-22 Exhaust gas denitration method

Publications (2)

Publication Number Publication Date
JPH0985041A JPH0985041A (en) 1997-03-31
JP3524652B2 true JP3524652B2 (en) 2004-05-10

Family

ID=17113456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24408195A Expired - Fee Related JP3524652B2 (en) 1995-09-22 1995-09-22 Exhaust gas denitration method

Country Status (1)

Country Link
JP (1) JP3524652B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237611B2 (en) 1997-11-11 2001-12-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP6156628B2 (en) * 2013-04-17 2017-07-05 株式会社Ihi Flue gas denitration apparatus and flue gas denitration method

Also Published As

Publication number Publication date
JPH0985041A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
KR20080011188A (en) Method for reducing the nitrogen oxide concentration in gases
US5505919A (en) Method for the denitration of exhaust gas
JP3524652B2 (en) Exhaust gas denitration method
US6479026B1 (en) Method of denitrating exhaust gas
JPS63111929A (en) Decomposing and removing method for nitrous oxide contained in gaseous mixture
JPH06319950A (en) Method and apparatus for exhaust gas denitration using solid reducing agent
JP3252696B2 (en) Purification method of exhaust gas containing oxidizable nitrogen compound
JPH0691138A (en) Method for processing exhaust gas and device therefor
JP3321423B2 (en) Exhaust gas purification method
JP3491184B2 (en) Exhaust gas purification equipment
JPH0975672A (en) Exhaust gas denitration apparatus
KR101142239B1 (en) Method and apparatus for treating ammonia-containing gas
JP3557578B2 (en) Exhaust gas treatment method for waste incinerator
JPH1015355A (en) Denitrification and device therefor
JP3462580B2 (en) Exhaust gas denitration method
JP4045375B2 (en) Exhaust gas purification device
JP3359659B2 (en) High-efficiency denitration method and apparatus
JP3324777B2 (en) Method for treating nitrogen oxide-containing gas
JPH0824581A (en) Removing method of nitrogen oxides by catalytic reduction
JPH05329334A (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas
JPH11347367A (en) Exhaust gas denitrifying apparatus
JPH0751536A (en) Denitration of combustion exhaust gas
JPH07163836A (en) Method and device for controlling concentration of nitrogen oxide and for denitration
JPH11137967A (en) Stack gas denitrification method
JP3361827B2 (en) Exhaust gas denitration method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees